Plant-Derived Compounds and Extracts as Modulators of Plasmin Activity—A Review
Abstract
:1. Introduction
2. Plasminogen Structure and Main Components of the Fibrinolytic System
3. Current Pro- and Anti-Fibrinolytic Therapies
4. Plant-Derived Inhibitors of the Fibrinolytic System
4.1. General Insight into Phytochemicals-Plasmin(ogen) Interactions and the Problem of Selectivity of Compounds
4.2. Plant-Derived Polypeptide Inhibitors of Fibrinolysis
4.3. (Poly)Phenolic Compounds and Other Secondary Metabolites as Inhibitors of Fibrinolysis
4.4. Plasmin-Targeting Low-Molecular Plant Metabolites and Their Derivatives
4.5. Natural and Modified Plant Based Inhibitors of Other Components of the Fibrinolytic System
5. Pro-Fibrinolytic Effects of Natural, Plant-Derived Substances
6. Concluding Remarks and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwaan, H.C. The Role of Fibrinolytic System in Health and Disease. Int. J. Mol. Sci. 2022, 23, 5262. [Google Scholar] [CrossRef] [PubMed]
- Miles, L.; Ny, L.; Wilczynska, M.; Shen, Y.; Ny, T.; Parmer, R. Plasminogen Receptors and Fibrinolysis. Int. J. Mol. Sci. 2021, 22, 1712. [Google Scholar] [CrossRef] [PubMed]
- Keragala, C.B.; Medcalf, R.L. Plasminogen: An enigmatic zymogen. Blood 2021, 137, 2881–2889. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Quek, A.J.; Caradoc-Davies, T.T.; Ekkel, S.M.; Mazzitelli, B.; Whisstock, J.C.; Law, R.H. Structural studies of plasmin inhibition. Biochem. Soc. Trans. 2019, 47, 541–557. [Google Scholar] [CrossRef]
- Hogg, K.; Carrier, M. Prevention and treatment of venous thromboembolism in patients with cancer. Ther. Adv. Hematol. 2011, 3, 45–58. [Google Scholar] [CrossRef]
- Kapil, N.; Datta, Y.H.; Alakbarova, N.; Bershad, E.; Selim, M.; Liebeskind, D.S.; Bachour, O.; Rao, G.H.R.; Divani, A.A. Antiplatelet and Anticoagulant Therapies for Prevention of Ischemic Stroke. Clin. Appl. Thromb. 2016, 23, 301–318. [Google Scholar] [CrossRef]
- Mackman, N.; Spronk, H.M.; Stouffer, G.A.; Cate, H.T. Dual Anticoagulant and Antiplatelet Therapy for Coronary Artery Disease and Peripheral Artery Disease Patients. Arter. Thromb. Vasc. Biol. 2018, 38, 726–732. [Google Scholar] [CrossRef]
- Larson, E.A.; German, D.M.; Shatzel, J.; Deloughery, T.G. Anticoagulation in the cardiac patient: A concise review. Eur. J. Haematol. 2018, 102, 3–19. [Google Scholar] [CrossRef]
- Lamponi, S. Bioactive Natural Compounds with Antiplatelet and Anticoagulant Activity and Their Potential Role in the Treatment of Thrombotic Disorders. Life 2021, 11, 1095. [Google Scholar] [CrossRef]
- Ali, R.; Hossain, M.S.; Islam, A.; Arman, S.I.; Raju, G.S.; Dasgupta, P.; Noshin, T.F. Aspect of Thrombolytic Therapy: A Review. Sci. World J. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Shapiro, A.D.; Menegatti, M.; Palla, R.; Boscarino, M.; Roberson, C.; Lanzi, P.; Bowen, J.; Nakar, C.; Janson, I.A.; Peyvandi, F. An international registry of patients with plasminogen deficiency (HISTORY). Haematologica 2020, 105, 554–561. [Google Scholar] [CrossRef]
- Okafor, O.N.; Gorog, D.A. Endogenous fibrinolysis: An important mediator of thrombus formation and cardiovascular risk. J. Am. Coll. Cardiol. 2015, 65, 1683–1699. [Google Scholar] [CrossRef] [PubMed]
- Kanji, R.; Kubica, J.; Navarese, E.P.; Gorog, D.A. Endogenous fibrinolysis—Relevance to clinical thrombosis risk assessment. Eur. J. Clin. Investig. 2020, 51, e13471. [Google Scholar] [CrossRef] [PubMed]
- Saes, J.; Schols, S.; van Heerde, W.; Nijziel, M. Hemorrhagic disorders of fibrinolysis: A clinical review. J. Thromb. Haemost. 2018, 16, 1498–1509. [Google Scholar] [CrossRef] [PubMed]
- Marinho, D.S. Perioperative hyperfibrinolysis—Physiology and pathophysiology. Braz. J. Anesthesiol. 2020, 71, 65–75. [Google Scholar] [CrossRef]
- Lavin, M.; O’Donnell, J.S. New treatment approaches to von Willebrand disease. Hematology 2016, 2016, 683–689. [Google Scholar] [CrossRef]
- O’Carroll, C.B.; Aguilar, M.I. Management of Postthrombolysis Hemorrhagic and Orolingual Angioedema Complications. Neurohospitalist 2015, 5, 133–141. [Google Scholar] [CrossRef]
- Simurda, T.; Asselta, R.; Zolkova, J.; Brunclikova, M.; Dobrotova, M.; Kolkova, Z.; Loderer, D.; Skornova, I.; Hudecek, J.; Lasabova, Z.; et al. Congenital Afibrinogenemia and Hypofibrinogenemia: Laboratory and Genetic Testing in Rare Bleeding Disorders with Life-Threatening Clinical Manifestations and Challenging Management. Diagnostics 2021, 11, 2140. [Google Scholar] [CrossRef]
- Simurda, T.; Vilar, R.; Zolkova, J.; Ceznerova, E.; Kolkova, Z.; Loderer, D.; Neerman-Arbez, M.; Casini, A.; Brunclikova, M.; Skornova, I.; et al. A Novel Nonsense Mutation in FGB (c.1421G>A; p.Trp474Ter) in the Beta Chain of Fibrinogen Causing Hypofibrinogenemia with Bleeding Phenotype. Biomedicines 2020, 8, 605. [Google Scholar] [CrossRef]
- Brunclikova, M.; Simurda, T.; Zolkova, J.; Sterankova, M.; Skornova, I.; Dobrotova, M.; Kolkova, Z.; Loderer, D.; Grendar, M.; Hudecek, J.; et al. Heterogeneity of Genotype–Phenotype in Congenital Hypofibrinogenemia—A Review of Case Reports Associated with Bleeding and Thrombosis. J. Clin. Med. 2022, 11, 1083. [Google Scholar] [CrossRef]
- Collen, D. Natural inhibitors of fibrinolysis. J. Clin. Pathol. Suppl. R. Coll. Pathol. 1980, 14, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Law, R.H.; Caradoc-Davies, T.; Cowieson, N.; Horvath, A.J.; Quek, A.J.; Encarnacao, J.A.; Steer, D.; Cowan, A.; Zhang, Q.; Lu, B.G.; et al. The X-ray Crystal Structure of Full-length Human Plasminogen. Cell Rep. 2012, 1, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Schaller, J.; Gerber, S.S. The plasmin–antiplasmin system: Structural and functional aspects. Cell. Mol. Life Sci. 2010, 68, 785–801. [Google Scholar] [CrossRef]
- Medcalf, R.L.; Keragala, C.B. The Fibrinolytic System: Mysteries and Opportunities. Hemasphere 2021, 5, e570. [Google Scholar] [CrossRef] [PubMed]
- Steinmetzer, T.; Pilgram, O.; Wenzel, B.M.; Wiedemeyer, S.J.A. Fibrinolysis Inhibitors: Potential Drugs for the Treatment and Prevention of Bleeding. J. Med. Chem. 2019, 63, 1445–1472. [Google Scholar] [CrossRef] [PubMed]
- Battistel, M.D.; Grishaev, A.; An, S.S.A.; Castellino, F.J.; Llinas, M. Solution structure and functional characterization of human plasminogen kringle 5. Biochemistry 2009, 48, 10208–10219. [Google Scholar] [CrossRef] [PubMed]
- Law, R.H.; Abu-Ssaydeh, D.; Whisstock, J.C. New insights into the structure and function of the plasminogen/plasmin system. Curr. Opin. Struct. Biol. 2013, 23, 836–841. [Google Scholar] [CrossRef]
- Longstaff, C.; Kolev, K. Basic mechanisms and regulation of fibrinolysis. J. Thromb. Haemost. 2015, 13, S98–S105. [Google Scholar] [CrossRef]
- Rehman, A.A.; Ahsan, H.; Khan, F.H. α-2-Macroglobulin: A physiological guardian. J. Cell Physiol. 2013, 228, 1665–1675. [Google Scholar] [CrossRef]
- Sillen, M.; Declerck, P. Thrombin Activatable Fibrinolysis Inhibitor (TAFI): An Updated Narrative Review. Int. J. Mol. Sci. 2021, 22, 3670. [Google Scholar] [CrossRef]
- European Medicine Agency. Antifibrinolytics Containing Aprotinin, Aminocaproic Acid and Tranexamic Acid. Aminocaproic acid. EMA/680964/Assessment Report. Available online: https://www.ema.europa.eu/en/documents/referral/assessment-report-antifibrinolytic-medicines-aminocaproic-acid_en.pdf (accessed on 10 October 2012).
- Ockerman, A.; Vanassche, T.; Garip, M.; Vandenbriele, C.; Engelen, M.M.; Martens, J.; Politis, C.; Jacobs, R.; Verhamme, P. Tranexamic acid for the prevention and treatment of bleeding in surgery, trauma and bleeding disorders: A narrative review. Thromb. J. 2021, 19, 54. [Google Scholar] [CrossRef] [PubMed]
- Mangano, D.T.; Tudor, I.C.; Dietzel, C. The Risk Associated with Aprotinin in Cardiac Surgery. N. Engl. J. Med. 2006, 354, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Karkouti, K.; Beattie, W.S.; Dattilo, K.M.; McCluskey, S.A.; Ghannam, M.; Hamdy, A.; Wijeysundera, D.N.; Fedorko, L.; Yau, T.M. A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery. Transfusion 2006, 46, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Ucar, E.Y. Update on Thrombolytic Therapy in Acute Pulmonary Thromboembolism. Eurasian J. Med. 2019, 51, 185–189. [Google Scholar] [CrossRef]
- Abraham, P.; Arroyo, D.A.; Giraud, R.; Bounameaux, H.; Bendjelid, K. Understanding haemorrhagic risk following thrombolytic therapy in patients with intermediate-risk and high-risk pulmonary embolism: A hypothesis paper. Open Heart 2018, 5, e000735. [Google Scholar] [CrossRef]
- Do Amaral Baruzzi, A.C.; Stefanini, E.; Manzo, G. Fibrinolytics: Indications and treatment of hemorrhagic complications. Rev. Soc. Cardiol. Estado São Paulo 2018, 28, 421–427. [Google Scholar] [CrossRef]
- Ozier, Y.; Bellamy, L. Pharmacological agents: Antifibrinolytics and desmopressin. Best Pract. Res. Clin. Anaesthesiol. 2010, 24, 107–119. [Google Scholar] [CrossRef]
- Levy, J.H.; Koster, A.; Quinones, Q.J.; Milling, T.J.; Key, N.S. Antifibrinolytic Therapy and Perioperative Considerations. Anesthesiology 2018, 128, 657–670. [Google Scholar] [CrossRef]
- Colomina, M.J.; Contreras, L.; Guilabert, P.; Koo, M.; Ndez, E.M.; Sabate, A. Clinical use of tranexamic acid: Evidences and controversies. Braz. J. Anesthesiol. 2021, 72, 795–812. [Google Scholar] [CrossRef]
- Marti, D.N.; Hu, C.-K.; An, S.S.A.; von Haller, P.; Schaller, J.; Llinás, M. Ligand Preferences of Kringle 2 and Homologous Domains of Human Plasminogen: Canvassing Weak, Intermediate, and High-Affinity Binding Sites by 1H-NMR. Biochemistry 1997, 36, 11591–11604. [Google Scholar] [CrossRef]
- The European Society of Anaesthesiology task force reports on the place of aprotinin in clinical anaesthesia. Aprotinin: Is it time to reconsider? Eur. J. Anaesthesiol. 2015, 32, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Kolodziejczyk-Czepas, J.; Pasiński, B.; Ponczek, M.B.; Moniuszko-Szajwaj, B.; Kowalczyk, M.; Pecio, Ł.; Nowak, P.; Stochmal, A. Bufadienolides from Kalanchoe daigremontiana modulate the enzymatic activity of plasmin—In vitro and in silico analyses. Int. J. Biol. Macromol. 2018, 120, 1591–1600. [Google Scholar] [CrossRef] [PubMed]
- Kolodziejczyk-Czepas, J.; Sieradzka, M.; Moniuszko-Szajwaj, B.; Pecio, Ł.; Ponczek, M.B.; Nowak, P.; Stochmal, A. Bufadienolides from Kalanchoe daigremontiana as thrombin inhibitors—In vitro and in silico study. Int. J. Biol. Macromol. 2017, 99, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Bijak, M.; Ziewiecki, R.; Saluk, J.; Ponczek, M.; Pawlaczyk, I.; Krotkiewski, H.; Wachowicz, B.; Nowak, P. Thrombin inhibitory activity of some polyphenolic compounds. Med. Chem. Res. 2013, 23, 2324–2337. [Google Scholar] [CrossRef] [PubMed]
- Bijak, M.; Ponczek, M.B.; Nowak, P. Polyphenol compounds belonging to flavonoids inhibit activity of coagulation factor X. Int. J. Biol. Macromol. 2014, 65, 129–135. [Google Scholar] [CrossRef]
- Sartor, L.; Pezzato, E.; Dell’Aica, I.; Caniato, R.; Biggin, S.; Garbisa, S. Inhibition of matrix-proteases by polyphenols: Chemical insights for anti-inflammatory and anti-invasion drug design. Biochem. Pharmacol. 2002, 64, 229–237. [Google Scholar] [CrossRef]
- Mozzicafreddo, M.; Cuccioloni, M.; Eleuteri, A.M.; Fioretti, E.; Angeletti, M. Flavonoids inhibit the amidolytic activity of human thrombin. Biochimie 2006, 88, 1297–1306. [Google Scholar] [CrossRef]
- Viskupicova, J.; Danihelova, M.; Majekova, M.; Liptaj, T.; Sturdik, E. Polyphenol fatty acid esters as serine protease inhibitors: A quantum-chemical QSAR analysis. J. Enzym. Inhib. Med. Chem. 2011, 27, 800–809. [Google Scholar] [CrossRef]
- Jedinák, A.; Maliar, T.; Grancai, D.; Nagy, M. Inhibition activities of natural products on serine proteases. Phytother. Res. 2006, 20, 214–217. [Google Scholar] [CrossRef]
- Melzig, M.F.; Löser, B.; Ciesielski, S. Inhibition of neutrophil elastase activity by phenolic compounds from plants. Die Pharm. 2001, 56, 967–970. [Google Scholar]
- Liu, L.; Ma, H.; Yang, N.; Tang, Y.; Guo, J.; Tao, W.; Duan, J. A Series of Natural Flavonoids as Thrombin Inhibitors: Structure-activity relationships. Thromb. Res. 2010, 126, e365–e378. [Google Scholar] [CrossRef] [PubMed]
- Mozzicafreddo, M.; Cuccioloni, M.; Bonfili, L.; Eleuteri, A.M.; Fioretti, E.; Angeletti, M. Antiplasmin activity of natural occurring polyphenols. Biochim. Biophys. Acta BBA Proteins Proteom. 2008, 1784, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Cuccioloni, M.; Bonfili, L.; Mozzicafreddo, M.; Cecarini, V.; Eleuteri, A.M.; Angeletti, M. Sanguisorba minor extract suppresses plasmin-mediated mechanisms of cancer cell migration. Biochim. et Biophys. Acta BBA Gen. Subj. 2012, 1820, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Weir, M.P.; Bethell, S.S.; Cleasby, A.; Campbell, C.J.; Dennis, R.J.; Dix, C.J.; Finch, H.; Jhoti, H.; Mooney, C.J.; Patel, S.; et al. Novel natural product 5,5-trans-lactone inhibitors of human alpha-thrombin: Mechanism of action and structural studies. Biochemistry 1998, 37, 6645–6657. [Google Scholar] [CrossRef]
- Siritapetawee, J.; Sojikul, P.; Soontaranon, S.; Limphirat, W.; Thammasirirak, S. A Protein from Aloe vera that Inhibits the Cleavage of Human Fibrin(ogen) by Plasmin. Appl. Biochem. Biotechnol. 2013, 170, 2034–2045. [Google Scholar] [CrossRef]
- Tanaka, A.S.; Sampaio, M.U.; Marangoni, S.; de Oliveira, B.; Novelle, J.C.; Oliva, M.L.V.; Fink, E.; Sampaio, C.A.M. Purification and Primary Structure Determination of a Bowman-Birk Trypsin Inhibitor from Torresea cearensis Seeds. Biol. Chem. 1997, 378, 273–282. [Google Scholar] [CrossRef]
- Lopes, J.; Valadares, N.; Moraes, D.; Rosa, J.; Araújo, H.; Beltramini, L. Physico-chemical and antifungal properties of protease inhibitors from Acacia plumosa. Phytochemistry 2009, 70, 871–879. [Google Scholar] [CrossRef]
- Alves, F.L.; Sallai, R.C.; Salu, B.R.; Miranda, A.; Oliva, M.L.V. Identification and characterisation of serine protease inhibitors from Araucaria angustifolia seeds. Nat. Prod. Res. 2016, 30, 2712–2715. [Google Scholar] [CrossRef]
- Oliva, M.; Mendes, C.; Santomauro-Vaz, E.; Juliano, M.; Mentele, R.; Auerswald, E.; Sampaio, M.; Sampaio, C. Bauhinia bauhinioides Plasma Kallikrein Inhibitor Interaction with Synthetic Peptides and Fluorogenic Peptide Substrates Related to the Reactive Site Sequence. Curr. Med. Chem. 2001, 8, 977–984. [Google Scholar] [CrossRef]
- Oliva, M.L.; Sampaio, U.M. Bauhinia Kunitz-type proteinase inhibitors: Structural characteristics and biological properties. Biol. Chem. 2008, 389, 1007–1013. [Google Scholar] [CrossRef]
- Cruz-Silva, I.; Gozzo, A.J.; Nunes, V.A.; Carmona, A.K.; Faljoni-Alario, A.; Oliva, M.L.V.; Sampaio, M.U.; Sampaio, C.A.M.; Araujo, M.S. A proteinase inhibitor from Caesalpinia echinata (pau-brasil) seeds for plasma kallikrein, plasmin and factor XIIa. Biol. Chem. 2004, 385, 1083–1086. [Google Scholar] [CrossRef] [PubMed]
- Chong, G.L.; Reeck, G.R. Interaction of trypsin, β-factor XIIa, and plasma kallikrein with a trypsin inhibitor isolated from barley seeds: A comparison with the corn inhibitor of activated hageman factor. Thromb. Res. 1987, 48, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Lobo, Y.A.; Batista, I.F.C.; Marques-Porto, R.; Gustchina, A.; Oliva, M.L.V.; Wlodawer, A. Crystal Structures of a Plant Trypsin Inhibitor from Enterolobium contortisiliquum (EcTI) and of Its Complex with Bovine Trypsin. PLoS ONE 2013, 8, e62252. [Google Scholar] [CrossRef] [PubMed]
- Do Socorro, M.; Cavalcanti, M.; Oliva, M.L.; Fritz, H.; Jochum, M.; Mentele, R.; Sampaio, M.; Coelho, L.C.; Batista, I.F.; Sampaio, C.A. Characterization of a Kunitz trypsin inhibitor with one disulfide bridge purified from Swartzia pickellii. Biochem. Biophys. Res. Commun. 2002, 291, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Patil, D.N.; Chaudhary, A.; Sharma, A.K.; Tomar, S.; Kumar, P. Structural basis for dual inhibitory role of tamarind Kunitz inhibitor (TKI) against factor Xa and trypsin. FEBS J. 2012, 279, 4547–4564. [Google Scholar] [CrossRef]
- Krishnamoorthi, R.; Gong, Y.; Richardson, M. A new protein inhibitor of trypsin and activated hageman factor from pumpkin (Cucurbita maxima) seeds. FEBS Lett. 1990, 273, 163–167. [Google Scholar] [CrossRef]
- Hayashi, K.; Takehisa, T.; Hamato, N.; Takano, R.; Hara, S.; Miyata, T.; Kato, H. Inhibition of Serine Proteases of the Blood Coagulation System by Squash Family Protease Inhibitors. J. Biochem. 1994, 116, 1013–1018. [Google Scholar] [CrossRef]
- Laskar, A.; Rodger, E.J.; Chatterjee, A.; Mandal, C. Modeling and structural analysis of PA clan serine proteases. BMC Res. Notes 2012, 5, 256. [Google Scholar] [CrossRef]
- Millers, E.-K.I.; Johnson, L.A.; Birrell, G.W.; Masci, P.P.; Lavin, M.; De Jersey, J.; Guddat, L.W. The structure of Human Microplasmin in Complex with Textilinin-1, an Aprotinin-like Inhibitor from the Australian Brown Snake. PLoS ONE 2013, 8, e54104. [Google Scholar] [CrossRef]
- Al-Horani, R.A.; Karuturi, R.; White, D.T.; Desai, U.R. Plasmin Regulation through Allosteric, Sulfated, Small Molecules. Molecules 2015, 20, 608–624. [Google Scholar] [CrossRef]
- Swedberg, J.E.; De Veer, S.J.; Harris, J.M. Natural and engineered kallikrein inhibitors: An emerging pharmacopoeia. Biol. Chem. 2010, 391, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Hellinger, R.; Gruber, C.W. Peptide-based protease inhibitors from plants. Drug Discov. Today 2019, 24, 1877–1889. [Google Scholar] [CrossRef] [PubMed]
- Oliva, M.L.V.; Ferreira, R.D.S.; Ferreira, J.G.; De Paula, C.A.A.; Salas, C.E.; Sampaio, M.U. Structural and functional properties of kunitz proteinase inhibitors from leguminosae: A mini review. Curr. Protein Pept. Sci. 2011, 12, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Bendre, A.D.; Ramasamy, S.; Suresh, C. Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights. Int. J. Biol. Macromol. 2018, 113, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Oliva, M.L.V.; Silva, M.C.; Sallai, R.C.; Brito, M.V.; Sampaio, M.U. A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds. Biochimie 2010, 92, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Nakahata, A.M.; Bueno, N.R.; Rocha, H.A.; Franco, C.R.; Chammas, R.; Nakaie, C.R.; Jasiulionis, M.; Nader, H.B.; Santana, L.A.; Sampaio, M.U.; et al. Structural and inhibitory properties of a plant proteinase inhibitor containing the RGD motif. Int. J. Biol. Macromol. 2006, 40, 22–29. [Google Scholar] [CrossRef]
- Ruoslahti, E. Rgd and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 1996, 12, 697–715. [Google Scholar] [CrossRef]
- Bachmann, M.; Kukkurainen, S.; Hytönen, V.P.; Wehrle-Haller, B. Cell Adhesion by Integrins. Physiol. Rev. 2019, 99, 1655–1699. [Google Scholar] [CrossRef]
- Zhang, N.; Li, C.; Zhou, D.; Ding, C.; Jin, Y.; Tian, Q.; Meng, X.; Pu, K.; Zhu, Y. Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis. Acta Biomater. 2018, 70, 227–236. [Google Scholar] [CrossRef]
- Jendrny, C.; Beck-Sickinger, A.G. Inhibition of Kallikrein-Related Peptidases 7 and 5 by Grafting Serpin Reactive-Center Loop Sequences onto Sunflower Trypsin Inhibitor-1 (SFTI-1). Chembiochem 2015, 17, 719–726. [Google Scholar] [CrossRef]
- Swedberg, J.E.; Wu, G.; Mahatmanto, T.; Durek, T.; Caradoc-Davies, T.T.; Whisstock, J.C.; Law, R.H.P.; Craik, D.J. Highly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in Plasma. J. Med. Chem. 2018, 62, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.; Yap, K.; Poth, A.G.; Gilding, E.; Swedberg, J.E.; Poon, S.; Qu, H.; Durek, T.; Harris, K.; Anderson, M.; et al. Rapid and Scalable Plant-Based Production of a Potent Plasmin Inhibitor Peptide. Front. Plant Sci. 2019, 10, 602. [Google Scholar] [CrossRef] [PubMed]
- Swedberg, J.E.; Harris, J.M. Plasmin Substrate Binding Site Cooperativity Guides the Design of Potent Peptide Aldehyde Inhibitors. Biochemistry 2011, 50, 8454–8462. [Google Scholar] [CrossRef] [PubMed]
- Al-Horani, R.A.; Desai, U.R. Recent Advances on Plasmin Inhibitors for the Treatment of Fibrinolysis-Related Disorders. Med. Res. Rev. 2014, 34, 1168–1216. [Google Scholar] [CrossRef] [PubMed]
- Bhongade, B.A.; Gouripur, V.V.; Gadad, A.K. 3D-QSAR CoMFA studies on trypsin-like serine protease inhibitors: A comparative selectivity analysis. Bioorganic Med. Chem. 2005, 13, 2773–2782. [Google Scholar] [CrossRef]
- Xue, G.; Gong, L.; Yuan, C.; Xu, M.; Wang, X.; Jiang, L.; Huang, M. A structural mechanism of flavonoids in inhibiting serine proteases. Food Funct. 2017, 8, 2437–2443. [Google Scholar] [CrossRef]
- Lamy, S.; Lafleur, R.; Bédard, V.; Moghrabi, A.; Barrette, S.; Gingras, D.; Béliveau, R. Anthocyanidins inhibit migration of glioblastoma cells: Structure-activity relationship and involvement of the plasminolytic system. J. Cell. Biochem. 2006, 100, 100–111. [Google Scholar] [CrossRef]
- Tjahjono, D.H.; Sari, B.L.; Ibrahim, S. Pharmacophore Modeling, Docking, and Molecular Dynamics Simulation of Flavonoids as Inhibitors of Urokinase-type Plasminogen Activator. J. Math. Fundam. Sci. 2021, 53, 451–465. [Google Scholar] [CrossRef]
- Osaki, N.; Koyano, T.; Kowithayakorn, T.; Hayashi, M.; Komiyama, K.; Ishibashi, M. Sesquiterpenoids and plasmin-inhibitory flavonoids from Blumea balsamifera. J. Nat. Prod. 2005, 68, 447–449. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Min, B.-S.; Kim, J.-H.; Lee, J.; Kim, T.-J.; Kim, C.-S.; Kim, Y.-H.; Lee, H.-K. Flavonoids from the leaves ofLitsea japonica and their anti-complement activity. Phytother. Res. 2005, 19, 273–276. [Google Scholar] [CrossRef]
- Cuccioloni, M.; Mozzicafreddo, M.; Bonfili, L.; Cecarini, V.; Eleuteri, A.M.; Angeletti, M. Natural Occurring Polyphenols as Template for Drug Design. Focus on Serine Proteases. Chem. Biol. Drug Des. 2009, 74, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Law, R.H.; Wu, G.; Leung, E.W.W.; Hidaka, K.; Quek, A.J.; Caradoc-Davies, T.T.; Jeevarajah, D.; Conroy, P.J.; Kirby, N.M.; Norton, R.S.; et al. X-ray crystal structure of plasmin with tranexamic acid-derived active site inhibitors. Blood Adv. 2017, 1, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Marcińczyk, N.; Gromotowicz-Popławska, A.; Tomczyk, M.; Chabielska, E. Tannins as Hemostasis Modulators. Front. Pharmacol. 2022, 12, 4055. [Google Scholar] [CrossRef] [PubMed]
- Pereira, B.; Brazón, J.; Rincón, M.; Vonasek, E. Browplasminin, a condensed tannin with anti-plasmin activity isolated from an aqueous extract of Brownea grandiceps Jacq. flowers. J. Ethnopharmacol. 2017, 198, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Marcinczyk, N.; Gołaszewska, A.; Gromotowicz-Poplawska, A.; Misztal, T.; Strawa, J.; Tomczyk, M.; Kasacka, I.; Chabielska, E. Multidirectional Effects of Tormentil Extract on Hemostasis in Experimental Diabetes. Front. Pharmacol. 2021, 12, 682987. [Google Scholar] [CrossRef]
- Marcinczyk, N.; Jarmoc, D.; Leszczynska, A.; Zakrzeska, A.; Kramkowski, K.; Strawa, J.; Gromotowicz-Poplawska, A.; Chabielska, E.; Tomczyk, M. Antithrombotic Potential of Tormentil Extract in Animal Models. Front. Pharmacol. 2017, 8, 534. [Google Scholar] [CrossRef]
- Shen, Z.-Q.; Dong, Z.-J.; Peng, H.; Liu, J.-K. Modulation of PAI-1 and tPA Activity and Thrombolytic Effects of Corilagin. Planta Med. 2003, 69, 1109–1112. [Google Scholar] [CrossRef]
- Ploplis, V.A.; Carmeliet, P.; Vazirzadeh, S.; Van Vlaenderen, I.; Moons, L.; Plow, E.F.; Collen, D. Effects of Disruption of The Plasminogen Gene on Thrombosis, Growth, and Health in Mice. Circulation 1995, 92, 2585–2593. [Google Scholar] [CrossRef]
- Lin, H.; Xu, L.; Yu, S.; Hong, W.; Huang, M.; Xu, P. Therapeutics targeting the fibrinolytic system. Exp. Mol. Med. 2020, 52, 367–379. [Google Scholar] [CrossRef]
- Cale, J.M.; Li, S.-H.; Warnock, M.; Su, E.J.; North, P.R.; Sanders, K.L.; Puscau, M.M.; Emal, C.D.; Lawrence, D. Characterization of a Novel Class of Polyphenolic Inhibitors of Plasminogen Activator Inhibitor-1. J. Biol. Chem. 2010, 285, 7892–7902. [Google Scholar] [CrossRef]
- Zha, X.; Diaz, R.; Franco, J.J.R.; Sanchez, V.F.; Fasoli, E.; Barletta, G.; Carvajal, A.; Bansal, V. Inhibitors of Urokinase Type Plasminogen Activator and Cytostatic Activity from Crude Plants Extracts. Molecules 2013, 18, 8945–8958. [Google Scholar] [CrossRef] [PubMed]
- Uzawa, K.; Amelio, A.L.; Kasamatsu, A.; Saito, T.; Kita, A.; Fukamachi, M.; Sawai, Y.; Toeda, Y.; Eizuka, K.; Hayashi, F.; et al. Resveratrol Targets Urokinase-Type Plasminogen Activator Receptor Expression to Overcome Cetuximab-Resistance in Oral Squamous Cell Carcinoma. Sci. Rep. 2019, 9, 12179. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Yuan, M.; Li, S.; Thuan, U.T.; Nguyen, T.T.; Kang, T.W.; Liao, W.; Lian, S.; Jung, Y.D. Apigenin suppresses the IL-1β-induced expression of the urokinase-type plasminogen activator receptor by inhibiting MAPK-mediated AP-1 and NF-κB signaling in human bladder cancer T24 cells. J. Agric. Food Chem. 2018, 66, 7663–7673. [Google Scholar] [CrossRef] [PubMed]
- Sandra, D.; Radha, M.; Harishkumar, M.; Yuichi, N.; Sayuri, O.; Masugi, M. Downregulation of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 by grape seed proanthocyanidin extract. Phytomedicine 2010, 17, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Safaeian, L.; Ghazvini, M.A.; Ramezani, M. Evaluation of fibrinolytic and antioxidant effects of Allium affine hydroalcoholic extract. Res. Pharm. Sci. 2017, 12, 299–306. [Google Scholar] [CrossRef]
- Safaeian, L.; Zolfaghari, B.; Aghaye-Ghazvini, M.; Behnampour, M. Evaluation of fibrinolytic and antioxidant effects of Allium elburzense bulb extracts. Avicenna J. Phytomedicine 2017, 7, 223–231. [Google Scholar] [CrossRef]
- Omotoso Abayomi, E.; Ezealisiji, K.; Bagbi, B.M.; Maduakor Ogochukwu, H. Fibrinolytic activity of some Nigerian medicinal plants. J. Pharm. Pharmacol. 2014, 2, 177–184. [Google Scholar]
- Ibrahim, M.Y.; Ansari, P.; Riasat-ul-Islam, A.K.M.; Sultana, M.; Akter Zhumur, N.; Shafi, S.M. Evaluation of thrombolytic and cytotoxic activities of an ornamental medicinal plant: Byttneria pilosa. Am. J. Biomed. Res. 2015, 3, 35–39. [Google Scholar]
- Klafke, J.Z.; da Silva, M.A.; Rossato, M.F.; Trevisan, G.; Walker, C.I.B.; Leal, C.A.M.; Borges, D.O.; Schetinger, M.R.C.; Moresco, R.N.; Duarte, M.M.M.F.; et al. Antiplatelet, Antithrombotic, and Fibrinolytic Activities of Campomanesia xanthocarpa. Evid. Based Complement. Altern. Med. 2011, 2012, 954748. [Google Scholar] [CrossRef]
- Quintal-Martínez, J.P.; Quintal-Ortiz, I.G.; Alonzo-Salomón, L.G.; Muñoz-Rodríguez, D.; Segura-Campos, M.R. Antithrombotic Study and Identification of Metabolites in Leaf Extracts of Chaya [Cnidoscolus aconitifolius (Mill.) I.M. Johnst.]. J. Med. Food 2021, 24, 1304–1312. [Google Scholar] [CrossRef]
- Godatwar, P.K.; Chaudhary, S.; Sharma, R. In vitro thrombolytic activity of Dhamasa (Fagonia arabica Linn.), Kushta (Saussurea lappa Decne.), and Guduchi (Tinospora cordifolia Thunb.). Ayu 2015, 36, 421–424. [Google Scholar] [CrossRef]
- Chowdhury, T.A.; Hasanat, A.; Jakaria; Kamal, A.M.; Kabir, M.S.H.; Hossain, S.; Mamur, A.; Hossain, M.M. Thrombolytic and cytotoxic activity of methanolic extract of Commelina benghalensis (Family: Commelinaceae) Leaves. J. Sci. Innov. Res. 2015, 4, 100–104. [Google Scholar] [CrossRef]
- Madhu, C.; Sharada, A. Fibrinogenolytic activity of serine proteases(s) from Cucumis dipsaceus. Biocatal. Agric. Biotechnol. 2019, 17, 685–689. [Google Scholar] [CrossRef]
- Kabir, M.S.H.; Mahamoud, S.; Chakrabarty, N.; Ahmad, S.; Al Masum, A.; Hoque, A.; Hossain, M.M.; Rahman, M.; Uddin, M.M.N. Antithrombotic and cytotoxic activities of four Bangladeshi plants and PASS prediction of their isolated compounds. J. Basic Clin. Physiol. Pharmacol. 2016, 27, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Sung, Y.-Y.; Yang, W.-K. Antiplatelet, anticoagulant and fibrinolytic effects of Litchi chinensis Sonn. extract. Mol. Med. Rep. 2011, 5, 721–724. [Google Scholar] [CrossRef]
- Srinivasa Reddy, C.; Ammani, K.; Rose Mary, T. In vitro evaluation of fibrinolytic and antioxidant activities of Maba buxifolia (Rottb.) Juss. stem. J. Pharmacogn. Phytochem. 2015, 3, 148–151. [Google Scholar]
- Shahik, S.; Sikder, M.O.F.; Patwary, N.I.A.; Sohel; Islam, S.; Nishi, T.F.; Sultana, T.; Barua, R. In vitro thrombolytic and cytotoxic evaluation of Mentha arvensis L., Mentha spicata L. and Mentha viridis L. IOSR J. Pharm. Biol. Sci. 2014, 9, 97–102. [Google Scholar] [CrossRef]
- Mahmud, S.; Akhter, S.; Rahman, A.; Aklima, J.; Akhter, S.; Merry, S.R.; Jubair, S.M.R.; Dash, R.; Bin Emran, T. Antithrombotic Effects of Five Organic Extracts of Bangladeshi Plants In Vitro and Mechanisms in In Silico Models. Evid. Based Complement. Altern. Med. 2015, 2015, 782742. [Google Scholar] [CrossRef]
- Prasad, S.; Kashyap, R.S.; Deopujari, J.Y.; Purohit, H.J.; Taori, G.M.; Daginawala, H.F. Effect of Fagonia Arabica (Dhamasa) on in vitro thrombolysis. BMC Complement. Altern. Med. 2007, 7, 36. [Google Scholar] [CrossRef]
- Bin Emran, T.; Rahman, A.; Uddin, M.M.N.; Rahman, M.; Uddin, Z.; Dash, R.; Layzu, C. Effects of organic extracts and their different fractions of five Bangladeshi plants on in vitro thrombolysis. BMC Complement. Altern. Med. 2015, 15, 128. [Google Scholar] [CrossRef]
- Kuerban, A.; Almulaiky, Y.Q.; Sheikh, R.A.; Alzahrani, S.A.; Al-Talhi, H.A.; Nasrullah; Moselhy, S.S.; Abulnaja, K.O. In vivo Antithrombotic Activity of Ethanolic Extract from Ocimum basilicum L. Annu. Res. Rev. Biol. 2017, 20, 1–6. [Google Scholar] [CrossRef]
- Legnani, C.; Frascaro, M.; Guazzaloca, G.; Ludovici, S.; Cesarano, G.; Coccheri, S. Effects of a dried garlic preparation on fibrinolysis and platelet aggregation in healthy subjects. Arzneimittelforschung 1993, 43, 119–122. [Google Scholar] [PubMed]
- Sikora, J.; Broncel, M.; Markowicz, M.; Chałubiński, M.; Wojdan, K.; Mikiciuk-Olasik, E. Short-term supplementation with Aronia melanocarpa extract improves platelet aggregation, clotting, and fibrinolysis in patients with metabolic syndrome. Eur. J. Nutr. 2011, 51, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, F.; Torbati, M.; Mahmoudi, J.; Valizadeh, H. Medicinal Plants as Potential Hemostatic Agents. J. Pharm. Pharm. Sci. 2020, 23, 10–23. [Google Scholar] [CrossRef]
- Subramani, B.; Sathiyarajeswaran, P. Current update on herbal sources of antithrombotic activity—A comprehensive review. Egypt. J. Intern. Med. 2022, 34, 26. [Google Scholar] [CrossRef]
- Choi, J.-H.; Kim, D.-W.; Park, S.-E.; Choi, B.-S.; Sapkota, K.; Kim, S.; Kim, S.-J. Novel thrombolytic protease from edible and medicinal plant Aster yomena (Kitam.) Honda with anticoagulant activity: Purification and partial characterization. J. Biosci. Bioeng. 2014, 118, 372–377. [Google Scholar] [CrossRef]
- Jeon, J.S.; Kim, J.; Park, S.; Ryou, C.; Kim, C.Y. Preparative purification of plasmin activity stimulating phenolic derivatives from Gastrodia elata using centrifugal partition chromatography. Biomed Chromatogr. 2016, 30, 976–982. [Google Scholar] [CrossRef]
- Rajput, M.; Mathur, V.; Agrawal, P.; Chandrawanshi, H.; Pilaniya, U. Fibrinolytic activity of kaempferol isolated from the fruits of Lagenaria siceraria(Molina) Standley. Nat. Prod. Res. 2011, 25, 1870–1875. [Google Scholar] [CrossRef]
- Urs, A.P.; Rudresha, G.V.; Manjuprasanna, V.N.; Suvilesh, K.N.; Gowda, M.D.M.; Yariswamy, M.; Hiremath, V.; Ramakrishnan, C.; Savitha, M.N.; Jayachandra, K.; et al. Plant latex thrombin-like cysteine proteases alleviates bleeding by bypassing factor VIII in murine model. J. Cell. Biochem. 2019, 120, 12843–12858. [Google Scholar] [CrossRef]
- Urs, A.P.; Manjuprasanna, V.N.; Rudresha, G.V.; Hiremath, V.; Sharanappa, P.; Rajaiah, R.; Vishwanath, B.S. Thrombin-like serine protease, antiquorin from Euphorbia antiquorum latex induces platelet aggregation via PAR1-Akt/p38 signaling axis. Biochim. Biophys. Acta BBA Mol. Cell Res. 2020, 1868, 118925. [Google Scholar] [CrossRef]
- Rajesh, R.; Shivaprasad, H.V.; Gowda, C.D.R.; Nataraju, A.; Dhananjaya, B.L.; Vishwanath, B.S. Comparative Study on Plant Latex Proteases and their Involvement in Hemostasis: A Special Emphasis on Clot Inducing and Dissolving Properties. Planta Medica 2007, 73, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Shivaprasad, H.V.; Rajaiah, R.; Frey, B.M.; Frey, F.J.; Vishwanath, B.S. ‘Pergularain e I’—A plant cysteine protease with thrombin-like activity from Pergularia extensa latex. Thromb. Res. 2010, 125, e100–e105. [Google Scholar] [CrossRef] [PubMed]
- Patel, G.K.; Kawale, A.A.; Sharma, A.K. Purification and physicochemical characterization of a serine protease with fibrinolytic activity from latex of a medicinal herb Euphorbia hirta. Plant Physiol. Biochem. 2011, 52, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Siritapetawee, J.; Thumanu, K.; Sojikul, P.; Thammasirirak, S. A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex. Biochim. Biophys. Acta BBA Proteins Proteom. 2012, 1824, 907–912. [Google Scholar] [CrossRef]
- Araújo, A.P.U.; Hansen, D.; Vieira, D.F.; de Oliveira, C.; Santana, L.A.; Beltramini, L.M.; Sampaio, C.A.; Sampaio, M.U.; Oliva, M.L.V. Kunitz-type Bauhinia bauhinioides inhibitors devoid of disulfide bridges: Isolation of the cDNAs, heterologous expression and structural studies. Biol. Chem. 2005, 386, 561–568. [Google Scholar] [CrossRef]
- Zhou, D.; Hansen, D.; Shabalin, I.; Gustchina, A.; Vieira, D.F.; De Brito, M.V.; Araujo, A.P.U.; Oliva, M.L.; Wlodawer, A. Structure of BbKI, a disulfide-free plasma kallikrein inhibitor. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2015, 71, 1055–1062. [Google Scholar] [CrossRef]
- Yu, H.; Palazzolo, J.S.; Zhou, J.; Hu, Y.; Niego, B.; Pan, S.; Ju, Y.; Wang, T.-Y.; Lin, Z.; Hagemeyer, C.E.; et al. Bioresponsive Polyphenol-Based Nanoparticles as Thrombolytic Drug Carriers. ACS Appl. Mater. Interfaces 2022, 14, 3740–3751. [Google Scholar] [CrossRef]
Protein of the Fibrinolytic System | Function | Molecular Weight (Da)/Number of Amino Acids | Catalytic triad of Enzymes/Reactive Site of Inhibitors | Main Origins | Plasma Concentration: µg/mL (Molar) | Plasma Half-Life (T1/2) |
---|---|---|---|---|---|---|
Plasminogen | proenzyme of plasmin | 92,000/791 | - | Liver | 180 (2 µM) | ~2.2 days |
Plasmin (EC 3.4.21.7) | serine protease | 85,000/530 | His603, Asp646, Ser741 | Liver | 180 (2 µM) | |
t-PA (EC 3.4.21.68) | serine protease (plasminogen activator) | 70,000/527 | His322, Asp371, Ser478 | endothelial cells | 0.005 (70 pM) | ~5–6 min |
u-PA (EC 3.4. 21.73) | serine protease (plasminogen activator) | 53,000/411 | His204, Asp255, Ser356 | kidney, lung, and many other cell types | 0.002 (40 pM) | ~8–10 min |
uPAR | urokinase receptor | 55,000/313 | - | various cell types | - | |
α2-antiplasmin | serine protease inhibitor (SERPIN) | 70,000/464 | Arg376-Met377 | Liver | 70 (1 µM) | ~2.6 days |
α2-macroglobulin | serine protease and metalloproteinase inhibitor | 725,000/5804 (tetramer) | the “bait region” and the reactive site formed by thiol esterification of β-SH group of Cys-949 and γ-carbonyl group of Glx-952 | Liver | 2000–4000 (2.4–4.8 µM) | 5–8 days |
PAI-1 | serine protease inhibitor (SERPIN) | 52,000/379 | Arg346-Met347 | liver, endothelial cells, megakaryocytes, smooth muscle | <0.05 (<1 nM) | 1–2 h |
PAI-2 | serine protease inhibitor (SERPIN) | 47,000 (non-glycosylated form) or 60,000 (glycosylated form)/393 | Arg358-Thr359 | placenta, monocytes/macrophages | <0.250 (during pregnancy) | 24 h |
TAFI/TAFIa | procarboxypeptidase B/carboxypeptidase B—fibrinolysis inhibitor | 60,000/401 | Liver | 4–15 (73–275 nM) | ~10 min (TAFIa) |
Molecular Action | Name | Biochemical Mechanisms of Action | Pharmacokinetics/ Elimination Route | Exemplary Clinical Use | Side Effects |
---|---|---|---|---|---|
Inhibition of plasminogen activation to plasmin | Epsilon aminocaproic acid (EACA; 6-aminohexanoic acid) | synthetic lysine analogues; competitive inhibitors of plasminogen binding to fibrin (and its activation to plasmin) | terminal elimination T1/2 of 2 h/renal | Cardiac, prostate, gynecological and other surgery; bleeding associated with hyperfibrinolysis; bleeding associated with hematopoietic disorders | Hypotension, nasal and conjunctival congestion, gastrointestinal disturbances (diarrhea, nausea, vomiting, abdominal pain), dizziness, headache, tinnitus, and ejaculation disorders [31] |
Tranexamic Acid (TXA; trans-4-(aminomethyl)cyclohexanecarboxylic acid) | terminal elimination T1/2 of 2–3 h/renal | Cardiac, orthopedic, gastrointestinal, and other surgery [32] | Hypotension; longer-term administration may induce rashes, nausea, vomiting, weakness, retrograde ejaculation, myopathy, and rhabdomyolysis [32] | ||
Inhibition of plasmin | Aprotinin | polypeptide inhibitor of serine proteinases, isolated from bovine lung, forms reversible complexes with the active serine residue in proteases and inhibits not only plasmin but also kallikrein, chymotrypsin, and trypsin | terminal elimination T1/2 of 10 h/mainly by proteolysis, <10% renal | Cardiac surgery | Renal failure, myocardial infarction, heart failure, stroke, encephalopathy, mortality [33], anaphylaxis, graft occlusion, and stroke [34] |
Compound | Inhibited Enzyme | Kd | IC50 | References |
---|---|---|---|---|
Bufadienolides | Plasmin | 16.70 μg/mL | [43] | |
Thrombin | 2.79 µg/mL | [44] | ||
Cyanidin | Thrombin | 0.25 μM | [45] | |
Factor Xa | 3.0 μM | [46] | ||
Epigallocatechin gallate (EGCG) | Elastase | 0.4 μM | [47] | |
Elagic acid | Thrombin | 7.6 µM | [48] | |
Esculin | Urokinase | 25.0 µM | [49] | |
Hypericin | Trypsin | 4.5 μM | [50] | |
Urokinase | 30.7 μM | |||
Hyperoside | Elastase | 0.3 μM | [51] | |
Trypsin | 14.5 μM | [50] | ||
Urokinase | 8.3 μM | |||
Myricetin | Thrombin | 6.0 μM | [52] | |
Elastase | 4.0 μM | [47] | ||
Procyanidin B2 | Factor Xa | 1.2 µM | [46] | |
Rutin | Plasmin | 10.7 µM | [53] | |
Thrombin | 25.0 µM | [49] | ||
Trypsin | 40 µM | |||
Urokinase | 6.0 µM | |||
Salicin | Thrombin | 11.4 µM | [50] | |
Sennoside A | Trypsin | 6.1 µM | [50] | |
Sennoside B | Trypsin | 10.6 µM | [50] | |
Silybin | Thrombin | 20.9 µM | [50] | |
25 µM | [45] | |||
Trypsin | 3.7 µM | [50] | ||
Urokinase | 21.0 µM | |||
Factor Xa | 35.0 µM | [46] | ||
Quercetin | Plasmin | 0.62 µM | [53] | |
Thrombin | 0.35 µM | [48] | ||
30.0 µM | [50] | |||
1.5 µM | [45] | |||
35.0 µM | [49] | |||
Factor Xa | 5.5 µM | [46] | ||
Trypsin | 15.4 µM | [50] | ||
10.0 µM | [49] | |||
Urokinase | 12.1 µM | [50] | ||
20.0 µM | [49] | |||
Elastase | 50.0 µM | [50] | ||
Quercetin-3-glucuronide | Plasmin | 0.14 µM | [54] | |
5,5-trans-fused cyclic lactone euphane triterpene (GR133487) | Trypsin | 0.12 µM | [55] | |
Chymotrypsin | 0.01 µM | |||
Thrombin | 0.004 µM | |||
Factor Xa | > 10 µM | |||
Factor XIa | 1.1 µM | |||
Factor XIIa | > 10 µM | |||
t-PA | > 10 µM | |||
Plasmin | 5.6 µM | |||
Elastase | > 10 µM | |||
Cathepsin G | > 10 µM | |||
5,5-trans-fused cyclic lactone euphane triterpene (GR133686) | Trypsin | 0.07 µM | [55] | |
Chymotrypsin | 0.07 µM | |||
Thrombin | 0.04 µM | |||
Factor Xa | > 10 µM | |||
Factor XIa | 0.7 µM | |||
Factor XIIa | > 10 µM | |||
t-PA | 1.0 µM | |||
Plasmin | 3.5 µM | |||
Elastase | > 10 µM | |||
Cathepsin G | 2.2 µM |
Type of Inhibitor | Name | Plant Source | Target Serine Protease | Ki | References |
---|---|---|---|---|---|
Bowman-Birk | TcTI | Torresea cearensis Allemão | Plasmin | 36.0 nM | [57] |
Factor XIIa | 1.45 µM | ||||
Kunitz | ApTIA | Acacia plumosa Lowe | Kallikrein | 0.55 µM | [58] |
ApTIB | 0.58 µM | ||||
ApTIC | 0.65 µM | ||||
AaTI | Araucaria angustifolia (Bertol.) Kuntze | Plasmin | 7.0 µM | [59] | |
BbKI | Bauhinia bauhinioides (Mart.) J.F.Macbr. | Kallikrein | 0.35 nM | [60] | |
Plasmin | 33.0 nM | [61] | |||
Factor XIIa | 110.0 nM | ||||
BuXI | Plasmin | 76.0 nM | |||
Factor Xa | 14.0 nM | ||||
Factor XIIa | 74.0 nM | ||||
BvTI | Kallikrein | 23.0 nM | |||
Factor XIIa | 21.0 nM | ||||
BrTI | Kallikrein | 14.0 nM | |||
CeKI | Caesalpinia echinata Lam. | Plasmin | 0.18 nM | [62] | |
Factor XIIa | 0.18 nM | ||||
Factor Xa | 490 nM | ||||
Kallikrein | 3.1 nM | ||||
Corn Hageman factor inhibitor | Zea mays L. | Factor XIIa | 2.1 nM | [63] | |
STI | Glycine max (L.) Merr. | Plasmin | 192.10 nM | [64] | |
Factor XIIa | 1367.59 nM | ||||
Kallikrein | 5.70 nM | ||||
SWTI | Swartzia pickelii Killip | Plasmin | 2.52 nM | [65] | |
Kallikrein | 20.25 nM | ||||
Tamarind Kunitz inhibitor | Tamarindus indica L. | Factor Xa | 220.0 nM | [66] | |
Potato-type PI | CMTI-V | Cucurbita maxima Lam. | Factor XIIa | 41.0 nM | [67] |
Squash PI | MCTI-I | Momordica charantia L. | Factor XIIa | 13 nM | [68] |
Kallikrein | 110 μM | ||||
Factor Xa | 100 μM | ||||
MCTI-II | Momordica charantia L. | Factor XIIa | 56 nM | ||
Kallikrein | 100 μM | ||||
Factor Xa | 1.4 μM | ||||
Factor XIa | 18 μM | ||||
MCTI-III | Momordica charantia L. | Factor XIIa | 1.6 μM | ||
Kallikrein | 140 μM | ||||
Factor Xa | 59 μM | ||||
CMTI-III | Cucurbita maxima Lam. | Factor XIIa | 70 nM | ||
Kallikrein | 130 μM | ||||
Factor Xa | 23 μM | ||||
LLTI-II | Lagenaria leucantha Rusby var. Gourda Makino | Factor XIIa | 1.4 μM | ||
Kallikrein | 27 μM | ||||
Factor Xa | 41 μM | ||||
LLTI-III | Lagenaria leucantha Rusby var. Gourda Makino | Factor XIIa | 4.2 μM | ||
Kallikrein | 200 μM | ||||
Factor Xa | 19 μM | ||||
LCTI-II | Luffa cylindrica Roem. | Factor XIIa | 75 nM | ||
Kallikrein | 20 μM | ||||
Factor Xa | 780μM | ||||
LCTI-III | Luffa cylindrica Roem. | Factor XIIa | 3.8 nM | ||
Kallikrein | 38 μM | ||||
Factor Xa | 100 μM |
The Examined Plants | Biological Materials and the Used Concentrations of Plant Extracts | Reference Fibrinolytic Drug | Main Findings | References |
---|---|---|---|---|
Allium affine Ledeb. | Human blood clots; hydro-alcoholic extract from aerial parts of A. affine (70% ethanol); 0.005–50 mg/mL | SK (8000 IU) | A. affine efficiency—up to ~30% of clot lysis; SK—51.40% | [103] |
Allium elburzense Wendelbo | Human blood clots; hydroalcoholic (70% ethanol), aqueous, chloroformic and butanolic extracts from A. elburzense bulb; 5 mg/mL | SK (30,000 IU) | Clot lysis efficiency: aqueous extract (33.11%) > hydroalcoholic extract (22.40%) > butanolic extract (16.75) > chloroformic (9.77%) extract; SK—60.59% | [104] |
Anona senegalensis (A.DC.) Pichon, Buchholzia coriacea Engl., Citrullus colocynthis (L.) Schrad., Cnidoscolus aconitifolius (Mill.) I. M. Johnst., Curculigo pilosa (Schumach. & Thonn.) Engl., Nicotiana tabacum L., Parinari curatellifolia Planch. ex Benth., Peperomia pellucida (L.) Kunth, Sida acuta Burm. f., Xylopia aethiopica (Dunal) A.Rich. | Human blood clots; the crude methanolic extracts; 100 μg/mL | SK (30,000 IU) | The highest clot lysis efficiency: P. curatellifolia—56.12%, C. aconitifolius 48.38%, A. senegalensis—46.36%, X. aethiopica —43.20%, B. coriacea—27.06%; SK—60.20% | [105] |
Byttneria pilosa Roxb. | Human blood clots; crude, methanol extract of B. pilosa; 100 µL/clot sample | SK (30,000 IU) | Clot lysis in samples treated with B. pilosa 46.20 ± 2.27%; in samples treated with SK: 82.60 ± 2.45% | [106] |
Campomanesia xanthocarpa (Mart.) O. Berg | Human and mice blood clots; water extract from C. xanthocarpa leaves; 1, 3, 10, 30, and 100 μg/mL | SK (1, 3, 10, 30, and 100 μg/mL) | In mice blood, EC50 for C. xanthocarpa extract and SK: 21 μg/mL and 24 μg/mL, respectively; the Emax (at 100 μg/mL) was 56 ± 9% and 60 ± 14%, respectively. In human blood, the EC50 for C. xanthocarpa extract and SK was 11 and 4 μg/mL, respectively; Emax = 62 ± 7% and 70 ± 6%, respectively | [107] |
Cnidoscolus aconitifolius (Mill.) I.M. Johnst. | Human blood clots; aqueous (Aq), ethanolic (EtOH), acetonic (An), ethyl acetate (AcOEt), diethyl ether (Et2O), and hexane (Hx) extracts from C. aconitifolius leaves; 0.1, 1, and 10 mg/mL | SK (30,000 IU) | The most effective were AcOEt, An, and Hx extracts (at 10 mg/mL), yielding 18.4—24% lysis; SK—76% lysis | [108] |
Fagonia arabica L., Saussurea lappa Decne., Tinospora cordifolia Thunb. | Human blood clots; aqueous extracts from whole dry plant of F. arabica, dry bark of S. lappa, dry stem of T. cordifolia; 100 µL/clot sample | SK (30,000 IU) | Clot lysis efficiency: 68.06%, 14.85%, 25.01%, and 92.54%, for F. arabica, S. lappa, T. cordifolia, and SK, respectively. | [109] |
Commelina benghalensis Forssk. | Human blood clots; methanol extract from C. benghalensis leaves; 10–1000 μg/mL | SK (30,000 IU) | Average lytic activity of 40.94% for the extract, and 75% for SK | [110] |
Cucumis dipsaceus Wender. ex Steud. | Fibrinogen preparation; 25 and 50 µg/mL | - | Fibrinogenolytic activity of the aqueous C. dipsaceus dialysate fraction (AqCDF): hydrolysis of Aα and Bβ chains of fibrinogen, partial degradation of γ chain | [111] |
Curculigo recurvata W.T. Aiton (Satipata), Amorphophallus bulbifer Roxb. (Olkachu), Phyllanthus sikkimensis Muell. Arg., Thunbergia grandiflora Roxb. (Nillata) | Human blood clots; methanol extracts from the examined plants; 100 µL/clot sample | SK (30,000 IU) | Clot lysis efficiency: C. recurvata 28.10%, A. bulbifer 42.47%, P. sikkimensis—32.86%, T. grandiflora 25.51%, SK—78.23% | [112] |
Litchi chinensis Sonn. | Rat fibrin clots; ethanol (70%) extract from dried fruits; fibrin plate assay, 0.5, 1, 2, and 4 mg/mL | Plasmin, 1–2 µg/fibrin clot plate | Induction of fibrinolysis at 2 and 4 mg/mL | [113] |
Maba buxifolia (Rottb.) Juss. | Human blood clots; methanol extract from the plant stem; 1 mg/mL | Urokinase (50,000 IU) | 24.3% of clot lysis for the extract; 100% lysis for urokinase-treated samples | [114] |
Mentha arvensis L., Mentha spicata L., Mentha viridis L. | Human blood clots; Mentha sp. extracts (10 mg/mL): 95% methanol, 99.50% ethanol, 95% chloroform and acetone extracts); 100 µL/clot sample | SK (15,000 IU) | 32.56%, 30.89%, 30.29% clot lysis for the methanol extracts; 32.04%, 30.37%, 30.02% clot lysis for the ethanol extracts; 31.87%, 29.77%, 29.05% clot lysis efficiency for the chloroform extracts; and 30.29%, 28.45%, 27.55% clot lysis efficiency for the acetone extracts for M. arvensis, M. spicata, and M. viridis, respectively | [115] |
Ocimum tenuiflorum Burm.f., Andrographis paniculate (Burm.f.) Wall., Adhatoda vasica Nees, Leea macrophylla Roxb., Litsea glutinosa (Lour.) C.B.Rob. | Human blood clot; methanol extracts; 100 µL/clot sample | SK (30,000 IU) | L. macrophylla extract had the highest activity (47.47% of clot lysis); SK—71.14% of clot lysis | [116] |
Tinospora cordifolia (Willd.) Miers, Rubia cordifolia L., Hemidesmus indicus (L.) R. Br. ex Schult., Glycyrrhiza glabra L., Fagonia arabica L., Bacopa monnieri Hayata & Matsum. | Human blood clots; aqueous herbal extracts; 100 µL/clot sample | SK (30,000 IU) | F. Arabica—75.6% clot lysis, B. monnieri—41.8% clot lysis, other extracts < 20% clot lysis; SK—86% clot lysis | [117] |
Trema orientalis L., Bacopa monnieri Hayata & Matsum., Capsicum frutescens L., Brassica oleracea L., Urena sinuata L. | Human blood clots; methanol crude extracts and fractions (i.e., chloroform, n-hexane, hydro-methanol, and ethyl acetate fractions); 100 µL/clot sample | SK (30,000 IU) | The highest clot lysis activity: chloroform fractions from T. orientalis, B. monnieri, C. frutescens, B. oleracea, and U. sinuata, i.e., 46.44 ± 2.44%, 48.39 ± 10.12%, 36.87 ± 1.27%, 30.24 ± 0.95%, and 47.89 ± 6.83%, respectively; SK: 80.77 ± 1.12% | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolodziejczyk-Czepas, J.; Czepas, J. Plant-Derived Compounds and Extracts as Modulators of Plasmin Activity—A Review. Molecules 2023, 28, 1677. https://doi.org/10.3390/molecules28041677
Kolodziejczyk-Czepas J, Czepas J. Plant-Derived Compounds and Extracts as Modulators of Plasmin Activity—A Review. Molecules. 2023; 28(4):1677. https://doi.org/10.3390/molecules28041677
Chicago/Turabian StyleKolodziejczyk-Czepas, Joanna, and Jan Czepas. 2023. "Plant-Derived Compounds and Extracts as Modulators of Plasmin Activity—A Review" Molecules 28, no. 4: 1677. https://doi.org/10.3390/molecules28041677
APA StyleKolodziejczyk-Czepas, J., & Czepas, J. (2023). Plant-Derived Compounds and Extracts as Modulators of Plasmin Activity—A Review. Molecules, 28(4), 1677. https://doi.org/10.3390/molecules28041677