Coronavirus Inhibitors Targeting nsp16
Abstract
:1. Introduction
2. Results
2.1. Multiple Sequence Alignment
2.2. Virtual Screening and Molecular Docking
2.3. Microscale Thermophoresis
2.4. Molecular Docking of Hits to SARS-CoV-2 nsp16 Binding Pocket
2.5. Cell Viability Assay
3. Discussion
4. Materials and Methods
4.1. Multiple Sequence Alignment
4.2. Virtual Screening of Ligands
4.3. Recombinant Proteins
4.4. Microscale Thermophoresis
4.5. Molecular Docking
4.6. Toxicity of the Ligands to Normal Lung Cells
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, H.; Stratton, C.W.; Tang, Y.-W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J. Med. Virol. 2020, 92, 401–402. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Bio. Medica. Atenei Parm 2020, 91, 157–160. [Google Scholar] [CrossRef]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. Lond. Engl. 2020, 78, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.-W.; Yuan, S.; Yuen, K.-S.; Fung, S.-Y.; Chan, C.-P.; Jin, D.-Y. Zoonotic origins of human coronaviruses. Int. J. Biol. Sci. 2020, 16, 1686–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sola, I.; Almazán, F.; Zúñiga, S.; Enjuanes, L. Continuous and discontinuous RNA synthesis in coronaviruses. Annu. Rev. Virol. 2015, 2, 265–288. [Google Scholar] [CrossRef] [Green Version]
- Lai, M.M.; Cavanagh, D. The molecular biology of coronaviruses. Adv. Virus. Res. 1997, 48, 1–100. [Google Scholar]
- Snijder, E.J.; Decroly, E.; Ziebuhr, J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv. Virus Res. 2016, 96, 59–126. [Google Scholar] [CrossRef]
- Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020, 27, 325–328. [Google Scholar] [CrossRef] [Green Version]
- Daffis, S.; Szretter, K.J.; Schriewer, J.; Li, J.; Youn, S.; Errett, J.; Lin, T.-Y.; Schneller, S.; Zust, R.; Dong, H.; et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 2010, 468, 452–456. [Google Scholar] [CrossRef]
- Krafcikova, P.; Silhan, J.; Nencka, R.; Boura, E. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat. Commun. 2020, 11, 3717. [Google Scholar] [CrossRef] [PubMed]
- Decroly, E.; Imbert, I.; Coutard, B.; Bouvet, M.; Selisko, B.; Alvarez, K.; Gorbalenya, A.E.; Snijder, E.J.; Canard, B. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2′O)-methyltransferase activity. J. Virol. 2008, 82, 8071–8084. [Google Scholar] [CrossRef] [Green Version]
- Bouvet, M.; Debarnot, C.; Imbert, I.; Selisko, B.; Snijder, E.J.; Canard, B.; Decroly, E. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog. 2010, 6, e1000863. [Google Scholar] [CrossRef]
- Lugari, A.; Betzi, S.; Decroly, E.; Bonnaud, E.; Hermant, A.; Guillemot, J.-C.; Debarnot, C.; Borg, J.-P.; Bouvet, M.; Canard, M.; et al. Molecular mapping of the RNA cap 2′-O-methyltransferase activation interface between Severe Acute Respiratory Syndrome Coronavirus nsp10 and nsp16. J. Biol. Chem. 2010, 285, 33230–33241. [Google Scholar] [CrossRef] [Green Version]
- Decroly, E.; Debarnot, C.; Ferron, F.; Bouvet, M.; Coutard, B.; Imbert, I.; Gluais, L.; Papageorgiou, N.; Sharff, A.; Bricogne, G.; et al. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 Complex. PLoS Pathog. 2011, 7, e1002059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, W.; Chen, C.; Tang, J.; Wang, C.; Zhou, M.; Cheng, Y.; Zhou, X.; Wu, Q.; Zhang, X.; Feng, Z.; et al. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: A meta-analysis. Ann. Med. 2022, 54, 516–523. [Google Scholar] [CrossRef]
- Fan, H.; Lou, F.; Fan, J.; Li, M.; Tong, Y. The emergence of powerful oral anti-COVID-19 drugs in the post-vaccine era. Lancet Microbe 2022, 3, e91. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N. Remdesivir: First Approval. Drugs 2020, 80, 1355–1363. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [Green Version]
- Sorokina, M.; Steinbeck, C. Review on natural products databases: Where to find data in 2020. J. Cheminform. 2020, 12, 20. [Google Scholar] [CrossRef] [Green Version]
- Rosas-Lemus, M.; Minasov, G.; Shuvalova, L.; Inniss, N.; Kiryukhina, O.; Brunzelle, J.; Satchell, K.J.F. Structure of SARS-CoV-2 2′-O-methyltransferase heterodimer with RNA Cap analog and sulfates bound reveals new strategies for structure-based inhibitor design. Sci. Signal 2020, 13, eabe1202. [Google Scholar] [CrossRef]
- Wilamowski, M.; Sherrell, D.A.; Minasov, G.; Kim, Y.; Shuvalova, L.; Lavens, A.; Chard, R.; Maltseva, N.; Jedrzejczak, R.; Rosas-Lemus, M.; et al. 2′-O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography. Proc. Natl. Acad. Sci. USA 2021, 118, e2100170118. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.-J.; Chen, T.-H. NSP16 2′-O-MTase in Coronavirus Pathogenesis: Possible Prevention and Treatments Strategies. Viruses 2021, 13, 538. [Google Scholar] [CrossRef]
- Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. BioMed. Res. Int. 2013, 2013, e963248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelmohsen, U.R.; Albohy, A.; Abdulrazik, B.S.; Bayoumi, S.A.L.; Malak, L.G.; Khallaf, I.S.A.; Bringmann, G.; Farag, S.F. Natural coumarins as potential anti-SARS-CoV-2 agents supported by docking analysis. RSC Adv. 2021, 11, 16970–16979. [Google Scholar] [CrossRef]
- Mohamed, N.M.; Eltelbany, R.F.A. Synthetic coumarin derivatives as SARS-CoV-2 major protease inhibitors: Design, synthesis, bioevaluation and molecular docking. ChemistrySelect 2021, 6, 13616–13626. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Jerabek-Willemsen, M.; Wienken, C.J.; Braun, D.; Baaske, P.; Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 2011, 9, 342–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, E.-J.; Efferth, T. Interaction of antihistaminic drugs with human translationally controlled tumor protein (TCTP) as novel approach for differentiation therapy. Oncotarget 2016, 7, 16818–16839. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Yu, L.; Yang, R.; Qu, L.; Harrington, P.D.B. A novel method for the study of molecular interaction by using microscale thermophoresis. Talanta 2015, 132, 894–901. [Google Scholar] [CrossRef]
Compound | Lowest Binding Energy (kcal/mol) of Compounds Screened against nsp16s | Docking against SARS-CoV-2 nsp16 | |||
---|---|---|---|---|---|
SARS-CoV-2 | SARS-CoV-1 | MERS-CoV | Lowest Binding Energy (kcal/mol) | Estimated Inhibition Constant (pKi, nM) | |
ZINC2129028 | −13.00 | −9.90 | −9.10 | −13.5 ± 0.48 | 0.21 ± 0.02 |
ZINC2121012 | −13.00 | −10.30 | −9.60 | −15.48 ± 0.02 | 4.51 ± 0.15 |
ZINC2119810 | −13.00 | −9.80 | −9.70 | −11.42 ± 0.02 | 4.30 ± 0.15 |
ZINC2119635 | −13.00 | −9.40 | −9.40 | −12.37 ± 0.00 | 0.85 ± 0.00 |
ZINC2122985 | −12.90 | −10.00 | −10.10 | −12.25 ± 0.04 | 1.05 ± 0.07 |
ZINC8236721 | −12.90 | −9.10 | −9.00 | −12.63 ± 0.10 | 0.56 ± 0.08 |
ZINC11867125 | −12.90 | −11.10 | −10.40 | −13.95 ± 0.00 | 0.060 ± 0.00 |
ZINC2155100 | −12.80 | −10.20 | −10.30 | −16.11 ± 0.22 | 0.002 ± 0.00 |
ZINC12880820 | −12.80 | −9.30 | −10.50 | −12.48 ± 0.03 | 0.70 ± 0.03 |
SAM | −7.70 | −7.10 | −6.30 | −10.04 ± 0.31 | 326.93 ± 6.30 |
Compound | Kd Values (µM) of Candidate Compounds Bound to nsp16s | ||
---|---|---|---|
SARS-CoV-2 | SARS-CoV-1 | MERS-CoV | |
ZINC12880820 | 29.08 ± 2.86 | >100 | 36.43 ± 1.12 |
ZINC2121012 | 23.14 ± 1.05 | - | - |
ZINC2129028 | 59.95 ± 2.53 | 56.42 ± 1.85 | 48.11 ± 4.12 |
Nsp16 | Compound | Lowest Binding Energy (LBE, kcal/mol) | Predicted Inhibition Constant (pki, nM) |
---|---|---|---|
SARS-CoV-2 (PDB: 6W4H) | ZINC12880820 | −12.48 ± 0.03 | 0.70 ± 0.03 |
ZINC2121012 | −15.48 ± 0.02 | 4.51 ± 0.15 | |
ZINC2129028 | −13.5 ± 0.48 | 0.21 ± 0.02 | |
SAM | −8.84 ± 0.01 | 326.93 ± 6.30 | |
SARS-CoV-1 (PDB: 3R24) | ZINC12880820 | −13.17 ± <0.0 | 0.22 ± <0.01 |
ZINC2129028 | −13.42 ± <0.01 | 0.14 ± <0.01 | |
SAM | −8.40 ± 0.07 | 637.63 ± 8.72 | |
MERS-CoV (PDB: 5YN6) | ZINC12880820 | −12.30 ± <0.01 | 0.97 ± 0.01 |
ZINC2129028 | −14.08 ± <0.01 | 0.05 ± <0.01 | |
SAM | −8.79 ± 0.13 | 306.05 ± 1.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omer, E.A.; Abdelfatah, S.; Riedl, M.; Meesters, C.; Hildebrandt, A.; Efferth, T. Coronavirus Inhibitors Targeting nsp16. Molecules 2023, 28, 988. https://doi.org/10.3390/molecules28030988
Omer EA, Abdelfatah S, Riedl M, Meesters C, Hildebrandt A, Efferth T. Coronavirus Inhibitors Targeting nsp16. Molecules. 2023; 28(3):988. https://doi.org/10.3390/molecules28030988
Chicago/Turabian StyleOmer, Ejlal A., Sara Abdelfatah, Max Riedl, Christian Meesters, Andreas Hildebrandt, and Thomas Efferth. 2023. "Coronavirus Inhibitors Targeting nsp16" Molecules 28, no. 3: 988. https://doi.org/10.3390/molecules28030988
APA StyleOmer, E. A., Abdelfatah, S., Riedl, M., Meesters, C., Hildebrandt, A., & Efferth, T. (2023). Coronavirus Inhibitors Targeting nsp16. Molecules, 28(3), 988. https://doi.org/10.3390/molecules28030988