Computational and Preclinical Prediction of the Antimicrobial Properties of an Agent Isolated from Monodora myristica: A Novel DNA Gyrase Inhibitor
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Preparation of Ligands
4.2. Preparation of Proteins
4.3. Receptor Grid Generation
4.4. Molecular Docking Analysis
4.5. Predictions of ADME Properties and Toxicological Potential
4.6. Binding Free Energy Calculation
4.7. MD Simulations and Trajectory Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagel, T.E.; Chan, B.K.; De Vos, D.; El-Shibiny, A.; Kang’ethe, E.K.; Makumi, A.; Pirnay, J.-P. The developing world urgently needs phages to combat pathogenic bacteria. Front. Microbiol. 2016, 7, 882. [Google Scholar] [CrossRef] [PubMed]
- De Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed]
- Fàbrega, A.; Madurga, S.; Giralt, E.; Vila, J. Mechanism of action of and resistance to quinolones. Microb. Biotechnol. 2009, 2, 40–61. [Google Scholar] [CrossRef] [PubMed]
- Drlica, K.; Zhao, X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 1997, 61, 377–392. [Google Scholar]
- Freel Meyers, C.L.; Oberthür, M.; Heide, L.; Kahne, D.; Walsh, C.T. Assembly of dimeric variants of coumermycins by tandem action of the four biosynthetic enzymes CouL, CouM, CouP, and NovN. Biochemistry 2004, 43, 15022–15036. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, A. DNA gyrase as a drug target. Biochem. Soc. Trans. 1999, 27, 48–53. [Google Scholar] [CrossRef]
- Cabral, J.H.M.; Jackson, A.P.; Smith, C.V.; Shikotra, N.; Maxwell, A.; Liddington, R.C. Crystal structure of the breakage–reunion domain of DNA gyrase. Nature 1997, 388, 903–906. [Google Scholar] [CrossRef]
- Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 2007, 6, 29–40. [Google Scholar] [CrossRef]
- Bax, B.D.; Chan, P.F.; Eggleston, D.S.; Fosberry, A.; Gentry, D.R.; Gorrec, F.; Giordano, I.; Hann, M.M.; Hennessy, A.; Hibbs, M.; et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010, 466, 935–940. [Google Scholar] [CrossRef]
- Black, M.T.; Stachyra, T.; Platel, D.; Girard, A.-M.; Claudon, M.; Bruneau, J.-M.; Miossec, C. Mechanism of action of the antibiotic NXL101, a novel nonfluoroquinolone inhibitor of bacterial type II topoisomerases. Antimicrob. Agents Chemother. 2008, 52, 3339–3349. [Google Scholar] [CrossRef]
- Benowitz, A.B.; Hoover, J.L.; Payne, D.J. Antibacterial drug discovery in the age of resistance new technologies and partnerships are helping to meet the challenges of antibacterial R&D. Microbe 2010, 5, 390. [Google Scholar]
- Adewole, E.; Ajiboye, B.; Idris, O.; Ojo, O.; Onikan, A.; Ogunmodede, O.; Adewumi, D. Phytochemical, antimicrobial and Gc-Ms of African nutmeg (Monodora Myristica). Phytochem. Antimicrob. Gc-Ms Afr. Nutmeg. 2013, 2, 1–8. [Google Scholar]
- Christophersen, C.; Larsen, C. Traditional Medicine: A Potential Resource: Exploitation of Natural Products; HC Ørsted Institute: Copenhagen, Denmark, 1991. [Google Scholar]
- Malaria, R.B. World Malaria Report 2005; World Health Organization: Geneva, Switzerland; UNICEF: New York, NY, USA, 2005. [Google Scholar]
- Akerele, O. Medicinal plants and primary health care: An agenda for action. Fitoterapia 1988, 59, 355–363. [Google Scholar]
- Burubai, W.; Akor, A.; Igoni, A.; Puyate, Y. Some physical properties of African nutmeg [Monodora myristica]. Int. Agrophys. 2007, 21, 2. [Google Scholar]
- Okafor, J. Development of forest tree crops for food supplies in Nigeria. Forest Ecol. Manag. 1976, 1, 235–247. [Google Scholar] [CrossRef]
- Iwu, M.M. African Medicinal Plants; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Juergens, U.R.; Dethlefsen, U.; Steinkamp, G.; Gillissen, A.; Repges, R.; Vetter, H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: A double-blind placebo-controlled trial. Respir. Med. 2003, 97, 250–256. [Google Scholar] [CrossRef]
- Juergens, U.R.; Stöber, M.; Vetter, H. Inhibition of cytokine production and arachidonic acid metabolism by eucalyptol (1.8-cineole) in human blood monocytes in vitro. Eur. J. Med. Res. 1998, 3, 508–510. [Google Scholar]
- Alcoba, G.; Ochoa, C.; Babo Martins, S.; Ruiz de Castañeda, R.; Bolon, I.; Wanda, F.; Comte, E.; Subedi, M.; Shah, B.; Ghimire, A.; et al. Novel transdisciplinary methodology for cross-sectional analysis of snakebite epidemiology at national scale. PLoS Negl. Trop Dis. 2021, 15, e0009023. [Google Scholar] [CrossRef]
- Bakare, O.O.; Fadaka, A.O.; Akanbi, M.O.; Akinyede, K.A.; Klein, A.; Keyster, M. Evaluation of selected carotenoids of Lycopersicon esculentum variants as therapeutic targets for ‘Alzheimer’s disease: An in silico approach. BMC Mol. Cell. Biol. 2021, 22, 49. [Google Scholar] [CrossRef]
- Fadaka, A.O.; Aruleba, R.T.; Sibuyi, N.R.S.; Klein, A.; Madiehe, A.M.; Meyer, M. Inhibitory potential of repurposed drugs against the SARS-CoV-2 main protease: A computational-aided approach. J. Biomol. Struct. Dyn. 2022, 40, 3416–3427. [Google Scholar] [CrossRef]
- Fadaka, A.O.; Taiwo, O.A.; Dosumu, O.A.; Owolabi, O.P.; Ojo, A.B.; Sibuyi, N.R.S.; Ullah, S.; Klein, A.; Madiehe, A.M.; Meyer, M.; et al. Computational prediction of potential drug-like compounds from Cannabis sativa leaf extracts targeted towards Alzheimer therapy. J. Mol. Liq. 2022, 360, 119393. [Google Scholar] [CrossRef]
- Fadaka, A.O.; Sibuyi, N.R.S.; Madiehe, A.M.; Meyer, M. Computational insight of dexamethasone against potential targets of SARS-CoV-2. J. Biomol. Struct. Dyn. 2022, 40, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.A.; Aruleba, R.T.; Adekiya, T.A.; Sibuyi, N.R.S.; Ojo, A.B.; Ajiboye, B.O.; Oyinloye, B.E.; Adeola, H.A.; Fadaka, A.O. Deciphering the interaction of puerarin with cancer macromolecules: An in silico investigation. J. Biomol. Struct. Dyn. 2022, 40, 848–859. [Google Scholar] [CrossRef] [PubMed]
- Fadaka, A.O.; Sibuyi, N.R.S.; Martin, D.R.; Klein, A.; Madiehe, A.; Meyer, M. Development of effective therapeutic molecule from natural sources against coronavirus protease. Int. J. Mol. Sci. 2021, 22, 9431. [Google Scholar] [CrossRef]
- Oselusi, S.O.; Fadaka, A.O.; Wyckoff, G.J.; Egieyeh, S.A. Computational target-based screening of anti-MRSA natural products reveals potential multitarget mechanisms of action through peptidoglycan synthesis proteins. ACS Omega 2022, 7, 37896–37906. [Google Scholar] [CrossRef] [PubMed]
- Adekiya, T.A.; Aruleba, R.T.; Klein, A.; Fadaka, A.O. In silico inhibition of SGTP4 as a therapeutic target for the treatment of schistosomiasis. J. Biomol. Struct. Dyn. 2022, 40, 3697–3705. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, A.; Felicetti, T.; Iraci, N.; Manfroni, G.; Massari, S.; Pietrella, D.; Tabarrini, O.; Kaatz, G.W.; Barreca, M.L.; Sabatini, S.; et al. Pharmacophore-based repositioning of approved drugs as novel Staphylococcus aureus NorA efflux pump inhibitors. J. Med. Chem. 2017, 60, 1598–1604. [Google Scholar] [CrossRef]
- Simoben, C.V.; Robaa, D.; Chakrabarti, A.; Schmidtkunz, K.; Marek, M.; Lancelot, J.; Kannan, S.; Melesina, J.; Shaik, T.B.; Pierce, R.J.; et al. A novel class of Schistosoma mansoni histone deacetylase 8 (HDAC8) inhibitors identified by structure-based virtual screening and in vitro testing. Molecules 2018, 23, 566. [Google Scholar] [CrossRef]
- Olsson, M.H.; Søndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent treatment of internal and surface residues in empirical p K a predictions. J. Chem. Theor. Comput. 2011, 7, 525–537. [Google Scholar] [CrossRef]
- Release, S. 2: QikProp; Schrödinger, LLC: New York, NY, USA, 2018. [Google Scholar]
- Johnson, T.O.; Adegboyega, A.E.; Iwaloye, O.; Eseola, O.A.; Plass, W.; Afolabi, B.; Rotimi, D.; Ahmed, E.I.; Albrakati, A.; Batiha, G.E.; et al. Computational study of the therapeutic potentials of a new series of imidazole derivatives against SARS-CoV-2. J. Pharmacol. Sci. 2021, 147, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Kumar, A.; Baig, M.H.; Masařík, M.; Provazník, I. Virtual screening, ADMET profiling, molecular docking and dynamics approaches to search for potent selective natural molecules based inhibitors against metallothionein-III to study Alzheimer’s disease. Methods 2015, 83, 105–110. [Google Scholar] [CrossRef]
- Sharma, J.; Ramanathan, K.; Sethumadhavan, R. Identification of potential inhibitors against acetylcholinesterase associated with Alzheimer's diseases: A molecular docking approach. J. Comput. Methods Mol. Des. 2011, 1, 44–51. [Google Scholar]
- Subhani, S.; Jayaraman, A.; Jamil, K. Homology modelling and molecular docking of MDR1 with chemotherapeutic agents in non-small cell lung cancer. Biomed. Pharmacother. 2015, 71, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Doron, S.; Gorbach, S. Bacterial infections: Overview. Int. Encyclopedia Public Health 2008, 273–282. [Google Scholar] [CrossRef]
- WHO. 2019 Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Rampogu, S.; Son, M.; Baek, A.; Park, C.; Rana, R.M.; Zeb, A.; Parameswaran, S.; Lee, K.W. Targeting natural compounds against HER2 kinase domain as potential anticancer drugs applying pharmacophore based molecular modelling approaches. Comput. Biol. Chem. 2018, 74, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C. Poor aqueous solubility—An industry wide problem in drug discovery. Am. Pharm. Rev. 2002, 5, 82–85. [Google Scholar]
- Malathi, K.; Anbarasu, A.; Ramaiah, S. Identification of potential inhibitors for Klebsiella pneumoniae carbapenemase-3: A molecular docking and dynamics study. J. Biomol. Struct. Dyn. 2019, 37, 4601–4613. [Google Scholar] [CrossRef]
PubChem ID | MW | CNS | donorHB | accptHB | dip^2/V | # Acid |
---|---|---|---|---|---|---|
529885 | 170.251 | +1 | 1 | 2.45 | 0.009151 | 0 |
27447 | 347.388 | −2 | 3.25 | 7.25 | 0.080638 | 1 |
175002 | 212.288 | +1 | 1 | 0.75 | 0.012765 | 0 |
149096 | 361.372 | 0 | 0 | 0.75 | 0.004096 | 1 |
Co-Lig | 612.632 | −2 | 5.25 | 13.15 | 0.018557 | 0 |
PubChem ID | HOA | % HOA | SAfluorine | ROF | ROT | PSA |
---|---|---|---|---|---|---|
529885 | 3 | 100 | 0 | 0 | 0 | 29.867 |
27447 | 2 | 31.065 | 0 | 0 | 1 | 138.824 |
175002 | 3 | 100 | 0 | 0 | 0 | 39.375 |
149096 | 2 | 48.555 | 27.993 | 0 | 1 | 96.501 |
PubChem | GI Abs | BBB-p | Pgp-S | CYP1A2-I | CYP2C19-I | CYP2C9-I | CYP2D6-I | CYP3A4-I | AMP |
---|---|---|---|---|---|---|---|---|---|
529885 | High | Yes | No | No | No | No | No | No | - |
27447 | High | No | Yes | No | No | No | No | No | - |
175002 | High | Yes | No | No | No | No | No | No | - |
149096 | High | No | Yes | No | No | No | No | No | - |
PubChem | Lipinski # Violations | Ghose # Violations | Veber # Violations | Egan # Violations | Muegge # Violations | Bioavailability Score | PAINS # Alerts |
---|---|---|---|---|---|---|---|
529885 | 0 | 0 | 0 | 0 | 1 | 0.55 | 0 |
27447 | 0 | 0 | 0 | 1 | 0 | 0.55 | 0 |
175002 | 0 | 0 | 0 | 0 | 0 | 0.55 | 0 |
149096 | 0 | 0 | 0 | 0 | 0 | 0.55 | 0 |
Compd | Dock Score | MMGBSA | # H-Bond | Pi-Cat | Salt Bridges | |
---|---|---|---|---|---|---|
3ILW | Co-Ligand | −5.666 | −41.84 | GLN277,TRP103,ARG98,PRO124 | TRP103 | 0 |
27447 | −6.13 | −34.85 | ARG98,TRP108,SER118,GLY 2(120),ASP120 | 0 | ARG98 | |
149096 | −4.658 | −50.28 | THR230,LEU274,HIE 2(280) | 0 | 0 | |
529885 | −4.115 | −20.84 | ARG98,SER104 | 0 | 0 | |
175002 | −2.586 | −21.74 | TRP103,ARG98 | 0 | 0 | |
6RKU | Co-Ligand | −3.762 | −44.57 | ALA427 | TYR478 | 0 |
27447 | −5.141 | −39.69 | ALA421, VAL420 | 0 | 0 | |
149096 | −3.674 | −34.92 | GLU381 | 0 | GLU381 | |
529885 | −4.777 | −32.94 | VAL420, ALA421,ALA427 | 0 | 0 | |
175002 | −3.655 | −28.4 | 0 | 0 | 0 | |
1KIJ | Co-Ligand | −7 | −58.4 | ASP80, ARG135 | ARG135 | |
27447 | −5.52 | −60.81 | LYS102, LYS109, GLU49, ASN45 | 0 | ASP48 ARG75 | |
149096 | −4.49 | −51.88 | ASP 72, GLY 76 | LYS 109 ARG 75 | 0 | |
529885 | −5.97 | −61.1 | ASP48, LYS109 | 0 | 0 | |
175002 | −5.86 | −15.63 | LYS109 | 0 | 0 |
Compound | RMSD | RMSF | rGyr | SASA |
---|---|---|---|---|
27447 | 3.89 ± 0.59 | 1.33 ± 0.85 | 3.85 ± 0.12 | 127.30 ± 26.50 |
529885 | 2.87 ± 0.42 | 1.35 ± 0.85 | 2.13 ± 0.02 | 150.99 ± 24.92 |
Levofloxacin | 3.38 ± 0.44 | 1.57 ± 0.98 | 3.97 ± 0.05 | 72.78 ± 22.01 |
Apo-1KIJ | 3.16 ± 0.41 | 1.29 ± 0.99 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onikanni, S.A.; Lawal, B.; Fadaka, A.O.; Bakare, O.; Adewole, E.; Taher, M.; Khotib, J.; Susanti, D.; Oyinloye, B.E.; Ajiboye, B.O.; et al. Computational and Preclinical Prediction of the Antimicrobial Properties of an Agent Isolated from Monodora myristica: A Novel DNA Gyrase Inhibitor. Molecules 2023, 28, 1593. https://doi.org/10.3390/molecules28041593
Onikanni SA, Lawal B, Fadaka AO, Bakare O, Adewole E, Taher M, Khotib J, Susanti D, Oyinloye BE, Ajiboye BO, et al. Computational and Preclinical Prediction of the Antimicrobial Properties of an Agent Isolated from Monodora myristica: A Novel DNA Gyrase Inhibitor. Molecules. 2023; 28(4):1593. https://doi.org/10.3390/molecules28041593
Chicago/Turabian StyleOnikanni, Sunday Amos, Bashir Lawal, Adewale Oluwaseun Fadaka, Oluwafemi Bakare, Ezekiel Adewole, Muhammad Taher, Junaidi Khotib, Deny Susanti, Babatunji Emmanuel Oyinloye, Basiru Olaitan Ajiboye, and et al. 2023. "Computational and Preclinical Prediction of the Antimicrobial Properties of an Agent Isolated from Monodora myristica: A Novel DNA Gyrase Inhibitor" Molecules 28, no. 4: 1593. https://doi.org/10.3390/molecules28041593
APA StyleOnikanni, S. A., Lawal, B., Fadaka, A. O., Bakare, O., Adewole, E., Taher, M., Khotib, J., Susanti, D., Oyinloye, B. E., Ajiboye, B. O., Ojo, O. A., & Sibuyi, N. R. S. (2023). Computational and Preclinical Prediction of the Antimicrobial Properties of an Agent Isolated from Monodora myristica: A Novel DNA Gyrase Inhibitor. Molecules, 28(4), 1593. https://doi.org/10.3390/molecules28041593