Towards the Hydrophobization of Thermoplastic Starch Using Fatty Acid Starch Ester as Additive
Abstract
:1. Introduction
2. Results
2.1. FASE Characterizations
2.2. Influence of FASEs Ratio on Properties of TPS/FASE Materials
2.2.1. FT-IR Spectroscopy and Surface Analyses
2.2.2. Hydrophobic Behavior and Kinetics of Water Sorption at the Surface of TPS/FASE Blends
2.2.3. Dynamic Vapor Sorption Measurements for TPS/FASE Blends
2.2.4. Mechanical Behavior of TPS/FASE Blends
3. Discussion
3.1. FASE Synthesis and Characterization
3.2. Properties of TPS/FASE Materials according to FASE Ratios
4. Materials and Methods
4.1. Materials
4.2. Synthesis of FASE
4.3. FASE-TPS Blending Process
4.4. Characterization of FASE and Blends
4.4.1. FT-IR Analyses of FASE and TPS/FASE Blends
4.4.2. 1H NMR Analyses of FASE
4.4.3. Surface Behaviors Versus Water of TPS/FASE Blends
4.4.4. Dynamic Vapor Sorption (DVS) of TPS/FASE Blends
4.4.5. Tensile Behavior of TPS/FASE Blends
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ojogbo, E.; Ogunsona, E.O.; Mekonnen, T.H. Chemical and physical modifications of starch for renewable polymeric materials. Mater. Today Sustain. 2020, 7, 100028. [Google Scholar] [CrossRef]
- Averous, L. Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. J. Macromol. Sci. Polym. Rev. 2004, C44, 231–274. [Google Scholar] [CrossRef]
- Liu, H.; Xie, F.; Yu, L.; Chen, L.; Li, L. Thermal processing of starch-based polymers. Prog. Polym. Sci. 2009, 34, 1348–1368. [Google Scholar] [CrossRef]
- Li, G.; Favis, B.D. Morphology Development and Interfacial Interactions in Polycaprolactone/Thermoplastic-Starch Blends. Macromol. Chem. Phys. 2010, 211, 321–333. [Google Scholar] [CrossRef]
- Zhang, Y.; Rempel, C.; Liu, Q. Thermoplastic Starch Processing and Characteristics—A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1353–1370. [Google Scholar] [CrossRef] [PubMed]
- Chaléat, C.; Halley, P.J.; Truss, R.W. Mechanical properties of starch-based plastics. In Starch Polymers: From Genetic Engineering to Green Applications; Halley, P.J., Averous, L., Eds.; Elsevier: Burlington, MA, USA, 2014; pp. 187–205. [Google Scholar] [CrossRef]
- Carvalho, A.J.F. Handbook of Biopolymers and Biodegradable Plastics; Ebnesajjad, S., Ed.; William Andrew Publishing: Boston, MA, USA, 2013. [Google Scholar] [CrossRef]
- Mensitieri, G.; Di Maio, E.; Buonocore, G.G.; Nedi, I.; Oliviero, M.; Sansone, L.; Iannace, S. Processing and shelf life issues of selected food packaging materials and structures from renewable resources. Trends Food Sci. Technol. 2011, 22, 72–80. [Google Scholar] [CrossRef]
- Dole, P.; Joly, C.; Espuche, E.; Alric, I.; Gontard, N. Gas transport properties of starch based films. Carbohydr. Polym. 2004, 58, 335–343. [Google Scholar] [CrossRef]
- Van Tuil, R.; Fowler, P.; Lawther, M.; Weber, C.J. Biobased Packaging Materials for the Food Industry: Status and Perspectives; Weber, C.J., Ed.; KVL: Frederiksberg, Denmark, 2000. [Google Scholar]
- Follain, N.; Joly, C.; Dole, P.; Bliard, C. Mechanical properties of starch-based materials. I. Short review and complementary experimental analysis. J. Appl. Polym. Sci. 2005, 97, 1783–1794. [Google Scholar] [CrossRef]
- Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006, 31, 576–602. [Google Scholar] [CrossRef]
- Martin, O.; Avérous, L. Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer 2001, 42, 6209–6219. [Google Scholar] [CrossRef]
- Huneault, M.A.; Li, H. Preparation and properties of extruded thermoplastic starch/polymer blends. J. Appl. Polym. Sci. 2012, 126, 96–108. [Google Scholar] [CrossRef]
- Dean, K.; Yu, L.; Bateman, S.; Wu, D.Y. Gelatinized starch/biodegradable polyester blends: Processing, morphology, and properties. J. Appl. Polym. Sci. 2007, 103, 802–811. [Google Scholar] [CrossRef]
- Myllymäki, O.; Myllärinen, P.; Forssell, P.; Suortti, T.; Lähteenkorva, K.; Ahvenainen, R.; Poutanen, K. Mechanical and Permeability Properties of Biodegradable Extruded Starch/polycaprolactone Films. Packag. Technol. Sci. 1998, 1, 265–274. [Google Scholar] [CrossRef]
- Mahieu, A.; Terrié, C.; Agoulon, A.; Leblanc, N.; Youssef, B. Thermoplastic starch and poly(ε-caprolactone) blends: Morphology and mechanical properties as a function of relative humidity. J. Polym. Res. 2013, 20, 229–242. [Google Scholar] [CrossRef]
- Senna, M.M.; El-Shahat, H.A.; El-Naggar, A.W.M. Characterization of gamma irradiated plasticized starch/poly(vinyl alcohol) (PLST/PVA) blends and their application as protected edible materials. J. Polym. Res. 2011, 18, 763–771. [Google Scholar] [CrossRef]
- Chaléat, C.M.; Halley, P.J.; Truss, R.W. Study on the phase separation of plasticised starch/poly(vinyl alcohol) blends. Polym. Degrad. Stabil. 2012, 97, 1930–1939. [Google Scholar] [CrossRef]
- Yu, F.; Prashantha, K.; Soulestin, J.; Lacrampe, M.F.; Krawczak, P. Plasticized-starch/poly(ethylene oxide) blends prepared by extrusion. Carbohydr. Polym. 2013, 91, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Vanmarcke, A.; Leroy, L.; Stoclet, G.; Duchatel-Crépy, L.; Lefebvre, J.M.; Joly, N.; Gaucher, V. Influence of Fatty Chain Length and Starch Composition on structure and properties of Fully Substituted Fatty Acid Starch Esters. Carbohydr. Polym. 2017, 164, 249–257. [Google Scholar] [CrossRef]
- Kaur, B.; Ariffin, F.; Bhat, R.; Karim, A. Progress in starch modification in the last decade. Food Hydrocolloid 2012, 26, 398–404. [Google Scholar] [CrossRef]
- Xiong, Z.; Ma, S.Q.; Fan, L.B.; Tang, Z.B.; Zhang, R.Y.; Na, H.N.; Zhu, J. Surface hydrophobic modification of starch with bio-based epoxy resins to fabricate high-performance polylactide composite materials. Compos. Sci. Technol. 2014, 94, 16–22. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, H.; Wang, L.; Abdin, Z.; Chen, Y.; Wang, J.; Zhou, W.; Yang, X.; Ullah Khan, R.; Zhang, H.; et al. Recent progress in chemical modification of starch and its applications. RSC Adv. 2016, 5, 67459–67474. [Google Scholar] [CrossRef]
- Ojogbo, E.; Blanchard, R.; Mekonnen, T. Hydrophobic and Melt Processable Starch-Laurate Graft Polymers: Synthesis, Structure—Property Correlations. J. Polym. Sci. Part A-Polym. Chem. 2018, 56, 2611–2622. [Google Scholar] [CrossRef]
- Fringant, C.; Rinaudo, M.; Foray, M.F.; Bardet, M. Preparation of mixed esters of starch or use of an external plasticizer: Two different ways to change the properties of starch acetate films. Carbohydr. Polym. 1998, 35, 97–106. [Google Scholar] [CrossRef]
- Sagar, A.D.; Merrill, E.W. Properties of fatty-acid esters of starch. J. Appl. Polym. Sci. 1995, 58, 1647–1656. [Google Scholar] [CrossRef]
- Thitisomboon, W.; Opaprakasit, P.; Jaikaew, N.; Boonyarattanakalin, S. Characterizations of modified cassava starch with long chain fatty acid chlorides obtained from esterification under low reaction temperature and its PLA blending. J. Macromol. Sci. Part A 2018, 55, 253–259. [Google Scholar] [CrossRef]
- Ayadi, F.; Dole, P. Stoichiometric interpretation of thermoplastic starch water sorption and relation to mechanical behaviour. Carbohydr. Polym. 2011, 84, 872–880. [Google Scholar] [CrossRef]
- Satgé, C.; Verneuil, B.; Branland, P.; Granet, R.; Krausz, P.; Rozier, J.; Petit, C. Rapid homogeneous esterification of cellulose induced by microwave irradiation. Carbohydr. Polym. 2002, 49, 373–376. [Google Scholar] [CrossRef]
- Lee, H.C. Physico-Chemistry and Rheology of Australian Lentil Flour and Starch, and Their Implications for Extrusion. Ph.D. Thesis, University of New South Wales, Sydney, Australia, 2007. [Google Scholar]
- Stevenson, D.G.; Biswas, A.; Jane, J.L.; Inglett, G.E. Changes in structure and properties of starch of four botanical sources dispersed in the ionic liquid, 1-butyl-3-ethylimidazolium chloride. Carbohydr. Polym. 2007, 67, 21–31. [Google Scholar] [CrossRef]
- Winkler, H.; Vorwerg, W.; Wetzel, H. Synthesis and properties of fatty acid starch esters. Carbohydr. Polym. 2013, 98, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Lourdin, D.; Bizot, H.; Colonna, P. “Antiplasticization” in starch–glycerol films? J. Appl. Polym. Sci. 1997, 63, 1047–1053. [Google Scholar] [CrossRef]
- Godbillot, L.; Dole, P.; Joly, C.; Rogé, B.; Mathlouthi, M. Analysis of water binding in starch plasticized films. Food Chem. 2006, 96, 380–386. [Google Scholar] [CrossRef]
- Joly, N.; Granet, R.; Branland, P.; Verneuil, B.; Krausz, P. New methods for acylation of pure and sawdust—Extracted cellulose by fatty acid derivates—Thermal and mechanical analyses of cellulose-based plastic films. J. Appl. Polym. Sci. 2005, 97, 1266–1278. [Google Scholar] [CrossRef]
- Duchatel-Crépy, L.; Joly, N.; Martin, P.; Marin, A.; Tahon, J.-F.; Lefebvre, J.-M.; Gaucher, V. Substitution degree and fatty chain length influence on structure and properties of Fatty Acid Cellulose esters. Carbohydr. Polym. 2020, 234, 115912. [Google Scholar] [CrossRef]
- Leblanc, N.; Saiah, R.; Beucher, E.; Gattin, R.; Castandet, M.; Saiter, J.M. Structural investigation and thermal stability of new extruded wheat flour based polymeric materials. Carbohydr. Polym. 2008, 73, 548–557. [Google Scholar] [CrossRef]
Name | RelativeHumidity | Elastic Modulus (MPa) | Maximal Stress (MPa) | Maximal Strain (%) | |||
---|---|---|---|---|---|---|---|
E | +/− | σR | +/− | ε | +/− | ||
TPS-0 | 35% | 4065 | 247 | 21.3 | 0.4 | 9 | 1 |
50% | 368 | 89 | 5.4 | 0.1 | 154 | 11 | |
59% | 69 | 11 | 2.4 | 0.2 | 191 | 8 | |
66% | 141 | 12 | 3.3 | 0.1 | 84 | 14 | |
TPS-2 | 35% | 4558 | 229 | 21.4 | 2 | 6 | 1 |
50% | 348 | 109 | 5.2 | 0.3 | 142 | 5 | |
59% | 69 | 6 | 2.8 | 0.1 | 179 | 10 | |
66% | 152 | 8 | 3.4 | 0.1 | 81 | 2 | |
TPS-5 | 35% | 3512 | 215 | 15.1 | 1.1 | 5 | 1 |
50% | 301 | 83 | 4.4 | 0.5 | 140 | 12 | |
59% | 75 | 7 | 2.6 | 0.2 | 158 | 11 | |
66% | 122 | 6 | 2.7 | 0.1 | 66 | 2 | |
TPS-10 | 35% | 2184 | 406 | 12.6 | 0.4 | 15 | 2 |
50% | 79 | 11 | 2.9 | 0.2 | 158 | 9 | |
59% | 65 | 22 | 2.5 | 0.2 | 96 | 6 | |
66% | 116 | 15 | 2.3 | 0.3 | 47 | 6 |
Name | Native Starch | Glycerol | FASE |
---|---|---|---|
TPS-0 | 80 | 20 | 0 |
TPS-2 | 78 | 20 | 2 |
TPS-5 | 75 | 20 | 5 |
TPS-10 | 70 | 20 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terrié, C.; Mahieu, A.; Lequart, V.; Martin, P.; Leblanc, N.; Joly, N. Towards the Hydrophobization of Thermoplastic Starch Using Fatty Acid Starch Ester as Additive. Molecules 2022, 27, 6739. https://doi.org/10.3390/molecules27196739
Terrié C, Mahieu A, Lequart V, Martin P, Leblanc N, Joly N. Towards the Hydrophobization of Thermoplastic Starch Using Fatty Acid Starch Ester as Additive. Molecules. 2022; 27(19):6739. https://doi.org/10.3390/molecules27196739
Chicago/Turabian StyleTerrié, Caroline, Angélique Mahieu, Vincent Lequart, Patrick Martin, Nathalie Leblanc, and Nicolas Joly. 2022. "Towards the Hydrophobization of Thermoplastic Starch Using Fatty Acid Starch Ester as Additive" Molecules 27, no. 19: 6739. https://doi.org/10.3390/molecules27196739
APA StyleTerrié, C., Mahieu, A., Lequart, V., Martin, P., Leblanc, N., & Joly, N. (2022). Towards the Hydrophobization of Thermoplastic Starch Using Fatty Acid Starch Ester as Additive. Molecules, 27(19), 6739. https://doi.org/10.3390/molecules27196739