Quality Assessment of Burdekin Plum (Pleiogynium timoriense) during Ambient Storage
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characteristics of Burdekin Plum
2.1.1. Weight and Size
2.1.2. Proximate Composition of Burdekin Plum
2.1.3. Changes in Weight, Firmness and Color during Storage of Burdekin Plum
2.1.4. Changes in TSS, pH and TA during Storage of Burdekin Plum
2.1.5. Vitamin C and Folate of Burdekin Plum
2.1.6. Identification of Phenolic Compounds
RT, min | Anthocyanins | Molecular Formula | Molecular Ion (m/z) | MS2 Fragments (m/z) | Reference | ||
---|---|---|---|---|---|---|---|
5.84 | Delphinidin 3-galactoside | C21H21O12 | 465.1028 | 303.0498 | 304.0533 | 257.0446 | standard |
6.05 | Delphinidin 3-glucoside | C21H21O12 | 465.1030 | 303.0501 | 304.0533 | 257.0438 | standard |
6.36 | Cyanidin 3-galactoside | C21H21O11 | 449.1081 | 287.0550 | 288.058 | standard | |
6.62 | Cyanidin 3-glucoside | C21H21O11 | 449.1082 | 287.0551 | 288.0586 | standard | |
6.84 | Cyanidin 3-arabinoside | C20H19O10 | 419.0977 | 287.0551 | 288.0588 | [64,80] | |
7.21 | Peonidin 3-hexoside | C22H23O11 | 463.1241 | 301.0707 | 302.0739 | [64] | |
7.46 | Peonidin 3-hexosideisomer | C22H23O11 | 463.1241 | 301.0707 | 302.0739 | [64] |
RT, min | Compounds | Molecular Formula | Molecular Ion (m/z) | MS2 Fragments (m/z) | Reference | |||
---|---|---|---|---|---|---|---|---|
0.92 | Quinic acid | C7H12O6 | 191.0559 | 85.0294 | 93.0346 | 127.0401 | 137.0246 | standard |
0.95 | Malic acid | C4H6O5 | 133.0142 | 115.0036 | 71.0138 | standard | ||
1.21 | Citric acid | C6H8O7 | 191.0197 | 111.0087 | 191.0197 | 87.0087 | standard | |
1.32 | Galloyl glucose | C13H16O10 | 331.0670 | 169.0143 | 125.0244 | [66] | ||
1.50 | Gallic acid | C7H6O5 | 169.0141 | 125.0243 | standard | |||
1.61 | 5-galloylquinic acid | C14H16O10 | 343.0668 | 191.0560 | 169.0143 | 85.0295 | [72] | |
1.88 | 4-galloylquinic acid | C14H16O10 | 343.0667 | 169.0142 | 173.0455 | |||
5.40 | Digalloyl glucose | C20H20O14 | 483.0774 | 169.0142 | 125.0244 | 313.0563 | [67,68,71] | |
5.55 | Digalloyl glucose isomer I | C20H20O14 | 483.0776 | 169.0142 | 313.0563 | 125.0244 | ||
5.80 | Digalloyl glucose isomer II | C20H20O14 | 483.0776 | 169.0142 | 313.0563 | 125.0244 | ||
5.56 | Catechin | C15H14O6 | 289.0716 | 245.0818 | 109.0295 | 151.0401 | standard | |
6.03 | Trigalloyl glucose isomer I | C27H24O18 | 635.0881 | 169.0143 | 465.0675 | 313.0565 | 125.0244 | [68,69] |
6.33 | Trigalloyl glucose isomer II | C27H24O18 | 635.0881 | 169.0143 | 465.0675 | 313.0565 | 125.0244 | |
6.52 | Trigalloyl glucose isomer III | C27H24O18 | 635.0884 | 169.0143 | 465.0675 | 313.0565 | 125.0244 | |
6.87 | Epicatechin | C15H14O6 | 289.0716 | 245.0823 | 109.0295 | 151.0401 | standard | |
7.1 | 1,3,6-tri-o-galloyl-beta-D-glucose | C27H24O18 | 635.0884 | 169.0143 | 465.0675 | 313.0565 | 125.0244 | standard |
7.5 | Trigalloyl glucose isomer IV | C27H24O18 | 635.0884 | 169.0143 | 465.0675 | 313.0565 | 125.0244 | [69,71,81] |
7.7 | Trigalloyl glucose isomer V | C27H24O18 | 635.0884 | 169.0143 | 465.0675 | 313.0565 | 125.0244 | |
8.22 | Tetragalloyl glucose | C34H29O22 | 787.0993 | 169.0143 | 635.0889 | 465.0671 | 125.0244 | |
8.24 | Ellagic acid | C14H6O8 | 300.9987 | 229.0141 | 257.0092 | standard | ||
8.51 | (Epi)catechin gallate | C22H18O10 | 441.0825 | 169.0142 | 289.0716 | 125.0244 | 245.0817 | [74] |
8.72 | Quercetin 3-glucoside isomer | C21H20O12 | 463.0878 | 300.0274 | 271.0247 | 255.0298 | 151.0037 | [76,77,82] |
8.83 | Quercetin glucuronide | C21H18O13 | 477.0673 | 301.0352 | 273.0407 | 151.0037 | ||
8.85 | Quercetin 3-glucoside | C21H20O12 | 463.0877 | 300.0274 | 271.0247 | 255.0299 | 151.0037 | standard |
9.49 | Kaempferol glucuronide | C21H18O12 | 461.0723 | 285.0044 | 163.8401 | [74,75] | ||
9.65 | Luteolin glucuronide | C21H18O12 | 461.0716 | 285.0404 | 175.0254 | |||
9.85 | Myricetin | C15H10O8 | 317.0299 | 151.0036 | 178.9985 | standard | ||
11.58 | Quercetin | C15H10O7 | 301.0350 | 151.0036 | 178.9985 | 121.0294 | 273.0404 | standard |
11.67 | Luteolin | C15H10O6 | 285.0401 | 151.0036 | 133.0294 | standard | ||
12.61 | Kaempferol | C15H10O6 | 285.0403 | 257.9139 | 151.9234 | standard |
2.1.7. Quantification of Identified Compounds
2.1.8. Antioxidant Capacity
2.2. Preliminary Sensory Evaluation
2.3. Limitations of the Present Study
3. Materials and Methods
3.1. Samples
3.2. Measurement of Physicochemical Properties
3.2.1. Fruit Weight, Size and Color
3.2.2. Firmness
3.2.3. Total Soluble Solids, pH and Titratable Acidity
3.2.4. Proximate Analysis
3.2.5. Vitamin C and Folate
3.3. Analysis of Phenolic Compounds
3.3.1. Extraction
3.3.2. Ultra-High-Performance Liquid-Chromatograph and High Resolution/Accurate Mass Spectrometry (UHPLC-HRAM-MS/MS)
3.3.3. Antioxidant Capacity
3.4. Preliminary Sensory Evaluation
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Shelef, O.; Weisberg, P.J.; Provenza, F.D. The value of native plants and local production in an era of global agriculture. Front. Plant Sci. 2017, 8, 2069. [Google Scholar] [CrossRef] [PubMed]
- Richmond, R.; Bowyer, M.; Vuong, Q. Australian native fruits: Potential uses as functional food ingredients. J. Funct. Foods 2019, 62, 103547. [Google Scholar] [CrossRef]
- Hunter, D.; Borelli, T.; Beltrame, D.M.O.; Oliveira, C.N.S.; Coradin, L.; Wasike, V.W.; Wasilwa, L.; Mwai, J.; Manjella, A.; Samarasinghe, G.W.L.; et al. The potential of neglected and underutilized species for improving diets and nutrition. Planta 2019, 250, 709–729. [Google Scholar] [CrossRef] [PubMed]
- Sultanbawa, Y. Food preservation and the antimicrobial activity of Australian native plants. In Australian Native Plants; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Fuentes, J.A.M.; Fernández, I.M.; Maldonado, S.A.S.; Murillo, I.M.V.; Altamirano, C.M.S.; Bonilla, F.J.H.; Tejada, E.G.C.; Dereck, B.F.C.; Fernández, H.Z.; Gil, M.d.J.A. Physical-Chemical Evaluation of the Cassia grandis L. as Fortifying Egg Powder. J. Agric. Sci. 2020, 12, 277. [Google Scholar] [CrossRef]
- Seymour, G.B.; Østergaard, L.; Chapman, N.H.; Knapp, S.; Martin, C. Fruit development and ripening. Annu. Rev. Plant Biol. 2013, 64, 219–241. [Google Scholar] [CrossRef]
- Sara, M.; Javier, R.-P.; Manuel, C.-B.; Daniel, M.-V.; Jonathan, D.-A. Application of Phenolic Compounds for Food Preservation: Food Additive and Active Packaging. In Phenolic Compounds; Marcos, S.-H., Mariana, P.-T., Maria del Rosario, G.-M., Eds.; IntechOpen: Rijeka, Croatia, 2017; Chapter 3. [Google Scholar]
- Rozefelds, A.; Kane, N. Burdekin Plum jam. Aust. Age Dinosaur. 2016, 13, 4–5. [Google Scholar]
- Jessup, L.W. Flora of Australia; George, A.S., Ed.; Australian Government Publishing Service: Canberra, NSW, Australia, 1985; Volume 25. [Google Scholar]
- Hou, D. Flora Malesiana; Noordhoff-Kolff: Djakarta, Indonesia, 1978; Volume 8. [Google Scholar]
- Calvert, G. Burdekin plum. Available online: https://anpsa.org.au/APOL31/sep03-14.html (accessed on 1 December 2020).
- Dick, H. Burdekin plum. Aust. Plants 1994, 17, 251–252. [Google Scholar]
- CHAH. Australian Plan Census. Available online: https://biodiversity.org.au/nsl/services/rest/instance/apni/6894453 (accessed on 1 December 2020).
- Lake, M. Australian Rainforest Woods: Characteristics, Uses and Identification; CSIRO Publishing: Clayton, VIC, Australia, 2015. [Google Scholar]
- Low, T. Wild food plants of Australia; Angus & Robertson Publishers: North Ryde, NSW, Australia, 1991. [Google Scholar]
- Cribb, A.B.; Cribb, J.W.; McCubbin, C. Wild food in Australia, 2nd ed.; Collins/Angus & Robertson: North Ryde, NSW, Australia, 1990. [Google Scholar]
- Brand-Miller, J.; James, K.W.; Maggiore, P.M.A. Tables of Composition of Australian Aboriginal Bush Foods: Aboriginal Reminiscences from the Western Lake Eyre Basin; AIATSIS: Canberra, Australia, 1993.
- Cherikoff, V. Wild Food: Looking Back 60,000 Years for Clues to Our Future Survival; New Holland Publishers: Chatswood, NSW, Australia, 2015. [Google Scholar]
- Netzel, M.; Netzel, G.; Tian, Q.; Schwartz, S.; Konczak, I. Native Australian fruits—A novel source of antioxidants for food. Innov. Food Sci. Emerg. Technol. 2007, 8, 339–346. [Google Scholar] [CrossRef]
- Said, A.; Abuotabl, E.; Abdel Raoof, G. Identification of Constituents from Pleiogynium timorense (Dc.) Leenh Pericarp and Seeds Using High-Performance Liquid Chromatography with Electrospray Ionization Mass Spectrometry Citation. AASCIT J. Chem. 2017, 3, 30–36. [Google Scholar]
- Said, A.; Abuotabl, E.A.; Raoof, G.F.A.; Huefner, A.; Nada, S.A. Phenolic contents and bioactivities of pericarp and seeds of Pleiogynium solandri (Benth.) Engl. (Anacardiaceae). Iran. J. Basic Med. Sci. 2015, 18, 164–171. [Google Scholar]
- Bautista, I.; Boscaiu, M.; Lidón, A.; Llinares, J.V.; Lull, C.; Donat, M.P.; Mayoral, O.; Vicente, O. Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiol. Plant. 2016, 38, 1–15. [Google Scholar] [CrossRef]
- Pott, D.M.; Vallarino, J.G.; Osorio, S. Metabolite Changes during Postharvest Storage: Effects on Fruit Quality Traits. Metabolites 2020, 10, 187. [Google Scholar] [CrossRef]
- Islam, M.K.; Khan, M.Z.; Sarkar, M.A.; Absar, N.; Sarkar, S.K. Changes in Acidity, TSS, and Sugar Content at Different Storage Periods of the Postharvest Mango (Mangifera indica L.) Influenced by Bavistin DF. Int. J. Food Sci. 2013, 2013, 939385. [Google Scholar] [CrossRef]
- Mphaphuli, T.; Slabbert, R.M.; Sivakumar, D. Storage temperature and time changes of phenolic compounds and antioxidant properties of Natal plum (Carissa macrocarpa). Food Biosci. 2020, 38, 100772. [Google Scholar] [CrossRef]
- Gupta, N.; Jain, S.K. Storage behavior of mango as affected by post harvest application of plant extracts and storage conditions. J. Food Sci. Technol. 2014, 51, 2499–2507. [Google Scholar] [CrossRef]
- Rodríguez Pleguezuelo, C.R.; Durán Zuazo, V.H.; Muriel Fernández, J.L.; Franco Tarifa, D. Physico-chemical quality parameters of mango (Mangifera indica L.) fruits grown in a mediterranean subtropical climate (SE Spain). J. Agric. Sci. Technol. 2012, 14, 365–374. [Google Scholar]
- Sedaghathoor, S.; Ansari, R.; Allahyari, M.S.; Nasiri, E. Comparison of morphological characteristics of some plum and prune cultivars of Iran. Sci. Res. Essays 2009, 4, 992–996. [Google Scholar]
- Brand-Miller, J.C.; Holt, S.H.A. Australian Aboriginal plant foods: A consideration of their nutritional composition and health implications. Nutr. Res. Rev. 1998, 11, 5–23. [Google Scholar] [CrossRef]
- Said, A.; Omer, E.; El Gendy, M.; Abdel Raoof, G.; Abd EL-Kader, A.; Fouad, R. Volatile constituents and cytotoxic activity of the fruits of Pleiogynium timorense (Dc.) Leenh. J. Mater. Environ. Sci. 2018, 9, 2274–2279. [Google Scholar]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef]
- FSANZ. Qualifying Criteria for Nutrition Content Claims about Dietary Fibre in Standard 1.2.7—Nutrition, Health and Related Claims. 2016. Available online: https://www.foodstandards.gov.au/industry/labelling/Documents/Qualifying%20criteria%20for%20dietary%20fibre%20claims%20post%20board.pdf (accessed on 1 June 2022).
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef] [PubMed]
- Payasi, A.; Mishra, N.N.; Chaves, A.L.; Singh, R. Biochemistry of fruit softening: An overview. Physiol. Mol. Biol. Plants 2009, 15, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Mai, A.-D.; Pankaj, B.P.; Rashid, A.-Y. Effect of Postharvest Transport and Storage on Color and Firmness Quality of Tomato. Horticulturae 2021, 7, 163. [Google Scholar] [CrossRef]
- Ishak, S.A.; Ismail, N.; Mohd Noor, M.A.; Ahmad, H. Some physical and chemical properties of ambarella (Spondias cytherea Sonn.) at three different stages of maturity. J. Food Compos. Anal. 2005, 18, 819–827. [Google Scholar] [CrossRef]
- Li, M.; Lv, W.; Zhao, R.; Guo, H.; Liu, J.; Han, D. Non-destructive assessment of quality parameters in ‘Friar’ plums during low temperature storage using visible/near infrared spectroscopy. Food Control. 2017, 73, 1334–1341. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Adekunte, A.O.; Tiwari, B.K.; Cullen, P.J.; Scannell, A.G.M.; O’Donnell, C.P. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugars and sweetness of horticultural products—A review. Sci. Hortic. 2015, 184, 179–192. [Google Scholar] [CrossRef]
- Bhagyalakshmi, N.; Prabha, T.N.; Yashodha, H.M.; Prasanna, V.; Jagadeesh, B.K.; Tharanathan, R.N. Biochemial studies related to textural regulation during ripening of banana and mango fruit. Acta Hortic. 2002, 575, 717–724. [Google Scholar] [CrossRef]
- Yashoda, H.M.; Prabha, T.N.; Tharanathan, R.N. Mango ripening: Changes in cell wall constituents in relation to textural softening. J. Sci. Food Agric. 2006, 86, 713–721. [Google Scholar] [CrossRef]
- Kaur, K.; Dhillon, W.S. Influence of maturity and storage period on physical and biochemical characteristics of pear during post cold storage at ambient conditions. J. Food Sci. Technol. 2015, 52, 5352–5356. [Google Scholar] [CrossRef]
- Simmonds, M.S.J.; Preedy, V.R. Nutritional Composition of Fruit Cultivars; Academic Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Sultanbawa, Y.; Williams, D.; Chaliha, M.; Konczak, I.; Smyth, H. Changes in Quality and Bioactivity of Native Food during Storage; RIRDC: Canberra, ACT, Australia, 2015.
- Cosme Silva, G.M.; Silva, W.B.; Medeiros, D.B.; Salvador, A.R.; Cordeiro, M.H.M.; da Silva, N.M.; Santana, D.B.; Mizobutsi, G.P. The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. Palmer) fruit during storage. Food Chem. 2017, 237, 372–378. [Google Scholar] [CrossRef]
- Borsani, J.; Budde, C.O.; Porrini, L.; Lauxmann, M.A.; Lombardo, V.A.; Murray, R.; Andreo, C.S.; Drincovich, M.F.; Lara, M.V. Carbon metabolism of peach fruit after harvest: Changes in enzymes involved in organic acid and sugar level modifications. J. Exp. Bot. 2009, 60, 1823–1837. [Google Scholar] [CrossRef]
- Suwonsichon, S.; Chambers Iv, E.; Kongpensook, V.; Oupadissakoon, C. Sensory lexicon for mango as affected by cultivars and stages of ripeness: Sensory lexicon for mango. J. Sens. Stud. 2012, 27, 148–160. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, A.; Liu, S.; Sheng, L.; Ma, Q.; Zhang, L.; Nishawy, E.M.E.; Zeng, Y.; Xu, J.; Ma, Z.; et al. Integration of Metabolomics and Subcellular Organelle Expression Microarray to Increase Understanding the Organic Acid Changes in Post-harvest Citrus Fruit. J. Integr. Plant Biol. 2013, 55, 1038–1053. [Google Scholar] [CrossRef]
- Hernández-Muñoz, P.; Almenar, E.; Valle, V.D.; Velez, D.; Gavara, R. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria×ananassa) quality during refrigerated storage. Food Chem. 2008, 110, 428–435. [Google Scholar] [CrossRef]
- Dhital, R.; Joshi, P.; Becerra-Mora, N.; Umagiliyage, A.; Chai, T.; Kohli, P.; Choudhary, R. Integrity of edible nano-coatings and its effects on quality of strawberries subjected to simulated in-transit vibrations. LWT 2017, 80, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Phan, A.D.T.; Zhang, J.; Seididamyeh, M.; Srivarathan, S.; Netzel, M.E.; Sivakumar, D.; Sultanbawa, Y. Hydrolysable tannins, physicochemical properties, and antioxidant property of wild-harvested Terminalia ferdinandiana (exell) fruit at different maturity stages. Front. Nutr. 2022, 9, 961679. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- Maldonado-Celis, M.E.; Yahia, E.M.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B.; Guerrero Ospina, J.C. Chemical Composition of Mango (Mangifera indica L.) Fruit: Nutritional and Phytochemical Compounds. Front. Plant Sci. 2019, 10, 1073. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant Capacities, Phenolic Compounds, Carotenoids, and Vitamin C Contents of Nectarine, Peach, and Plum Cultivars from California. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar] [CrossRef] [PubMed]
- Betancourt, L.A.; Stevens, M.A.; Kader, A.A. Accumulation and loss of sugars and reduced ascorbic. J. Am. Soc. Hortic. Sci. 1977, 102, 721–723. [Google Scholar] [CrossRef]
- Ntagkas, N.; Woltering, E.J.; Bouras, S.; de Vos, C.H.; Dieleman, J.A.; Nicole, C.; Labrie, C.W.; Marcelis, L.F.M. Light-Induced Vitamin C Accumulation in Tomato Fruits is Independent of Carbohydrate Availability. Plants 2019, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Kar, A. Effect of Storage on the Physicochemical and Flavour Attributes of Two Cultivars of Strawberry Cultivated in Northern India. Sci. World J. 2014, 2014, 794926–794927. [Google Scholar] [CrossRef]
- Fenech, M.; Amaya, I.; Valpuesta, V.; Botella, M.A. Vitamin C content in fruits: Biosynthesis and regulation. Front. Plant Sci. 2019, 9, 2006. [Google Scholar] [CrossRef]
- Delchier, N.; Herbig, A.-L.; Rychlik, M.; Renard, C.M.G.C. Folates in Fruits and Vegetables: Contents, Processing, and Stability: Folates in fruits and vegetables. Compr. Rev. Food Sci. Food Saf. 2016, 15, 506–528. [Google Scholar] [CrossRef]
- Striegel, L.; Chebib, S.; Netzel, M.E.; Rychlik, M. Improved Stable Isotope Dilution Assay for Dietary Folates Using LC-MS/MS and Its Application to Strawberries. Front. Chem. 2018, 6, 11. [Google Scholar] [CrossRef]
- Saini, R.K.; Nile, S.H.; Keum, Y.-S. Folates: Chemistry, analysis, occurrence, biofortification and bioavailability. Food Res. Int. 2016, 89, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat. Prod. Commun. 2022, 17, 1934578X211069721. [Google Scholar] [CrossRef]
- Šuković, D.; Knežević, B.; Gašić, U.; Sredojević, M.; Ćirić, I.; Todić, S.; Mutić, J.; Tešić, Ž. Phenolic Profiles of Leaves, Grapes and Wine of Grapevine Variety Vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [Google Scholar] [CrossRef]
- He, H.-F. Recognition of Gallotannins and the Physiological Activities: From Chemical View. Front. Nutr. 2022, 9, 888892. [Google Scholar] [CrossRef]
- Quatrin, A.; Pauletto, R.; Maurer, L.H.; Minuzzi, N.; Nichelle, S.M.; Carvalho, J.F.C.; Maróstica, M.R.; Rodrigues, E.; Bochi, V.C.; Emanuelli, T. Characterization and quantification of tannins, flavonols, anthocyanins and matrix-bound polyphenols from jaboticaba fruit peel: A comparison between Myrciaria trunciflora and M. jaboticaba. J. Food Compos. Anal. 2019, 78, 59–74. [Google Scholar] [CrossRef]
- Abdulla, R.; Mansur, S.; Lai, H.; Ubul, A.; Sun, G.; Huang, G.; Aisa, H.A. Qualitative Analysis of Polyphenols in Macroporous Resin Pretreated Pomegranate Husk Extract by HPLC-QTOF-MS. Phytochem. Anal. 2017, 28, 465–473. [Google Scholar] [CrossRef]
- Wyrepkowski, C.C.; Da Costa, D.L.M.G.; Sinhorin, A.P.; Vilegas, W.; De Grandis, R.A.; Resende, F.A.; Varanda, E.A.; Dos Santos, L.C. Characterization and quantification of the compounds of the ethanolic extract from caesalpinia ferrea stem bark and evaluation of their mutagenic activity. Molecules 2014, 19, 16039–16057. [Google Scholar] [CrossRef]
- Alañón, M.E.; Pimentel-Moral, S.; Arráez-Román, D.; Segura-Carretero, A. HPLC-DAD-Q-ToF-MS profiling of phenolic compounds from mango (Mangifera indica L.) seed kernel of different cultivars and maturation stages as a preliminary approach to determine functional and nutraceutical value. Food Chem. 2021, 337, 127764. [Google Scholar] [CrossRef]
- Erşan, S.; Güçlü Üstündağ, Ö.; Carle, R.; Schweiggert, R.M. Identification of Phenolic Compounds in Red and Green Pistachio (Pistacia vera L.) Hulls (Exo- and Mesocarp) by HPLC-DAD-ESI-(HR)-MSn. J. Agric. Food Chem. 2016, 64, 5334–5344. [Google Scholar] [CrossRef]
- Alañón, M.E.; Oliver-Simancas, R.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. Evolution of bioactive compounds of three mango cultivars (Mangifera indica L.) at different maturation stages analyzed by HPLC-DAD-q-TOF-MS. Food Res. Int. 2019, 125, 108526. [Google Scholar] [CrossRef]
- Clifford, M.N.; Stoupi, S.; Kuhnert, N. Profiling and Characterization by LC-MSn of the Galloylquinic Acids of Green Tea, Tara Tannin, and Tannic Acid. J. Agric. Food Chem. 2007, 55, 2797–2807. [Google Scholar] [CrossRef]
- Ben Said, R.; Hamed, A.I.; Mahalel, U.A.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 512. [Google Scholar] [CrossRef]
- de la Luz Cádiz-Gurrea, M.; Fernández-Arroyo, S.; Segura-Carretero, A. Pine bark and green tea concentrated extracts: Antioxidant activity and comprehensive characterization of bioactive compounds by HPLC-ESI-QTOF-MS. Int. J. Mol. Sci. 2014, 15, 20382–20402. [Google Scholar] [CrossRef]
- Niemeyer, E.D.; Brodbelt, J.S. Isomeric differentiation of green tea catechins using gas-phase hydrogen/deuterium exchange reactions. J. Am. Soc. Mass Spectrom. 2007, 18, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.D.B.D.; Brodbelt, J.S.J.S. Regioselectivity of Human UDP-Glucuronsyltransferase 1A1 in the Synthesis of Flavonoid Glucuronides Determined by Metal Complexation and Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007, 19, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Zahid, H.F.; Ajlouni, S.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Profiling of Australian Mango Peel By-Product Polyphenols and Their Potential Antioxidant Activities. Processes 2019, 7, 764. [Google Scholar] [CrossRef]
- Khallouki, F.; Breuer, A.; Merieme, E.; Ulrich, C.M.; Owen, R.W. Characterization and quantitation of the polyphenolic compounds detected in methanol extracts of Pistacia atlantica Desf. fruits from the Guelmim region of Morocco. J. Pharm. Biomed. Anal. 2017, 134, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Zhou, Z.; Shui, G.; Lam, S.M. Extensive Profiling of Polyphenols from two Trollius Species Using a Combination of Untargeted and Targeted Approaches. Metabolites 2020, 10, 119. [Google Scholar] [CrossRef]
- Stein-Chisholm, R.E.; Beaulieu, J.C.; Grimm, C.C.; Lloyd, S.W. LC–MS/MS and UPLC–UV Evaluation of Anthocyanins and Anthocyanidins during Rabbiteye Blueberry Juice Processing. Beverages 2017, 3, 56. [Google Scholar] [CrossRef]
- Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, Á.M.; Fernández de Simón, B.; Hernández, T.; Estrella, I. Phenolic Compounds in Chestnut (Castanea sativa Mill.) Heartwood. Effect of Toasting at Cooperage. J. Agric. Food Chem. 2010, 58, 9631–9640. [Google Scholar] [CrossRef]
- Li, Z.-H.; Guo, H.; Xu, W.-B.; Ge, J.; Li, X.; Alimu, M.; He, D.-J. Rapid Identification of Flavonoid Constituents Directly from PTP1B Inhibitive Extract of Raspberry (Rubus idaeus L.) Leaves by HPLC–ESI–QTOF–MS-MS. J. Chromatogr. Sci. 2016, 54, 805–810. [Google Scholar] [CrossRef]
- Usenik, V.; Kastelec, D.; Veberič, R.; Štampar, F. Quality changes during ripening of plums (Prunus domestica L.). Food Chem. 2008, 111, 830–836. [Google Scholar] [CrossRef]
- Szajdek, A.; Borowska, E.J. Bioactive Compounds and Health-Promoting Properties of Berry Fruits: A Review. Plant Foods Hum. Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef]
- Buendía, B.; Gil, M.I.; Tudela, J.A.; Gady, A.L.; Medina, J.J.; Soria, C.; López, J.M.; Tomás-Barberán, F.A. HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in 15 strawberry cultivars. J. Agric. Food Chem. 2010, 58, 3916–3926. [Google Scholar] [CrossRef]
- Ichiyanagi, T.; Shida, Y.; Rahman, M.M.; Hatano, Y.; Konishi, T. Bioavailability and tissue distribution of anthocyanins in bilberry (Vaccinium myrtillus L.) extract in rats. J. Agric. Food Chem. 2006, 54, 6578–6587. [Google Scholar] [CrossRef]
- Bellocco, E.; Barreca, D.; Laganà, G.; Calderaro, A.; El Lekhlifi, Z.; Chebaibi, S.; Smeriglio, A.; Trombetta, D. Cyanidin-3-O-galactoside in ripe pistachio (Pistachia vera L. variety Bronte) hulls: Identification and evaluation of its antioxidant and cytoprotective activities. J. Funct. Foods 2016, 27, 376–385. [Google Scholar] [CrossRef]
- Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M.; Valero, D. Changes in hydrophilic and lipophilic antioxidant activity and related bioactive compounds during postharvest storage of yellow and purple plum cultivars. Postharvest Biol. Technol. 2009, 51, 354–363. [Google Scholar] [CrossRef]
- Wang, J.; Pan, H.; Wang, R.; Hong, K.; Cao, J. Patterns of flesh reddening, translucency, ethylene production and storability of ‘Friar’ plum fruit harvested at three maturity stages as affected by the storage temperature. Postharvest Biol. Technol. 2016, 121, 9–18. [Google Scholar] [CrossRef]
- Kalt, W.; Lawand, C.; Ryan, D.A.J.; McDonald, J.E.; Donner, H.; Forney, C.F. Oxygen Radical Absorbing Capacity, Anthocyanin and Phenolic Content of Highbush Blueberries (Vaccinium corymbosum L.) during Ripening and Storage. J. Am. Soc. Hortic. Sci. 2003, 128, 917–923. [Google Scholar] [CrossRef]
- Fang, Z.-Z.; Lin-Wang, K.; Zhou, D.-R.; Lin, Y.-J.; Jiang, C.-C.; Pan, S.-L.; Espley, R.V.; Andre, C.M.; Ye, X.-F. Activation of PsMYB10.2 Transcription Causes Anthocyanin Accumulation in Flesh of the Red-Fleshed Mutant of ‘Sanyueli’ (Prunus salicina Lindl.). Front. Plant Sci. 2021, 12, 680469. [Google Scholar] [CrossRef]
- Liu, Y.; Tikunov, Y.; Schouten, R.E.; Marcelis, L.F.M.; Visser, R.G.F.; Bovy, A. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review. Front. Chem. 2018, 6, 52. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, G.; Zhang, W.; Goltsev, V.; Sun, S.; Wang, J.; Li, P.; Ma, F. Anthocyanin concentration depends on the counterbalance between its synthesis and degradation in plum fruit at high temperature. Sci. Rep. 2017, 7, 7684. [Google Scholar] [CrossRef]
- Abbasi, A.M.; Guo, X.; Fu, X.; Zhou, L.; Chen, Y.; Zhu, Y.; Yan, H.; Liu, R.H. Comparative Assessment of Phenolic Content and in Vitro Antioxidant Capacity in the Pulp and Peel of Mango Cultivars. Int. J. Mol. Sci. 2015, 16, 13507–13527. [Google Scholar] [CrossRef]
- Barnes, R.C. Absorption and Metabolism of Mango (Mangifera indica L.) Gallic Acid and Galloyl Glycosides. Ph.D. Thesis, Texas A & M University, College Station, TX, USA, 2016. [Google Scholar]
- Soria-Lara, D.M.; Jiménez-García, S.N.; Botello-Álvarez, J.E.; Miranda-López, R. Main changes on the polyphenols profile and antioxidant capacity in Manila mango (Mangifera indica L.). Arch. Latinoam. Nutr. 2021, 70, 269–281. [Google Scholar] [CrossRef]
- Masibo, M.; He, Q. Major Mango Polyphenols and Their Potential Significance to Human Health. Compr. Rev. Food Sci. Food Saf. 2008, 7, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Manthey, J.A.; Perkins-Veazie, P. Influences of Harvest Date and Location on the Levels of β-Carotene, Ascorbic Acid, Total Phenols, the in Vitro Antioxidant Capacity, and Phenolic Profiles of Five Commercial Varieties of Mango (Mangifera indica L.). J. Agric. Food Chem. 2009, 57, 10825–10830. [Google Scholar] [CrossRef] [PubMed]
- Vega-Alvarez, M.; Salazar-Salas, N.Y.; López-Angulo, G.; Pineda-Hidalgo, K.V.; López-López, M.E.; Vega-García, M.O.; Delgado-Vargas, F.; López-Valenzuela, J.A. Metabolomic Changes in Mango Fruit Peel Associated with Chilling Injury Tolerance Induced by Quarantine Hot Water Treatment. Postharvest Biol. Technol. 2020, 169, 111299. [Google Scholar] [CrossRef]
- Masibo, M.; He, Q. Mango Bioactive Compounds and Related Nutraceutical Properties-A Review. Food Rev. Int. 2009, 25, 346–370. [Google Scholar] [CrossRef]
- Kim, H.; Castellon-Chicas, M.J.; Arbizu, S.; Talcott, S.T.; Drury, N.L.; Smith, S.; Mertens-Talcott, S.U. Mango (Mangifera indica L.) Polyphenols: Anti-Inflammatory Intestinal Microbial Health Benefits, and Associated Mechanisms of Actions. Molecules 2021, 26, 2732. [Google Scholar] [CrossRef]
- Xiang, Y.F.; Ju, H.Q.; Li, S.; Zhang, Y.J.; Yang, C.R.; Wang, Y.F. Effects of 1,2,4,6-tetra-O-galloyl-β-D-glucose from P. emblica on HBsAg and HBeAg secretion in HepG2.2.15 cell culture. Virol. Sin. 2010, 25, 375–380. [Google Scholar] [CrossRef]
- Kevers, C.; Falkowski, M.; Tabart, J.; Defraigne, J.-O.; Dommes, J.; Pincemail, J. Evolution of Antioxidant Capacity during Storage of Selected Fruits and Vegetables. J. Agric. Food Chem. 2007, 55, 8596–8603. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gurjar, P.S.; Beer, K.; Pongener, A.; Ravi, S.C.; Singh, S.; Verma, A.; Singh, A.; Thakur, M.; Tripathy, S.; et al. A review on valorization of different byproducts of mango (Mangifera indica L.) for functional food and human health. Food Biosci. 2022, 48, 101783. [Google Scholar] [CrossRef]
- Arampath, P.C.; Dekker, M. Thermal Effect, Diffusion, and Leaching of Health-Promoting Phytochemicals in Commercial Canning Process of Mango (Mangifera indica L.) and Pineapple (Ananas comosus L.). Foods 2021, 10, 46. [Google Scholar] [CrossRef]
- Schieber, A.; Ullrich, W.; Carle, R. Characterization of polyphenols in mango puree concentrate by HPLC with diode array and mass spectrometric detection. Innov. Food Sci. Emerg. Technol. 2000, 1, 161–166. [Google Scholar] [CrossRef]
- Ramirez, J.E.; Zambrano, R.; Sepúlveda, B.; Simirgiotis, M.J. Antioxidant Properties and Hyphenated HPLC-PDA-MS Profiling of Chilean Pica Mango Fruits (Mangifera indica L. Cv. piqueño). Molecules 2014, 19, 438–458. [Google Scholar] [CrossRef]
- Monribot-Villanueva, J.L.; Elizalde-Contreras, J.M.; Aluja, M.; Segura-Cabrera, A.; Birke, A.; Guerrero-Analco, J.A.; Ruiz-May, E. Endorsing and extending the repertory of nutraceutical and antioxidant sources in mangoes during postharvest shelf life. Food Chem. 2019, 285, 119–129. [Google Scholar] [CrossRef]
- Moshrefi Araghi, A.; Nemati, H.; Azizi, M.; Moshtaghi, N.; Shoor, M.; Hadian, J. Assessment of phytochemical and agro-morphological variability among different wild accessions of Mentha longifolia L. cultivated in field condition. Ind. Crop. Prod. 2019, 140, 111698. [Google Scholar] [CrossRef]
- Deng, M.; Deng, Y.; Dong, L.; Ma, Y.; Liu, L.; Huang, F.; Wei, Z.; Zhang, Y.; Zhang, M.; Zhang, R. Effect of Storage Conditions on Phenolic Profiles and Antioxidant Activity of Litchi Pericarp. Molecules 2018, 23, 2276. [Google Scholar] [CrossRef]
- Piljac-Žegarac, J.; Šamec, D. Antioxidant stability of small fruits in postharvest storage at room and refrigerator temperatures. Food Res. Int. 2011, 44, 345–350. [Google Scholar] [CrossRef]
- Tietel, Z.; Feldmesser, E.; Lewinsohn, E.; Fallik, E.; Porat, R. Changes in the Transcriptome of ‘Mor’ Mandarin Flesh during Storage: Emphasis on Molecular Regulation of Fruit Flavor Deterioration. J. Agric. Food Chem. 2011, 59, 3819–3827. [Google Scholar] [CrossRef]
- Wright, A.H.; Delong, J.M.; Arul, J.; Prange, R.K. The trend toward lower oxygen levels during apple (Malus × domestica Borkh) storage. J. Hortic. Sci. Biotechnol. 2015, 90, 1–13. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Zhang, Y.-H.; Chen, G.-S.; Yin, J.-F.; Chen, J.-X.; Wang, F.; Xu, Y.-Q. Effects of phenolic acids and quercetin-3-O-rutinoside on the bitterness and astringency of green tea infusion. npj Sci. Food 2022, 6, 8. [Google Scholar] [CrossRef]
- Ma, W.; Guo, A.; Zhang, Y.; Wang, H.; Liu, Y.; Li, H. A review on astringency and bitterness perception of tannins in wine. Trends Food Sci. Technol. 2014, 40, 6–19. [Google Scholar] [CrossRef]
- Addison, J.; Stoeckl, N.; Larson, S.; Jarvis, D.; Bidan Aboriginal, C.; Bunuba Dawangarri Aboriginal Corporation, R.; Ewamian Aboriginal Corporation, R.; Gooniyandi Aboriginal Corporation, R.; Yanunijarra Ngurrara Aboriginal Corporation, R.; Esparon, M. The ability of community based natural resource management to contribute to development as freedom and the role of access. World Dev. 2019, 120, 91–104. [Google Scholar] [CrossRef]
- Tronstad, L.; Wilmot, O.; Thornbrugh, D.; Hotaling, S. To composite or replicate: How sampling method and protocol differences alter collected stream invertebrates and associated bioassessment metrics. Environ. Monit. Assess. 2020, 192, 531. [Google Scholar] [CrossRef] [PubMed]
- Cornman, R.S.; McKenna, J.E., Jr.; Fike, J.; Oyler-McCance, S.J.; Johnson, R. An experimental comparison of composite and grab sampling of stream water for metagenetic analysis of environmental DNA. PeerJ 2018, 6, e5871. [Google Scholar] [CrossRef] [PubMed]
- Tsobeng, A.; Akem, M.; Avana, M.-L.; Muchugi, A.; Degrande, A.; Tchoundjeu, Z.; Jamnadass, R.; Na’a, F. Tree-to-tree variation in fruits of three populations of Trichoscypha acuminata (Engl.) in Cameroon. Sci. Afr. 2020, 7, e00235. [Google Scholar] [CrossRef]
- Nand, N. Application of Biotechnology to Davidsonia Species—An Australian Native Plum. Ph.D. Thesis, Griffith University, Brisbane, QL, Australia, 2008. [Google Scholar]
- Harden, G.; Williams, J. A revision of Davidsonia (Cunoniaceae). Telopea 2000, 8, 413–428. [Google Scholar] [CrossRef]
- Kodagoda, G.; Hong, H.T.; O’hare, T.J.; Sultanbawa, Y.; Topp, B.; Netzel, M.E. Effect of storage on the nutritional quality of queen garnet plum. Foods 2021, 10, 352. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, C. Combined effects of aqueous chlorine dioxide and ultrasonic treatments on postharvest storage quality of plum fruit (Prunus salicina L.). Postharvest. Biol. Technol. 2011, 61, 117–123. [Google Scholar] [CrossRef]
- AOAC. Official methods of analysis of AOAC International; OMA Online; AOAC: Rockville, MD, USA, 2000. [Google Scholar]
- Phan, A.D.T.; Chaliha, M.; Sultanbawa, Y.; Netzel, M.E. Nutritional characteristics and antimicrobial activity of Australian grown feijoa (Acca sellowiana). Foods 2019, 8, 376. [Google Scholar] [CrossRef]
- Hong, H.T.; Phan, A.D.T.; O’Hare, T.J. Temperature and Maturity Stages Affect Anthocyanin Development and Phenolic and Sugar Content of Purple-Pericarp Supersweet Sweetcorn during Storage. J. Agric. Food Chem. 2021, 69, 922–931. [Google Scholar] [CrossRef]
- Netzel, M.; Netzel, G.; Tian, Q.; Schwartz, S.; Konczak, I. Sources of Antioxidant Activity in Australian Native Fruits. Identification and Quantification of Anthocyanins. J. Agric. Food Chem. 2006, 54, 9820–9826. [Google Scholar] [CrossRef]
- Shelat, K.J.; Adiamo, O.Q.; Mantilla, S.M.O.; Smyth, H.E.; Tinggi, U.; Hickey, S.; Rühmann, B.; Sieber, V.; Sultanbawa, Y. Overall Nutritional and Sensory Profile of Different Species of Australian Wattle Seeds (Acacia spp.): Potential Food Sources in the Arid Semi-Arid Regions. Foods 2019, 8, 482. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; López-Cobo, A.; Verardo, V.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD-q-TOF-MS as a powerful platform for the determination of phenolic and other polar compounds in the edible part of mango and its by-products (peel, seed, and seed husk). Electrophoresis 2016, 37, 1072–1084. [Google Scholar] [CrossRef]
Samples | Equatorial Diameter (mm) | Vertical Diameter (mm) | Whole Fruit Weight (g) | Stone Weight (g) | Flesh Weight (g) | Flesh–Stone Ratio |
---|---|---|---|---|---|---|
Y1 | 42.3 ± 1.56 a | 32.8 ± 0.81 a | 36.6 ± 3.03 a | 11.5 ± 1.11 b | 25.1 ± 2.09 a | 2.2 ± 0.14 bc |
Y2 | 32.5 ± 1.25 e | 25.9 ± 0.87 c | 16.5 ± 1.28 d | 4.7 ± 0.54 e | 11.8 ± 1.01 e | 2.6 ± 0.29 a |
Y3 | 36.8 ± 1.30 c | 29.1 ± 1.34 b | 24.5 ± 2.53 c | 7.0 ± 0.76 d | 17.6 ± 1.98 c | 2.5 ± 0.24 a |
S1 | 42.2 ± 1.81 a | 31.7 ± 1.03 a | 34.8 ± 2.93 a | 13.6 ± 0.77 a | 21.3 ± 3.07 b | 1.6 ± 0.27 e |
S2 | 34.8 ± 1.38 d | 28.2 ± 0.90 b | 22.6 ± 4.00 c | 8.0 ± 1.91 cd | 14.6 ± 2.26 d | 1.9 ± 0.32 de |
S3 | 36.9 ± 0.57 c | 25.7 ± 0.73 c | 21.8 ± 0.98 c | 7.4 ± 0.46 d | 14.4 ± 0.77 d | 1.9 ± 0.14 cd |
S4 | 39.8 ± 1.60 b | 29.3 ± 1.07 b | 29.5 ± 2.38 b | 8.9 ± 0.75 c | 20.6 ± 1.91 b | 2.3 ± 0.19 ab |
Sample | Moisture | Protein | Fat | Ash | Fiber | Carbohydrate |
---|---|---|---|---|---|---|
S1 | 69.3 | 0.9 | 0.7 | 1.2 | 8.4 | 19.5 |
S2 | 73.8 | 0.8 | 1.2 | 1.5 | 8.9 | 13.7 |
S3 | 72.5 | 0.7 | 1.2 | 1.0 | 7.1 | 17.5 |
S4 | 71.6 | 0.6 | 1.8 | 1.2 | 8.2 | 16.6 |
Y1 | 69.6 | 1.7 | 0.6 | 1.3 | 10.1 | 16.7 |
Y2 | 75.8 | 1.5 | 1.1 | 1.3 | 8.7 | 11.6 |
Y3 | 72.2 | 0.5 | 1.2 | 1.2 | 9.8 | 15.1 |
Test | Day | S1 | S2 | S3 | S4 | Y1 | Y2 | Y3 |
---|---|---|---|---|---|---|---|---|
Firmness (N) | 0 | 38.3 ± 3.31 ab | 35.9 ± 5.15 abc | 34.8 ± 3.06 bcd | 32.1 ± 4.53 cd | 42.0 ± 8.04 a | 28.9 ± 4.55 de | 28.5 ± 4.36 de |
4 | 30.6 ± 3.43 cd | 9.1 ± 2.04 h | 22.1 ± 6.80 f | 23.5 ± 5.65 ef | 33.4 ± 4.66 bcd | 5.4 ± 1.21 h | 16.5 ± 3.46 g | |
7 | 4.4 ± 1.90 h | 5.7 ± 1.47 h | 5.6 ± 0.85 h | 3.9 ± 1.07 h | 16.8 ± 5.10 g | 4.0 ± 1.18 h | 9.4 ± 1.85 h | |
Weight (g) | 0 | 32.8 ± 1.69 b | 23.0 ± 1.77 fgh | 22.5 ± 2.03 fghi | 29.1 ± 1.64 bcd | 38.5 ± 3.38 a | 16.1 ± 1.51 kl | 25.8 ± 2.06 def |
4 | 29.8 ± 2.07 bcd | 19.6 ± 1.76 ghijk | 19.8 ± 1.78 ghijk | 25.6 ± 1.72 def | 31.0 ± 3.17 bc | 12.8 ± 1.28 lm | 21.0 ± 2.08 ghij | |
7 | 27.9 ± 1.79 cde | 18.1 ± 1.91 jk | 18.5 ± 1.71 ijk | 23.8 ± 1.75 efg | 27.8 ± 3.07 cde | 11.3 ± 1.13 m | 18.7 ± 2.15 hijk | |
Peel L* | 0 | 26.6 ± 0.79 bc | 28.2 ± 0.61 b | 26.5 ± 0.60 bc | 25.9 ± 0.57 cde | 26.0 ± 0.56 cd | 32.9 ± 1.13 a | 26.0 ± 0.63 cd |
4 | 25.9 ± 0.72 cde | 26.1 ± 0.28 cd | 25.8 ± 0.42 cde | 25.0 ± 0.70 cde | 25.4 ± 0.42 cde | 32.7 ± 1.84 a | 25.5 ± 0.62 cde | |
7 | 25.4 ± 0.48 cde | 25.3 ± 0.77 cde | 25.7 ± 0.40 cde | 24.5 ± 0.48 de | 24.1 ± 2.11 e | 32.3 ± 1.57 a | 24.7 ± 0.68 cde | |
Peel a* | 0 | 6.4 ± 2.12 bcd | 10.3 ± 2.32 a | 6.5 ± 2.22 bc | 4.8 ± 1.59 cdefg | 2.1 ± 0.59 ghi | 4.5 ± 0.61 cdefgh | 2.3 ± 1.12 fghi |
4 | 5.1 ± 1.53 cdef | 8.3 ± 2.21 ab | 5.0 ± 0.57 cdef | 3.4 ± 1.40 efghi | 1.7 ± 0.29 hi | 4.4 ± 1.02 cdefghi | 2.5 ± 1.11 fghi | |
7 | 3.8 ± 0.40 cdefghi | 6.0 ± 1.59 bcde | 3.6 ± 1.08 defghi | 3.3 ± 1.03 efghi | 1.6 ± 0.62 i | 4.7 ± 0.91 cdefg | 2.2 ± 1.02 fghi | |
Peel b* | 0 | 3.0 ± 0.88 def | 5.72 ± 1.26 bc | 2.7 ± 0.65 ef | 2.3 ± 0.69 ef | 1.5 ± 0.16 f | 7.2 ± 1.13 ab | 1.4 ± 0.31 f |
4 | 2.5 ± 0.40 ef | 4.67 ± 0.9 cd | 2.2 ± 0.09 ef | 2.2 ± 0.64 ef | 1.6 ± 0.16 f | 7.8 ± 1.84 a | 1.7 ± 0.41 f | |
7 | 2.1 ± 0.20 ef | 3.53 ± 0.77 de | 1.9 ± 0.22 ef | 2.0 ± 0.31 ef | 1.9 ± 0.82 ef | 8.2 ± 1.80 a | 1.8 ± 0.57 ef | |
Peel ΔE | 0–4 | 1.5 | 3.1 | 1.8 | 1.7 | 0.8 | 0.7 | 0.6 |
4–7 | 1.4 | 2.8 | 1.4 | 0.6 | 1.4 | 0.6 | 0.87 | |
0–7 | 2.9 | 5.7 | 3.1 | 2.1 | 2.1 | 1.2 | 1.4 | |
Flesh L* | 0 | 72.7 ± 0.83 a | 59.1 ± 2.46 bc | 61.5 ± 5.98 b | 60.6 ± 0.99 b | 30.2 ± 1.20 hi | 26.9 ± 1.39 i | 47.3 ± 3.68 efg |
4 | 65.8 ± 2.49 ab | 47.0 ± 3.19 fg | 56.6 ± 5.70 bcde | 57.1 ± 3.61 bcd | 29.5 ± 1.59 i | 25.6 ± 0.58 i | 45.1 ± 1.25 fg | |
7 | 60.0 ± 4.26 b | 46.3 ± 4.45 fg | 50.3 ± 3.17 cdef | 49.3 ± 2.51 def | 24.4 ± 0.95 i | 21.6 ± 1.99 i | 39.6 ± 2.07 gh | |
Flesh a* | 0 | −1.7 ± 1.41 j | 16.7 ± 0.49 fghi | 22.2 ± 7.01 defgh | 19.4 ± 1.14 defgh | 37.2 ± 1.60 ab | 30.6 ± 0.88 abcd | 39.8 ± 2.95 a |
4 | 11.7 ± 2.85 hi | 24.7 ± 6.08 cdef | 21.5 ± 6.72 defgh | 18.6 ± 6.51 efgh | 33.7 ± 1.43 abc | 28.0 ± 0.42 bcde | 36.3 ± 4.85 ab | |
7 | 6.3 ± 3.97 ij | 27.3 ± 2.13 bcdef | 12.9 ± 1.87 ghi | 18.2 ± 1.77 efgh | 23.9 ± 1.27 cdefg | 23.0 ± 4.29 cdefg | 29.1 ± 1.99 abcde | |
Flesh b* | 0 | 23.9 ± 0.69 a | 11.3 ± 1.39 efg | 10.1 ± 1.25 efgh | 16.8 ± 0.75 bcd | 11.2 ± 1.25 efg | 5.5 ± 1.70 hi | 9.1 ± 1.37 efghi |
4 | 18.7 ± 2.11 bc | 5.0 ± 2.3 hi | 8.1 ± 2.52 fghi | 17.1 ± 1.96 bcd | 9.8 ± 2.01 efgh | 4.6 ± 0.58 i | 12.7 ± 1.37 def | |
7 | 20.4 ± 2.64 ab | 7.2 ± 2.23 ghi | 5.6 ± 1.26 hi | 14.2 ± 0.54 cde | 6.7 ± 1.26 ghi | 5.6 ± 1.02 hi | 12.7 ± 2.11 def | |
Flesh ΔE | 0–4 | 16.0 | 15.8 | 5.4 | 3.6 | 3.9 | 3.0 | 5.5 |
4–7 | 8.1 | 3.5 | 11.0 | 8.4 | 11.5 | 6.5 | 9.1 | |
0–7 | 15.4 | 17.1 | 15.3 | 11.6 | 15.2 | 9.2 | 13.7 |
Test | Day | S1 | S2 | S3 | S4 | Y1 | Y2 | Y3 |
---|---|---|---|---|---|---|---|---|
pH | 0 | 3.1 ± 0.17 defgh | 3.3 ± 0.09 abcde | 3.0 ± 0.10 efgh | 2.8 ± 0.02 h | 3.4 ± 0.13 abc | 3.6 ± 0.17 a | 2.9 ± 0.03 fgh |
4 | 3.0 ± 0.07 efgh | 3.1 ± 0.09 defgh | 2.9 ± 0.04 gh | 2.8 ± 0.05 gh | 3.2 ± 0.04 bcdef | 3.4 ± 0.06 abc | 2.8 ± 0.04 gh | |
7 | 3.0 ± 0.09 defgh | 3.3 ± 0.20 abcde | 3.4 ± 0.06 abc | 2.9 ± 0.08 gh | 3.3 ± 0.08 abcd | 3.4 ± 0.05 ab | 3.1 ± 0.02 cdefg | |
TSS | 0 | 10.7 ± 0.13 g | 11.2 ± 0.31 fg | 10.7 ± 1.03 g | 12.4 ± 1.10 efg | 11.5 ± 0.70 fg | 11.5 ± 0.65 fg | 12.5 ± 0.90 efg |
(°Brix) | 4 | 12.9 ± 0.88 efg | 16.8 ± 1.14 cde | 18.0 ± 0.47 bcd | 19.3 ± 1.11 bcd | 19.4 ± 1.24 bcd | 17.2 ± 0.58 cde | 15.8 ± 3.29 def |
7 | 18.5 ± 2.06 bcd | 22.2 ± 2.81 ab | 22.1 ± 3.42 ab | 25.3 ± 0.70 a | 19.8 ± 2.40 bcd | 21.5 ± 0.70 abc | 18.7 ± 1.10 bcd | |
TA | 0 | 3.6 ± 0.12 defgh | 4.2 ± 0.14 bcdef | 3.5 ± 0.29 fgh | 4.2 ± 0.30 bcdef | 3.0 ± 0.28 gh | 2.9 ± 0.59 h | 4.6 ± 0.22 ab |
(% citric acid) | 4 | 3.7 ± 0.18 cdefgh | 4.2 ± 0.13 bcdef | 3.7 ± 0.35 defgh | 5.1 ± 0.11 a | 4.4 ± 0.19 abcde | 3.6 ± 0.12 efgh | 5.2 ± 0.12 a |
7 | 3.6 ± 0.18 efgh | 4.5 ± 0.38 abcd | 3.3 ± 0.20 gh | 4.5 ± 0.49 abc | 3.8 ± 0.20 bcdefg | 3.5 ± 0.41 fgh | 4.4 ± 0.28 abcde | |
TSS/TA | 0 | 3.0 ± 0.10 fg | 2.7 ± 0.03 g | 3.1 ± 0.06 fg | 3.0 ± 0.18 fg | 3.8 ± 0.19 defg | 4.0 ± 0.60 defg | 2.7 ± 0.11 g |
4 | 3.5 ± 0.39 efg | 4.0 ± 0.21 defg | 5.0 ± 0.36 bcde | 3.8 ± 0.15 defg | 4.4 ± 0.31 cdef | 4.8 ± 0.06 bcde | 3.1 ± 0.63 fg | |
7 | 5.2 ± 0.60 bcd | 4.9 ± 0.27 bcde | 6.7 ± 0.94 a | 5.6 ± 0.71 abc | 5.2 ± 0.91 abcd | 6.2 ± 0.85 ab | 4.3 ± 0.53 cdef |
Vitamin | Day | S1 | S2 | S3 | S4 | Y1 | Y2 | Y3 |
---|---|---|---|---|---|---|---|---|
Total Vitamin C (mg/100 g FW) | 0 | 49.2 ± 0.85 cd | 40.4 ± 0.10 efg | 58.6 ± 1.03 b | 56.7 ± 5.12 bc | 29.2 ± 0.21 ijk | 31.6 ± 0.82 hij | 31.8 ± 0.29 hij |
4 | 49.3 ± 0.91 cd | 41.5 ± 0.67 def | 66.8 ± 5.40 a | 43.7 ± 4.85 de | 34.0 ± 2.90 fghij | 35.0 ± 0.45 fghij | 34.9 ± 3.01 fghij | |
7 | 39.0 ± 0.96 efgh | 33.1 ± 1.66 ghij | 49.4 ± 3.84 cd | 36.5 ± 0.76 efghi | 21.1 ± 1.30 kl | 27.2 ± 4.82 jk | 15.3 ± 1.79 l | |
PteGlu | 0 | ND | ND | ND | ND | ND | ND | ND |
THF | ND | ND | ND | ND | ND | ND | ND | |
5mTHF | ND | ND | 0.6 ± 0.06 b | ND | ND | 3.1 ± 0.59 a | 0.2 ± 0.20 b | |
5fTHF | 2.0 ± 0.53 ab | 1.4 ± 0.32 ab | 1.2 ± 0.10 b | 0.3 ± 0.02 c | 1.8 ± 0.12 ab | 2.1 ± 0.24 a | 1.5 ± 0.14 ab | |
10fPteGlu | ND | ND | ND | ND | ND | ND | ND | |
Total folate (μg/100 g FW) | 2.0 ± 0.53 b | 1.4 ± 0.32 b | 1.8 ± 0.08 b | 0.3 ± 0.02 c | 1.8 ± 0.12 b | 5.2 ± 0.76 a | 1.7 ± 0.06 b |
Test | Day | S1 | S2 | S3 | S4 | Y1 | Y2 | Y3 |
---|---|---|---|---|---|---|---|---|
TPC | 0 | 10.1 ± 0.71 hij | 13.3 ± 1.21 e | 11.5 ± 0.41 efgh | 19.1 ± 0.98 bc | 11.8 ± 0.82 efgh | 11.4 ± 0.29 efgh | 16.9 ± 1.41 d |
(mg GAE/g FW) | 4 | 11.1 ± 0.67 fgh | 13.0 ± 0.68 e | 12.5 ± 0.44 efg | 21.5 ± 1.27 a | 12.66 ± 1.03 ef | 12.8 ± 0.89 ef | 19.9 ± 1.55 ab |
7 | 5.9 ± 0.34 l | 9.2 ± 0.48 ijk | 8.6 ± 0.65 jk | 17.5 ± 1.24 cd | 8.0 ± 0.31 k | 10.7 ± 1.07 ghi | 7.7 ± 0.08 kl | |
FRAP | 0 | 184.0 ± 12.89 f | 223.5 ± 22.44 de | 180.3 ± 14.17 f | 332.1 ± 18.25 b | 207.1 ± 21.11 def | 205.1 ± 8.55 def | 295.4 ± 24.91 c |
(μmol Fe2+/g FW) | 4 | 191.7 ± 8.80 ef | 211.4 ± 10.27 def | 211.3 ± 10.81 def | 399.1 ± 24.80 a | 231.4 ± 14.01 d | 233.7 ± 12.70 d | 328.0 ± 24.66 b |
7 | 113.8 ± 6.43 h | 132.4 ± 3.62 gh | 146.7 ± 7.00 g | 284.8 ± 17.79 c | 137.9 ± 4.76 gh | 180.6 ± 10.19 f | 140.7 ± 8.71 gh |
S1 | S2 | S3 | S4 | Y1 | Y2 | Y3 | |
---|---|---|---|---|---|---|---|
Aroma | slightly fermented, stewed fruits, grape skin aroma | slightly fermented, grassy | woody, grape | slightly fermented, black plum, blackberry, sweet grassy note | slightly fermented, plum, mulberry | slightly fermented, preserved prunus, blackberry | slightly fermented, plum stewed fruits |
Appearance | glossy, dark maroon surface, creased, partly green and pink flesh | small, dull crimson surface, blush pink flesh | small, glossy deep maroon smooth surface, translucent pink flesh | small, slightly glossy dark maroon surface, shrivelled, partly green and pink flesh | large, black glossy surface, creased, beetroot color flesh | small, dull brown surface, creased, beetroot color flesh | small, dull black surface, shrivelled, pink flesh |
Texture | juicy, creamy, astringent | fibrous, firm, dry, astringent | smooth, soft, juicy, dissolving, drying | soft, slightly grainy, astringent | tough, firm, fibrous, dry | soft, juicy | chewy |
Flavor | sour, apple, kiwi, plum, mulberry | sour, slightly sweet, blackberry, floral, woody | sweet, slight sour, mulberry, plum | sour, slight sweet, blackberry, plum, stewed fruits | sour, slightly fermented, bitter, woody, grape | stewed fruits, sweet spice, slight fermented, woody, dried prunus | sour, dried fruits, slight fermented, plum |
Aftertaste | tart, astringent | astringent, drying | sweet, slightly drying | woody, drying | sour, stewed fruit, bitter, drying | salivating, bitter | tart, astringent, bitter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Netzel, M.E.; Mantilla, S.M.O.; Phan, A.D.T.; Netzel, G.; Sivakumar, D.; Sultanbawa, Y. Quality Assessment of Burdekin Plum (Pleiogynium timoriense) during Ambient Storage. Molecules 2023, 28, 1608. https://doi.org/10.3390/molecules28041608
Chen G, Netzel ME, Mantilla SMO, Phan ADT, Netzel G, Sivakumar D, Sultanbawa Y. Quality Assessment of Burdekin Plum (Pleiogynium timoriense) during Ambient Storage. Molecules. 2023; 28(4):1608. https://doi.org/10.3390/molecules28041608
Chicago/Turabian StyleChen, Gengning, Michael E. Netzel, Sandra Milena Olarte Mantilla, Anh Dao Thi Phan, Gabriele Netzel, Dharini Sivakumar, and Yasmina Sultanbawa. 2023. "Quality Assessment of Burdekin Plum (Pleiogynium timoriense) during Ambient Storage" Molecules 28, no. 4: 1608. https://doi.org/10.3390/molecules28041608
APA StyleChen, G., Netzel, M. E., Mantilla, S. M. O., Phan, A. D. T., Netzel, G., Sivakumar, D., & Sultanbawa, Y. (2023). Quality Assessment of Burdekin Plum (Pleiogynium timoriense) during Ambient Storage. Molecules, 28(4), 1608. https://doi.org/10.3390/molecules28041608