A Review on the Sources, Structures, and Pharmacological Activities of Lucidenic Acids
Abstract
:1. Introduction
2. Sources and Contents
3. Chemical Structures of Lucidenic Acids
4. Potential Pharmacological Effects of Lucidenic Acids
4.1. Anti-Cancer Effect
4.2. Anti-Inflammatory Effect
4.3. Antioxidant Effect
4.4. Anti-Viral Effect
4.5. Neuroprotective Effect
4.6. Anti-Hyperlipidemic Effect
4.7. Anti-Hypercholesterolemic Effect
4.8. Anti-Hyperglycemic Effect
4.9. Other Pharmacological Effects
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hamid, K.; Alqahtani, A.; Kim, M.; Cho, J.; Cui, P.H.; Li, C.G.; Groundwater, P.W.; Li, G.Q. Tetracyclic triterpenoids in herbal medicines and their activities in diabetes and its complications. Curr. Top. Med. Chem. 2015, 15, 2406–2430. [Google Scholar] [CrossRef]
- Ren, Y.; Kinghorn, A.D. Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity. Planta Med. 2019, 85, 802–814. [Google Scholar] [CrossRef]
- Madasu, C.; Xu, Y.; Wijeratne, E.M.K.; Liu, M.X.; Molnár, I.; Gunatilaka, A.A.L. Semi-synthesis and cytotoxicity evaluation of pyrimidine, thiazole, and indole analogues of argentatins A–C from guayule (Parthenium argentatum) resin. Med. Chem. Res. 2022, 31, 1088–1098. [Google Scholar] [CrossRef]
- Xu, Y.M.; Madasu, C.; Liu, M.X.; Wijeratne, E.M.K.; Dierig, D.; White, B.; Molnár, I.; Gunatilaka, A.A.L. Cycloartane- and lanostane-type triterpenoids from the resin of Parthenium argentatum AZ-2, a byproduct of Guayule rubber production. ACS Omega 2021, 6, 15486–15498. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Yan, S.; Zhang, Z.; Gong, W.; Zhu, Z.; Zhou, Y.; Yan, L.; Hu, Z.; Ai, L.; Peng, Y. Mapping the metabolic signatures of fermentation broth, mycelium, fruiting body and spores powder from Ganoderma lucidum by untargeted metabolomics. LWT 2020, 129, 109494. [Google Scholar] [CrossRef]
- Baby, S.; Johnson, A.J.; Govindan, B. Secondary metabolites from Ganoderma. Phytochemistry 2015, 114, 66–101. [Google Scholar] [CrossRef]
- Kubota, T.; Asaka, Y.; Miura, I.; Mori, H. Structures of Ganoderic acid A and B, two new lanostane type bitter triterpenes from Ganoderma lucidum (FR.) KARST. Helv. Chim. Acta 1982, 65, 611–619. [Google Scholar] [CrossRef]
- Sharma, C.; Bhardwaj, N.; Sharma, A.; Tuli, H.S.; Batra, P.; Beniwal, V.; Gupta, G.K.; Sharma, A.K. Bioactive metabolites of Ganoderma lucidum: Factors, mechanism and broad spectrum therapeutic potential. J. Herb. Med. 2019, 17, 100268. [Google Scholar] [CrossRef]
- Sato, N.; Zhang, Q.; Ma, C.M.; Hattori, M. Anti-human immunodeficiency virus-1 protease activity of new lanostane-type triterpenoids from Ganoderma sinense. Chem. Pharm. Bull. 2009, 57, 1076–1080. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Tsilingiris, D.; Christodoulatos, G.S.; Karampela, I.; Dalamaga, M. Anti-viral treatment for SARS-CoV-2 infection: A race against time amidst the ongoing pandemic. Metab. Open 2021, 10, 100096. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-L.; Yu, Y.S.; Yen, G.C. Lucidenic acid B induces apoptosis in human leukemia cells via a mitochondria-mediated pathway. J. Agric. Food Chem. 2008, 56, 3973–3980. [Google Scholar] [CrossRef]
- Weng, C.J.; Chau, C.F.; Hsieh, Y.S.; Yang, S.F.; Yen, G.C. Lucidenic acid inhibits PMA-induced invasion of human hepatoma cells through inactivating MAPK/ERK signal transduction pathway and reducing binding activities of NF-κB and AP-1. Carcinogenesis 2008, 29, 147–156. [Google Scholar] [CrossRef]
- Ćilerdžić, J.L.; Sofrenić, I.V.; Tešević, V.V.; Brčeski, I.D.; Duletić-Laušević, S.N.; Vukojević, J.B.; Stajić, M.M. Neuroprotective potential and chemical profile of alternatively cultivated Ganoderma lucidum basidiocarps. Chem. Biodivers. 2018, 15, e1800036. [Google Scholar] [CrossRef]
- Li, Z.; Shi, Y.; Zhang, X.; Xu, J.; Wang, H.; Zhao, L.; Wang, Y. Screening immunoactive compounds of Ganoderma lucidum spores by mass spectrometry molecular networking combined with in vivo zebrafish assays. Front. Pharmacol. 2020, 11, 287. [Google Scholar] [CrossRef]
- Lee, I.; Ahn, B.; Choi, J.; Hattori, M.; Min, B.; Bae, K. Selective cholinesterase inhibition by lanostane triterpenes from fruiting bodies of Ganoderma lucidum. Bioorg. Med. Chem. Lett. 2011, 21, 6603–6607. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Chang, Q.; Wong, L.K.; Chong, F.S.; Li, R.C. Triterpene antioxidants from Ganoderma lucidum. Phytother. Res. 1999, 13, 529–531. [Google Scholar] [CrossRef]
- Lin, D.; Yu-Rong, L.; Jun, Y.; Xiao-Hong, F.; Wei, D. Studies on chemical constituents of triterpenoids from Ganoderma sinense. Nat. Prod. Res. Dev. 2018, 30, 1669. [Google Scholar]
- Welti, S.; Moreau, P.A.; Decock, C.; Danel, C.; Duhal, N.; Favel, A.; Courtecuisse, R. Oxygenated lanostane-type triterpenes profiling in laccate Ganoderma chemotaxonomy. Mycol. Prog. 2015, 14, 45. [Google Scholar] [CrossRef]
- Weng, C.J.; Fang, P.S.; Chen, D.H.; Chen, K.D.; Yen, G.C. Anti-invasive effect of a rare mushroom, Ganoderma colossum, on human hepatoma cells. J. Agric. Food Chem. 2010, 58, 7657–7663. [Google Scholar] [CrossRef]
- Liu, L.Y. Studies on the Chemical Constituents and Bioactivities of the Fruiting Bodies of Ganoderma Theaecolum, Ganoderma Sessile and Ganoderma Mastoporum (in Chinese). Ph.D. Thesis, Peking Union Medical College, Beijing, China, 2017. [Google Scholar]
- Liu, C.; Pu, Q.; Wang, H.; Chen, R. Chemical constituents from fruiting bodies of Ganoderma tsugae (Ⅱ) (in Chinese). Chin. Trad. Herb. Drugs 2007, 38, 1610–1612. [Google Scholar]
- Trigos, Á.; Suárez Medellín, J. Biologically active metabolites of the genus Ganoderma: Three decades of myco-chemistry research. Rev. Mex. Micol. 2011, 34, 63–83. [Google Scholar]
- Ha, D.T.; Loan, L.T.; Hung, T.M.; Han, L.V.N.; Khoi, N.M.; Dung, L.V.; Min, B.S.; Nguyen, N.P.D. An improved HPLC-DAD method for quantitative comparisons of triterpenes in Ganoderma lucidum and its five related species originating from Vietnam. Molecules 2015, 20, 1059–1077. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.Y.; Luo, Y.; Huang, S.Z.; Guo, Z.K.; Dai, H.F.; Zhao, Y.X. Lanostane triterpenoids with cytotoxic activities from the fruiting bodies of Ganoderma hainanense. J. Asian Nat. Prod. Res. 2013, 15, 1214–1219. [Google Scholar] [CrossRef]
- Xiong, Q.; Sun, C.; Shi, H.; Cai, S.; Xie, H.; Liu, F.; Zhu, J. Analysis of related metabolites affecting taste values in rice under different nitrogen fertilizer amounts and planting densities. Foods 2022, 11, 1508. [Google Scholar] [CrossRef]
- Li, J.; Cheng, Y.; Li, R.; Wu, X.; Zheng, C.; Shiu, P.H.T.; Chan, J.C.K.; Rangsinth, P.; Liu, C.; Leung, S.W.S.; et al. Protective effects of Amauroderma rugosum on doxorubicin-induced cardiotoxicity through suppressing oxidative stress, mitochondrial dysfunction, apoptosis, and activating Akt/mTOR and Nrf2/HO-1 signaling pathways. Oxid. Med. Cell. Longev. 2022, 2022, 9266178. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, A.K.; Dash, U.C.; Kanhar, S.; Mahapatra, A.K. In vitro biological assessment of Homalium zeylanicum and isolation of lucidenic acid A triterpenoid. Toxicol. Rep. 2017, 4, 274–281. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, X.; Sun, Y.; Li, Y.; Wang, Y.; Jiang, Y.; Shao, H.; Yong, B.; Li, H.; Tao, X. Comparative Metabolomic Profiling of Compatible and Incompatible Interactions between Potato and Phytophthora infestans. Front. Microbiol. 2022, 13, 57160. [Google Scholar] [CrossRef]
- Nishitoba, T.; Sato, H.; Kasai, T.; Kawagishi, H.; Sakamura, S. New bitter C27 and C30 terpenoids from the fungus Ganoderma lucidum (Reishi). Agric. Biol. Chem. 1985, 49, 1793–1798. [Google Scholar]
- Pavlik, M.; Zhou, S.; Zhang, J.; Tang, Q.; Feng, N.; Kurjak, D.; Pavlík, M., Jr.; Kunca, A. Comparative analysis of triterpene composition between Ganoderma lingzhi from China and G. lucidum from Slovakia under different growing conditions. Int. J. Med. Mushrooms 2020, 22, 793–802. [Google Scholar] [CrossRef]
- Pecić, S.; Nikićević, N.; Veljović, M.; Jardanin, M.; Tešević, V.; Belović, M.; Nikšić, M. The influence of extraction parameters on physicochemical properties of special grain brandies with Ganoderma lucidum. Chem. Ind. Chem. Eng. Q. 2016, 22, 181–189. [Google Scholar] [CrossRef]
- Nishitoba, T.; Sato, H.; Shirasu, S.; Sakamura, S. Novel triterpenoids from the mycelial mat at the previous stage of fruiting of Ganoderma lucidum. Agric. Biol. Chem. 1987, 51, 619–622. [Google Scholar] [CrossRef]
- Paterson, R.R.M. Ganoderma–a therapeutic fungal biofactory. Phytochemistry 2006, 67, 1985–2001. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Liu, S.; Xie, F.; Zhao, L.; Wu, X. Enhanced production of polysaccharides and triterpenoids in Ganoderma lucidum fruit bodies on induction with signal transduction during the fruiting stage. PLoS ONE 2018, 13, e0196287. [Google Scholar] [CrossRef]
- Nishitoba, T.; Sato, S.; Sakamura, S. New terpenoids from Ganoderma lucidum and their bitterness. Agric. Biol Chem. 1985, 49, 1547–1549. [Google Scholar] [CrossRef]
- Wu, T.S.; Shi, L.S.; Kuo, S.C.; Cherng, C.Y.; Tung, S.F.; Teng, C.M. Platelet aggregation inhibitor from Ganoderma lucium. J. Chin. Chem. Soc. 1997, 44, 157–161. [Google Scholar] [CrossRef]
- Li, L.; Guo, H.J.; Zhu, L.Y.; Zheng, L.; Liu, X. A supercritical-CO2 extract of Ganoderma lucidum spores inhibits cholangiocarcinoma cell migration by reversing the epithelial–mesenchymal transition. Phytomedicine 2016, 23, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.J.; Zheng, H.X.; Hong, Z.P.; Wang, H.B.; Wang, Y.; Li, M.Y.; Li, Z.H. Antitumor effects of different Ganoderma lucidum spore powder in cell-and zebrafish-based bioassays. J. Integr. Med. 2021, 19, 177–184. [Google Scholar] [CrossRef]
- Liang, C.; Tian, D.; Liu, Y.; Li, H.; Zhu, J.; Li, M.; Xin, M.; Xia, J. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur. J. Med. Chem. 2019, 174, 130–141. [Google Scholar] [CrossRef]
- Kikuchi, T.; Matsuda, S.; Kadota, S.; Murai, Y.; Ogita, Z. Ganoderic acid D, E, F, and H and lucidenic acid D, E, and F, new triterpenoids from Ganoderma lucidum. Chem. Pharm. Bull. 1985, 33, 2624–2627. [Google Scholar] [CrossRef]
- Kikuchi, T.; Kanomi, S.; Murai, Y.; Kadota, S.; Tsubono, K.; Ogita, Z.I. Constituents of the fungus Ganoderma lucidum (FR.) KARST. II.: Structures of ganoderic acids F, G, and H, lucidenic acids D2 and E2, and related compounds. Chem. Pharm. Bull. 1986, 34, 4018–4029. [Google Scholar] [CrossRef]
- Nishitoba, T.; Sato, H.; Sakamura, S. New terpenoids, ganolucidic acid D, ganoderic acid L, lucidone C and lucidenic acid G, from the fungus Ganoderma lucidum. Agric. Biol. Chem. 1986, 50, 809–811. [Google Scholar] [CrossRef]
- Chen, B.; Tian, J.; Zhang, J.; Wang, K.; Liu, L.; Yang, B.; Bao, L.; Liu, H. Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase. Fitoterapia 2017, 120, 6–16. [Google Scholar] [CrossRef]
- Nishitoba, T.; Sato, H.; Sakamura, S. Triterpenoids from the fungus Ganoderma lucidum. Phytochemistry 1987, 26, 1777–1784. [Google Scholar] [CrossRef]
- Min, B.S.; Gao, J.J.; Hattori, M.; Lee, H.K.; Kim, Y.H. Anticomplement activity of terpenoids from the spores of Ganoderma lucidum. Planta Med. 2001, 67, 811–814. [Google Scholar] [CrossRef]
- Wu, T.S.; Shi, L.S.; Kuo, S.C. Cytotoxicity of Ganoderma lucidum triterpenes. J. Nat. Prod. 2001, 64, 1121–1122. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, X.; Yang, Q. Recent advances on triterpenes from Ganoderma mushroom. Food Rev. Int. 2006, 22, 259–273. [Google Scholar] [CrossRef]
- Nghien, N.X.; Thuy, N.T.B.; Luyen, N.T.; Thu, N.T.; Quan, N.D. Morphological Characteristics, Yield Performance, and Medicinal Value of Some Lingzhi Mushroom (Ganoderma lucidum) Strains Cultivated in Tam Dao, Vietnam. Vietn. J. Agr. Sci. 2019, 2, 321–331. [Google Scholar]
- Mizushina, Y.; Takahashi, N.; Hanashima, L.; Koshino, H.; Esumi, Y.; Uzawa, J.; Sugawara, F.; Sakaguchi, K. Lucidenic acid O and lactone, new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete, Ganoderma lucidum. Biorg. Med. Chem. 1999, 7, 2047–2052. [Google Scholar] [CrossRef]
- Iwatsuki, K.; Akihisa, T.; Tokuda, H.; Ukiya, M.; Oshikubo, M.; Kimura, Y.; Asano, T.; Nomura, A.; Nishino, H. Lucidenic acids P and Q, methyl lucidenate P, and other triterpenoids from the fungus Ganoderma lucidum and their inhibitory effects on Epstein− Barr virus activation. J. Nat. Prod. 2003, 66, 1582–1585. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Han, F.; Luan, S.S.; Ai, R.; Zhang, P.; Li, H.; Chen, L.X. Triterpenoids from Ganoderma lucidum and their potential anti-inflammatory effects. J. Agric. Food Chem. 2019, 67, 5147–5158. [Google Scholar] [CrossRef]
- Cheng, C.R.; Yue, Q.X.; Wu, Z.Y.; Song, X.Y.; Tao, S.J.; Wu, X.H.; Xu, P.P.; Liu, X.; Guan, S.H.; Guo, D.A. Cytotoxic triterpenoids from Ganoderma lucidum. Phytochemistry 2010, 71, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Fatmawati, S.; Kondo, R.; Shimizu, K. Structure-activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 5900–6903. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.T.; Cuong, T.D.; Hung, T.M.; Kim, J.A.; Woo, M.H.; Choi, J.S.; Lee, J.H.; Min, B.S. Cytotoxic and anti-angiogenic effects of lanostane triterpenoids from Ganoderma lucidum. Phytochem. Lett. 2015, 12, 69–74. [Google Scholar]
- Lee, M.K.; Hung, T.M.; Cuong, T.D.; Na, M.; Kim, J.C.; Kim, E.J.; Park, H.S.; Choi, J.S.; Lee, I.; Bae, K. Ergosta-7, 22-diene-2β, 3α, 9α-triol from the fruit bodies of Ganoderma lucidum induces apoptosis in human myelocytic HL-60 cells. Phytother. Res. 2011, 25, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Cör, D.; Knez, Ž.; Knez Hrnčič, M. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: A review. Molecules 2018, 23, 649. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.; Pathak, P.; Chaudhary, N.; Rathi, A.; Vyas, D. Recent Trends in Mushroom Biology. In Ganoderma lucidum: Cultivation and Production of Ganoderic and Lucidenic Acid; Global Books Organisation: Delhi, India, 2021; pp. 91–106. ISBN 9789383837991. [Google Scholar]
- Weng, C.J.; Chau, C.F.; Yen, G.C.; Liao, J.W.; Chen, D.H.; Chen, K.D. Inhibitory effects of Ganoderma lucidum on tumorigenesis and metastasis of human hepatoma cells in cells and animal models. J. Agric. Food Chem. 2009, 57, 5049–5057. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.X.; Xie, F.B.; Guan, S.H.; Ma, C.; Yang, M.; Jiang, B.H.; Liu, X.; Guo, D.A. Interaction of Ganoderma triterpenes with doxorubicin and proteomic characterization of the possible molecular targets of Ganoderma triterpenes. Cancer Sci. 2008, 99, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Akihisa, T.; Nakamura, Y.; Tagata, M.; Tokuda, H.; Yasukawa, K.; Uchiyama, E.; Suzuki, T.; Kimura, Y. Anti-inflammatory and anti-tumor-promoting effects of triterpene acids and sterols from the fungus Ganoderma lucidum. Chem. Biodivers. 2007, 4, 224–231. [Google Scholar] [CrossRef]
- Xu, J.; Yang, W.; Pan, Y.; Xu, H.; He, L.; Zheng, B.; Xie, Y.; Wu, X. Lucidenic acid A inhibits the binding of hACE2 receptor with spike protein to prevent SARS-CoV-2 invasion. Food Chem. Toxicol. 2022, 169, 113438. [Google Scholar] [CrossRef]
- Divya, M.; Aparna, C.; Mayank, R.; Mp, S. In-silico insights to identify the bioactive compounds of edible mushrooms as potential MMP9 inhibitor for Hepatitis-B. Res. J. Biotechnol. 2021, 16, 2. [Google Scholar]
- Miao, H.; Li, M.H.; Zhang, X.; Yuan, S.J.; Ho, C.C.; Zhao, Y.Y. The antihyperlipidemic effect of Fu-Ling-Pi is associated with abnormal fatty acid metabolism as assessed by UPLC-HDMS-based lipidomics. RSC Adv. 2015, 5, 64208–64219. [Google Scholar] [CrossRef]
- Shen, C.Y.; Xu, P.H.; Shen, B.D.; Min, H.Y.; Li, X.R.; Han, J.; Yuan, H.L. Nanogel for dermal application of the triterpenoids isolated from Ganoderma lucidum (GLT) for frostbite treatment. Drug Deliv. 2016, 23, 610–618. [Google Scholar] [CrossRef]
- Dudhgaonkar, S.; Thyagarajan, A.; Sliva, D. Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. Int. Immunopharmacol. 2009, 9, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fu, D.; Chen, G.; Guo, M. Comparative and chemometric analysis of correlations between the chemical fingerprints and anti-proliferative activities of ganoderic acids from three Ganoderma species. Phytochem. Anal. 2019, 30, 474–480. [Google Scholar] [CrossRef]
- Grienke, U.; Kaserer, T.; Pfluger, F.; Mair, C.E.; Langer, T.; Schuster, D.; Rollinger, J.M. Accessing biological actions of Ganoderma secondary metabolites by in silico profiling. Phytochemistry 2015, 114, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Kim, H.; Youn, U.; Kim, J.; Min, B.; Jung, H.; Na, M.; Hattori, M.; Bae, K. Effect of lanostane triterpenes from the fruiting bodies of Ganoderma lucidum on adipocyte differentiation in 3T3-L1 cells. Planta Med. 2010, 76, 1558–1563. [Google Scholar] [CrossRef]
- Lee, I.; Seo, J.; Kim, J.; Kim, H.; Youn, U.; Lee, J.; Jung, H.; Na, M.; Hattori, M.; Min, B. Lanostane triterpenes from the fruiting bodies of Ganoderma lucidum and their inhibitory effects on adipocyte differentiation in 3T3-L1 Cells. J. Nat. Prod. 2010, 73, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Kim, J.; Ryoo, I.; Kim, Y.; Choo, S.; Yoo, I.; Min, B.; Na, M.; Hattori, M.; Bae, K. Lanostane triterpenes from Ganoderma lucidum suppress the adipogenesis in 3T3-L1 cells through down-regulation of SREBP-1c. Bioorg. Med. Chem. Lett. 2010, 20, 5577–5581. [Google Scholar] [CrossRef]
- Weng, C.J.; Chau, C.F.; Chen, K.D.; Chen, D.H.; Yen, G.C. The anti-invasive effect of lucidenic acids isolated from a new Ganoderma lucidum strain. Mol. Nutr. Food Res. 2007, 51, 1472–1477. [Google Scholar] [CrossRef]
- Raghavan, V.; Manasa, D. Identification and Analysis of Disease Target Network of Human MicroRNA and Predicting Promising Leads for ZNF439, a Potential Target for Breast Cancer. Int. J. Biosci. 2012, 2, 358. [Google Scholar] [CrossRef]
- Borah, D.; Gogoi, D.; Yadav, R. Computer aided screening, docking and ADME study of mushroom derived compounds as Mdm2 inhibitor, a novel approach. Natl. Acad. Sci. Lett. 2015, 38, 469–473. [Google Scholar] [CrossRef]
- Sillapapongwarakorn, S.; Yanarojana, S.; Pinthong, D.; Thithapandha, A.; Ungwitayatorn, J.; Supavilai, P. Molecular docking based screening of triterpenoids as potential G-quadruplex stabilizing ligands with anti-cancer activity. Bioinformation 2017, 13, 284. [Google Scholar] [CrossRef]
- Khelifa, S. Low Molecular Weight Compounds from Mushrooms as Potential Bcl-2 Inhibitors: Docking and Virtual Screening Studies. Master’s Thesis, Escola Superior Agrária, Bragança, Portugal, 2016. [Google Scholar]
- Hikmet, F.; Méar, L.; Edvinsson, Å.; Micke, P.; Uhlén, M.; Lindskog, C. The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol. 2020, 16, e9610. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on the Public Health Response to Dementia; World Health Organization: Geneva, Switzerland, 2021; ISBN 978–92–4-003324–5.
- Wei, J.C.; Wang, Y.X.; Dai, R.; Tian, X.G.; Sun, C.P.; Ma, X.C.; Jia, J.M.; Zhang, B.J.; Huo, X.K.; Wang, C. C27-Nor lanostane triterpenoids of the fungus Ganoderma lucidum and their inhibitory effects on acetylcholinesteras. Phytochem. Lett. 2017, 20, 263–268. [Google Scholar] [CrossRef]
- Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res. 2013, 36, 375–399. [Google Scholar] [CrossRef]
- Stancu, C.; Sima, A. Statins: Mechanism of action and effects. J. Cell. Mol. Med. 2001, 5, 378–387. [Google Scholar] [CrossRef]
- Combs, A.P. Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer. J. Med. Chem. 2010, 53, 2333–2344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Huang, L.; Wu, Y.; Huang, L.; Xu, X.; Lin, R. Study on Quality Control of Compound Anoectochilus roxburghii (Wall.) Lindl. by Liquid Chromatography–Tandem Mass Spectrometry. Molecules 2022, 27, 4130. [Google Scholar] [CrossRef]
- Cao, F.R.; Xiao, B.X.; Wang, L.S.; Tao, X.; Yan, M.Z.; Pan, R.L.; Liao, Y.H.; Liu, X.M.; Chang, Q. Plasma and brain pharmacokinetics of ganoderic acid A in rats determined by a developed UFLC-MS/MS method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1052, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.L.; Guo, J.B.; Liu, B.Y.; Lu, J.Q.; Chen, M.; Liu, B.; Bai, W.D.; Rao, P.F.; Ni, L.; Lv, X.C. Ganoderic acid A from Ganoderma lucidum ameliorates lipid metabolism and alters gut microbiota composition in hyperlipidemic mice fed a high-fat diet. Food Funct. 2020, 11, 6818–6833. [Google Scholar] [CrossRef]
- Ren, L. Protective effect of ganoderic acid against the streptozotocin induced diabetes, inflammation, hyperlipidemia and microbiota imbalance in diabetic rats. Saudi J. Biol. Sci. 2019, 26, 1961–1972. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Yang, H.S.; Jo, J.H.; Lee, S.C.; Park, T.Y.; Choi, B.S.; Seo, K.S.; Huh, C.K. Anti-Amnesic Effect of Fermented Ganoderma lucidum Water Extracts by Lactic Acid Bacteria on Scopolamine-Induced Memory Impairment in Rats. Prev. Nutr. Food Sci. 2015, 20, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, H.; Qi, H.; Tang, W.; Zhang, C.; Liu, Z.; Liu, Y.; Wei, X.; Kong, Z.; Jia, S.; et al. Probiotic fermentation of Ganoderma lucidum fruiting body extracts promoted its immunostimulatory activity in mice with dexamethasone-induced immunosuppression. Biomed. Pharmacother. 2021, 141, 111909. [Google Scholar] [CrossRef] [PubMed]
Serial Number | Lucidenic Acid Type | Molecular Formula | Species | Extraction Method | Amount | References |
---|---|---|---|---|---|---|
1 | Lucidenic acid A | C27H38O6 | Ganoderma lucidum (fruiting bodies) | 100% Ethanol | 2.8 mg/g dry weight | [30] |
Ganoderma lucidum (fruiting bodies) | 95% Ethanol | 1.53–1.74 mg/g dry weight | [34] | |||
Ganoderma lucidum (fruiting bodies) | 45% Grain alcohol and chloroform | 1.226–2.497 mg/g in lyophilized sample | [29,31,35] | |||
Ganoderma lucidum (fruiting bodies) | Water (soaked in 100% ethanol overnight prior to extraction) | 0.4 mg/g dry weight | [36] | |||
Ganoderma lucidum (fruiting bodies) | Water | 51 μg/g dry weight | [26] | |||
Ganoderma lucidum (spores) | Methanol | * | [14] | |||
Ganoderma lucidum (spores) | Supercritical fluid carbon dioxide | 0.3 mg/g in extract | [37] | |||
Wall-removed Ganoderma lucidum (spores) | Water, alcohol, or a combination of the two | 0.05% | [38] | |||
Ganoderma hainanense (fruiting bodies) | 95% Ethanol | * | [6,24] | |||
Ganoderma sinense (fruiting bodies) | 95% Ethanol | * | [17] | |||
Ganoderma curtisii (fruiting bodies) | Methanol | * | [18] | |||
Ganoderma colossum (fruiting bodies) | 100% Ethanol | 16 μg/mL in extract | [19] | |||
Ganoderma sessile (fruiting bodies) | 80% Ethanol | * | [20] | |||
Amauroderma rugosum (fruiting bodies) | Water | 15.69 μg/g dry weight | [26] | |||
Homalium zeylanicum (barks) | 70% Hydro-alcohol | * | [27] | |||
2 | Lucidenic acid B | C27H38O7 | Ganoderma lucidum (fruiting bodies) | Chloroform | * | [6,35,39] |
Ganoderma lucidum (spores) | Methanol | * | [14] | |||
Ganoderma lucidum (spores) | Supercritical fluid carbon dioxide | 72 ± 0.95 μg/g in extract | [37] | |||
3 | Lucidenic acid C | C27H40O7 | Ganoderma lucidum (fruiting bodies) | Chloroform | * | [6,35,39] |
Ganoderma lucidum (spores) | Methanol | * | [14] | |||
Ganoderma colossum (fruiting bodies) | 100% Ethanol | 6.7 μg/mL in extract | [19] | |||
Ganoderma sessile (fruiting bodies) | 80% Ethanol | * | [20] | |||
Ganoderma tsugae (fruiting bodies) | 95% Ethanol | * | [21] | |||
4 | Lucidenic acid D1 | C27H34O7 | Ganoderma lucidum (fruiting bodies) | Chloroform | * | [6,35] |
5 | Lucidenic acid D2 | C29H38O8 | Ganoderma lucidum (fruiting bodies) | 45% Grain alcohol and chloroform | 1.538–2.227 mg/g in lyophilized sample | [31,35,40] |
Ganoderma lucidum (spores) | Methanol | * | [14] | |||
Ganoderma sinense (fruiting bodies) | Chloroform | * | [6,9] | |||
Potato leaf | Methanol: Water (4:1, v/v) | * | [28] | |||
6 | Lucidenic acid E1 | C27H38O7 | Ganoderma lucidum (fruiting bodies) | Chloroform | * | [35] |
7 | Lucidenic acid E2 | C29H40O8 | Ganoderma lucidum (fruiting bodies) | Methanol | 0.319–1.766 mg/g dry weight (wild samples); 0.258–0.481 mg/g dry weight (cultivated samples) | [23,39,40] |
Ganoderma lucidum (fruiting bodies) | 45% Grain alcohol | 2.246–3.306 mg/g in lyophilized sample | [31] | |||
Ganoderma lucidum (spores) | Methanol | * | [14] | |||
Ganoderma australe (fruiting bodies) | Methanol | 121.65 ± 4.50 μg/g dry weight | [23,39,40] | |||
Ganoderma colossum (fruiting bodies) | Methanol | 201.92 ± 2.45 μg/g dry weight | [23,39,40] | |||
8 | Lucidenic acid F | C27H36O6 | Ganoderma lucidum (fruiting bodies) | Ether | * | [6,39,40,41] |
Ganoderma lucidum (spores) | Methanol | * | [14] | |||
Ganoderma curtisii (fruiting bodies) | Methanol | * | [18] | |||
Potato leaf | Methanol: water (4:1, v/v) | * | [28] | |||
metabolites of rice | Methanol: water (4:1, v/v) | * | [25] | |||
9 | Lucidenic acid G | C27H40O7 | Ganoderma lucidum (fruiting bodies) | Ethanol | * | [6,42] |
Ganoderma lucidum (spores) | Methanol | * | [14] | |||
10 | Lucidenic acid H | C27H40O7 | Ganoderma lucidum (fruiting bodies) | Ethanol and crystallized from fraction CHCl3-MeOH, 9:1 | * | [43,44] |
11 | Lucidenic acid I | C27H38O7 | Ganoderma lucidum (fruiting bodies) | Ethanol and crystallized from fraction CHCl3-MeOH, 9:1 | * | [6,44] |
Ganoderma lucidum (spores) | Methanol | * | [14] | |||
12 | Lucidenic acid J | C27H38O8 | Ganoderma lucidum (fruiting bodies) | Ethanol and crystallized from fraction CHCl3-MeOH, 9:1 | * | [6,44] |
Ganoderma lucidum (spores) | Methanol | * | [14] | |||
13 | Lucidenic acid K | C27H40O7 | Ganoderma lucidum (fruiting bodies) | 100% Ethanol | * | [6,44] |
Ganoderma lucidum (spores) | Methanol | * | [14] | |||
14 | Lucidenic acid L | C27H38O7 | Ganoderma lucidum (fruiting bodies) | 100% Ethanol | * | [6,44] |
15 | Lucidenic acid M | C27H42O6 | Ganoderma lucidum (fruiting bodies) | 100% Ethanol | * | [6,44] |
Ganoderma lucidum (spores) | Methanol | * | [14] | |||
16 | Lucidenic acid N (lucidenic acid SP1, LM1) | C27H40O6 | Ganoderma lucidum (fruiting bodies) | Methanol | 257.80–884.05 μg/g dry weight (wild samples); 52.53–139.08 μg/g dry weight (cultivated samples) | [23,39,45,46,47] |
Ganoderma lucidum (fruiting bodies) | 45% Grain alcohol | 0.866–2.004 mg/g in lyophilized sample | [31] | |||
Ganoderma lucidum (spores) | Methanol | * | [14] | |||
Ganoderma lucidum (spores) | Supercritical fluid carbon dioxide | 161 ± 2.21 μg/g in extract | [37] | |||
Ganoderma lucidum (mycelia) | 96% Ethanol | 0.23–0.33 mg/g dry weight | [48] | |||
Ganoderma curtisii (fruiting bodies) | Methanol | * | [18] | |||
Ganoderma sessile (fruiting bodies) | 80% Ethanol | * | [20] | |||
Ganoderma tsugae (fruiting bodies) | 95% Ethanol | * | [21] | |||
Ganoderma subresinosum (fruiting bodies) | Methanol | 57.50 ± 0.65 μg/g dry weight | [23,39,45,46,47] | |||
Ganoderma colossum (fruiting bodies) | Methanol | 207.73 ± 2.05 μg/g dry weight | [23,39,45,46,47] | |||
Ganoderma australe (fruiting bodies) | Methanol | 63.13 ± 1.45 μg/g dry weight | [23,39,45,46,47] | |||
Ganoderma hainanense (fruiting bodies) | 95% Ethanol | * | [24] | |||
17 | Lucidenic acid O | C27H40O7 | Ganoderma lucidum (fruiting bodies) | Acetone | * | [6,49] |
18 | Lucidenic acid P | C29H42O8 | Ganoderma lucidum (fruiting bodies) | Methanol | * | [6,50] |
Ganoderma lucidum (spores) | Methanol | * | [14] | |||
19 | Lucidenic acid Q | C27H40O6 | Ganoderma lucidum (fruiting bodies) | Ethyl acetate | * | [43] |
Ganoderma lucidum (spores) | Methanol | * | [14] | |||
20 | Lucidenic acid R | C29H40O9 | Ganoderma lucidum (fruiting bodies) | 80% Ethanol | * | [51] |
Basic Chemical Structure | |||||
---|---|---|---|---|---|
Lucidenic Acid Type | R1 | R2 | R3 | R4 | References |
Lucidenic acid A | R1 = O | R2 = -OH | R3 = O | R4 = H | [29] |
Lucidenic acid B | R1 = O | R2 = -OH | R3 = O | R4 = -OH | [29] |
Lucidenic acid C | R1 = -OH | R2 = -OH | R3 = O | R4 = -OH | [29] |
Lucidenic acid D1 | R1 = O | R2 = O | R3 = O | R4 = O | [35] |
Lucidenic acid D2 | R1 = O | R2 = O | R3 = O | R4 = OCOCH3 | [40] |
Lucidenic acid E1 | R1 = O | R2 = -OH | R3 = O | R2 = -OH | [35] |
Lucidenic acid E2 | R1 = -OH | R2 = O | R3 = O | R4 = OCOCH3 | [40] |
Lucidenic acid F | R1 = O | R2 = O | R3 = O | R4 = H | [40] |
Lucidenic acid K | R1 = O | R2 = O | R3 = O | R4 = -OH | [44] |
Lucidenic acid L | R1 = -OH | R2 = O | R3 = O | R4 = -OH | [44] |
Lucidenic acid M | R1 = -OH | R2 = -OH | R3 = -OH | R4 = H | [44] |
Lucidenic acid N | R1 = -OH | R2 = -OH | R3 = O | R4 = H | [46] |
Lucidenic acid P | R1 = -OH | R2 = -OH | R3 = O | R4 = OCOCH3 | [50] |
Lucidenic acid Q | R1 = O | R2 = -OH | R3 = -OH | R4 = H | [43] |
Basic Chemical Structure | |||||
---|---|---|---|---|---|
Lucidenic Acid Type | R1 | R2 | R3 | R4 | References |
Lucidenic acid G | R1 = O | R2 = -OH | R3 = -OH | R4 = H | [42] |
Lucidenic acid H | R1 = OH | R2 = -OH | R3 = O | R4 = H | [44] |
Lucidenic acid I | R1 = -OH | R2 = O | R4 = O | R4 = H | [44] |
Lucidenic acid J | R1 = -OH | R2 = O | R3 = O | R4 = -H | [44] |
Lucidenic acid O | R1 = -OH | R2 = -OH | R3 = -OH | R4 = -OH | [49] |
Lucidenic acid R | R1 = -OH | R2 = O | R3 = O | R4 = OCOCH3 | [51] |
Lucidenic Acids and Derivatives | Potential Pharmacological Effects | References |
---|---|---|
Lucidenic acid A | Anti-cancer | [11,46,54,55,56,57,58,59] |
Anti-inflammatory | [27,50,60] | |
Anti-viral | [50,60,61,62] | |
Neuroprotective | [15] | |
Anti-hyperlipidemic | [63] | |
Treatment of frostbite | [64] | |
Lucidenic acid B | Anti-cancer | [11,55,57,58] |
Anti-inflammatory | [65] | |
Antioxidant | [16] | |
Anti-viral | [62] | |
Lucidenic acid C | Anti-cancer | [11,43,55,56,57,58] |
Anti-viral | [50,60,62] | |
Lucidenic acid D1 | Anti-cancer | [12,66] |
Anti-inflammatory | [65] | |
Lucidenic acid D2 | Anti-inflammatory | [60,65] |
Anti-viral | [50,60] | |
Lucidenic acid E1 | Anti-inflammatory | [65] |
Lucidenic acid E2 | Anti-cancer | [59] |
Anti-inflammation | [60] | |
Anti-hypercholesterolemia | [67] | |
Anti-hyperglycemic | [16] | |
Anti-viral | [50,60] | |
Lucidenic acid F | Anti-viral | [50,60] |
Lucidenic acid H | Treatment of frostbite | [64] |
Lucidenic acid I | Immunomodulatory | [14] |
Lucidenic acid L | Anti-inflammation | [65] |
Lucidenic acid N | Anti-cancer | [11,46,55,56,57,58,59] |
Anti-viral | [62] | |
Neuroprotective | [15] | |
Anti-hyperlipidemic | [68,69] | |
Lucidenic acid O | Anti-viral | [49] |
Lucidenic acid P | Anti-inflammatory | [60] |
Anti-viral | [50,60] | |
Lucidenic acid Q | Anti-hyperglycemic | [16] |
Lucidenic acid R | Anti-inflammatory | [51] |
Methyl lucidenate A, | Anti-viral | [50,60] |
Methyl lucidenic E2 | Neuroprotective | [15] |
Anti-hyperlipidemic | [69] | |
Anti-viral | [50,60] | |
Immunomodulatory | [14] | |
Methyl lucidenate F | Anti-hyperlipidemic | [69] |
Butyl lucidenate N | Anti-hyperlipidemic | [70] |
20(21)-Dehydrolucidenic acid N | Ant-viral | [9] |
Immunomodulatory | [14] | |
20-Hydroxylucidenic acid N | Anti-viral | [9,50,60] |
Methyl lucidenate Q | Anti-viral | [50,60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.; Rangsinth, P.; Shiu, P.H.T.; Wang, W.; Li, R.; Li, J.; Kwan, Y.-W.; Leung, G.P.H. A Review on the Sources, Structures, and Pharmacological Activities of Lucidenic Acids. Molecules 2023, 28, 1756. https://doi.org/10.3390/molecules28041756
Zheng C, Rangsinth P, Shiu PHT, Wang W, Li R, Li J, Kwan Y-W, Leung GPH. A Review on the Sources, Structures, and Pharmacological Activities of Lucidenic Acids. Molecules. 2023; 28(4):1756. https://doi.org/10.3390/molecules28041756
Chicago/Turabian StyleZheng, Chengwen, Panthakarn Rangsinth, Polly H. T. Shiu, Wen Wang, Renkai Li, Jingjing Li, Yiu-Wa Kwan, and George P. H. Leung. 2023. "A Review on the Sources, Structures, and Pharmacological Activities of Lucidenic Acids" Molecules 28, no. 4: 1756. https://doi.org/10.3390/molecules28041756
APA StyleZheng, C., Rangsinth, P., Shiu, P. H. T., Wang, W., Li, R., Li, J., Kwan, Y. -W., & Leung, G. P. H. (2023). A Review on the Sources, Structures, and Pharmacological Activities of Lucidenic Acids. Molecules, 28(4), 1756. https://doi.org/10.3390/molecules28041756