Hydrogel for the Controlled Delivery of Bioactive Components from Extracts of Eupatorium glutinosum Lam. Leaves
Abstract
:1. Introduction
2. Results and Decision
2.1. Extract Preparation
2.2. Phytochemical Screening
2.3. Thin Layer Chromatography of Extracts
2.4. Spectrophotometric Characterization
UV/Vis Spectrum of Extracts
2.5. Fourier-Transform Infrared Spectroscopy Spectrum
2.6. Antibacterial Activity
2.6.1. Agar-Diffusion Essay
2.6.2. Time-Kill Curve Analysis
2.7. In Vitro Antioxidant Activity
2.7.1. Ferric Reducing Power Assay (FRP)
2.7.2. Total Antioxidant Activity (TAC) by Phosphomolybdenum Method
2.8. In Vitro Anti-Hemolytic Activity
2.9. Hydrogel Synthesis and Characterization
2.9.1. Fourier-Transform Infrared Spectroscopy
2.9.2. Surface Morphology of Hydrogel
2.9.3. Density and Swelling of Hydrogel
2.9.4. Loaded-Hydrogel Release Profiles
2.9.5. Biological Activity of Loaded-Hydrogel
3. Materials and Methods
3.1. Materials
3.2. Extracts Preparation of Medicinal Plant
3.3. Phytochemical Screening
3.4. Thin Layer Chromatography
3.5. Spectrophotometric Characterization with UV/Vis
3.6. Fourier-Transform Infrared Spectroscopy
3.7. Antibacterial Activity
3.7.1. Agar-Diffusion Essay
3.7.2. Time-Kill Curve Analysis
3.8. In Vitro Antioxidant Activity
3.8.1. Ferric Reducing Power Assay (FRP)
3.8.2. Total Antioxidant Activity (TAC) by Phosphomolybdenum Method
3.9. In Vitro Anti-Hemolytic Activity
3.10. Synthesis and Characterization of Hydrogel
3.10.1. Cellulose Hydrogel Synthesis
3.10.2. Fourier-Transform Infrared Spectroscopy of Loaded Hydrogel
3.10.3. Surface Morphology of Hydrogel
3.10.4. Density and Swelling of Hydrogel
3.10.5. Loaded-Hydrogel Release Profiles
3.11. Antimicrobial Activity of Loaded-Hydrogel
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mittermeier, R.; Gil, P.; Mittermeier, C. Megadiversity: Earth’s biologically wealthiest nations. Conserv. Int. 1997.
- Tene, V.; Malagón, O.; Finzi, P.V.; Vidari, G.; Armijos, C.; Zaragoza, T. An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. J. Ethnopharmacol. 2007, 111, 63–81. [Google Scholar] [CrossRef]
- Perez, G.R.M. Anti-Inflammatory Activity of Compounds Isolated from Plants. Sci. World J. 2001, 1, 713–784. [Google Scholar] [CrossRef]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011, 10, S4. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, Y.; Wu, A.; Ding, Z.; Liu, X. Influence Factors of the Pharmacokinetics of Herbal Resourced Compounds in Clinical Practice. Evid.-Based Complement. Altern. Med. 2019, 2019, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, J.; DAS, A.; Sinha, M.; Saha, S. Biological Efficacy of Medicinal Plant Extracts in Preventing Oxidative Damage. Oxidative Med. Cell. Longev. 2018, 2018, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Varela, J.; Serna, E.; Torres, S.; Yaluff, G.; De Bilbao, N.I.V.; Miño, P.; Chiriboga, X.; Cerecetto, H.; González, M. In Vivo Anti-Trypanosoma cruzi Activity of Hydro-Ethanolic Extract and Isolated Active Principles from Aristeguietia glutinosa and Mechanism of Action Studies. Molecules 2014, 19, 8488–8502. [Google Scholar] [CrossRef] [PubMed]
- Sharma, O.P.; Dawra, R.K.; Kurade, N.P.; Sharma, P.D. A review of the toxicosis and biological properties of the genus Eupatorium. Nat. Toxins 1998, 6, 1–14. [Google Scholar] [CrossRef]
- Ewing, C.O.; Clevenger, J.F. Eupatorium Glutinosum lam., and Adulterant of Matico, N.F. (Piper Angustifolium Ruiz et Pavon)**Contribution from the Pharmacognosy Laboratory, Bureau of Chemistry, Department of Agriculture, Washington, D.C. J. Am. Pharm. Assoc. 1918, 7, 510–512. [Google Scholar] [CrossRef]
- El-Seedi, H.; Ohara, T.; Sata, N.; Nishiyama, S. Antimicrobial diterpenoids from Eupatorium glutinosum (Asteraceae). J. Ethnopharmacol. 2002, 81, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Lee, T.-H.; Sung, P.-J.; Shu, C.-W.; Lim, Y.-P.; Cheng, M.-J.; Kuo, W.-L.; Chen, J.-J. New Thymol Derivatives and Cytotoxic Constituents from the Root ofEupatorium cannabinumssp.asiaticum. Chem. Biodivers. 2014, 11, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-J.; Tsai, Y.-C.; Hwang, T.-L.; Wang, T.-C. Thymol, Benzofuranoid, and Phenylpropanoid Derivatives: Anti-inflammatory Constituents from Eupatorium cannabinum. J. Nat. Prod. 2011, 74, 1021–1027. [Google Scholar] [CrossRef]
- Waresindo, W.X.; Luthfianti, H.R.; Edikresnha, D.; Suciati, T.; Noor, F.A.; Khairurrijal, K. A freeze–thaw PVA hydrogel loaded with guava leaf extract: Physical and antibacterial properties. RSC Adv. 2021, 11, 30156–30171. [Google Scholar] [CrossRef]
- Lai, W.-F.; Rogach, A.L. Hydrogel-Based Materials for Delivery of Herbal Medicines. ACS Appl. Mater. Interfaces 2017, 9, 11309–11320. [Google Scholar] [CrossRef]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Truong, D.-H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the Use of Different Solvents for Phytochemical Constituents, Antioxidants, and In Vitro Anti-Inflammatory Activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Iqbal, E.; Abu Salim, K.; Lim, L.B. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. J. King Saud Univ.—Sci. 2015, 27, 224–232. [Google Scholar] [CrossRef]
- Aiyelaagbe, O.; Osamudiamen, P. Phytochemical Screening for Active Compounds in Mangifera indica Leaves from Ibadan. Oyo State Plant Sci. Res. 2009, 2, 11–13. [Google Scholar]
- Hari, R.; Savithramma, N. Screening of secondary metabolites of underutilized species of Cyperaceae. Int. J. Pharm. Sci. Rev. Res. 2014, 24, 182–187. [Google Scholar]
- Yadav, R.; Agarwala, M. Phytochemical analysis of some medicinal plants. J. Phytol. 2011, 3, 10–14. [Google Scholar]
- Kagan, I.A.; Flythe, M.D. Thin-layer Chromatographic (TLC) Separations and Bioassays of Plant Extracts to Identify Antimicrobial Compounds. J. Vis. Exp. 2014, 85, e51411. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Jain, P.; Soni, A.; Jain, P.; Bhawsar, J. Phytochemical analysis of Mentha spicata plant extract using UV-VIS, FTIR and GC/MS technique. J. Chem. Pharm. Res. 2016, 8, 1–6. [Google Scholar]
- Mabasa, X.E.; Mathomu, L.M.; Madala, N.E.; Musie, E.M.; Sigidi, M.T. Molecular Spectroscopic (FTIR and UV-Vis) and Hyphenated Chromatographic (UHPLC-qTOF-MS) Analysis and In Vitro Bioactivities of the Momordica balsamina Leaf Extract. Biochem. Res. Int. 2021, 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sisa, M.; Bonnet, S.L.; Ferreira, D.; Van Der Westhuizen, J.H. Photochemistry of Flavonoids. Molecules 2010, 15, 5196–5245. [Google Scholar] [CrossRef]
- Scott, K.J. Detection and Measurement of Carotenoids by UV/VIS Spectrophotometry. Curr. Protoc. Food Anal. Chem. 2001. [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Brangule, A.; Šukele, R.; Bandere, D. Herbal Medicine Characterization Perspectives Using Advanced FTIR Sample Techniques—Diffuse Reflectance (DRIFT) and Photoacoustic Spectroscopy (PAS). Front. Plant Sci. 2020, 11, 356. [Google Scholar] [CrossRef]
- Patle, T.K.; Shrivas, K.; Kurrey, R.; Upadhyay, S.; Jangde, R.; Chauhan, R. Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 242, 118717. [Google Scholar] [CrossRef]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef]
- Kostylev, M.; Otwell, A.E.; Richardson, R.E.; Suzuki, Y. Cloning Should Be Simple: Escherichia coli DH5α-Mediated Assembly of Multiple DNA Fragments with Short End Homologies. PLoS ONE 2015, 10, e0137466. [Google Scholar] [CrossRef]
- Palamà, I.E.; Di Maria, F.; Zangoli, M.; D’Amone, S.; Manfredi, G.; Barsotti, J.; Lanzani, G.; Ortolani, L.; Salatelli, E.; Gigli, G.; et al. Enantiopure polythiophene nanoparticles. Chirality dependence of cellular uptake, intracellular distribution and antimicrobial activity. RSC Adv. 2019, 9, 23036–23044. [Google Scholar] [CrossRef]
- Lee, M.W.; Chakraborty, S.; Schmidt, N.W.; Murgai, R.; Gellman, S.H.; Wong, G.C. Two interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides. Biochim. Biophys. Acta (BBA)—Biomembr. 2014, 1838, 2269–2279. [Google Scholar] [CrossRef] [PubMed]
- Razmavar, S.; Abdulla, M.A.; Ismail, S.B.; Hassandarvish, P. Antibacterial Activity of Leaf Extracts of Baeckea frutescens against Methicillin-Resistant Staphylococcus aureus. BioMed Res. Int. 2014, 2014, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018, 25, 361–366. [Google Scholar] [CrossRef]
- Bhalodia, N.; Nariya, P.; Shukla, V.; Acharya, R. In vitro antioxidant activity of hydro alcoholic extract from the fruit pulp of Cassia fistula Linn. AYU—Int. Q. J. Res. Ayurveda 2013, 34, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Donkor, S.; Larbie, C.; Komlaga, G.; Emikpe, B.O. Phytochemical, Antimicrobial, and Antioxidant Profiles of Duranta erecta L. Parts. Biochem. Res. Int. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Sharififar, F.; Dehghn-Nudeh, G.; Mirtajaldini, M. Major flavonoids with antioxidant activity from Teucrium polium L. Food Chem. 2009, 112, 885–888. [Google Scholar] [CrossRef]
- Gamboa, P.; Sanz, M.L.; Caballero, M.R.; Urrutia, I.; Antépara, I.; Esparza, R.; De Weck, A.L. The flow-cytometric determination of basophil activation induced by aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) is useful for in vitro diagnosis of the NSAID hypersensitivity syndrome. Clin. Exp. Allergy 2004, 34, 1448–1457. [Google Scholar] [CrossRef]
- Hossain, R.; Rahman, A.; Rafi, K.J.; Siddique, T.A.; Noman, A.A.; Makki, A.; Alelwani, W.; Hajjar, D.; Tangpong, J. Pharmacological and ADMET-based pharmacokinetic properties of Syzygium samarangense var. parviflorum leaf extract in in vitro, in vivo and in silico models. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 1155–1175. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Ranasinghe, P.; Premakumara, G.S.; Perera, Y.S.; Abeysekera, W.K.M.; Gurugama, P.; Gunatilake, S.B. In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts. Pharmacogn. Res. 2012, 4, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Palantöken, S.; Bethke, K.; Zivanovic, V.; Kalinka, G.; Kneipp, J.; Rademann, K. Cellulose hydrogels physically crosslinked by glycine: Synthesis, characterization, thermal and mechanical properties. J. Appl. Polym. Sci. 2019, 137, 48380. [Google Scholar] [CrossRef]
- Guo, J.; Giusti, M.M.; Kaletunç, G. Encapsulation of purple corn and blueberry extracts in alginate-pectin hydrogel particles: Impact of processing and storage parameters on encapsulation efficiency. Food Res. Int. 2018, 107, 414–422. [Google Scholar] [CrossRef]
- Martinez-Garcia, F.D.; Fischer, T.; Hayn, A.; Mierke, C.T.; Burgess, J.K.; Harmsen, M.C. A Beginner’s Guide to the Characterization of Hydrogel Microarchitecture for Cellular Applications. Gels 2022, 8, 535. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Islam, M.; Islam, S.; Zaman, A.; Ahmed, T.; Biswas, S.; Sharmeen, S.; Rashid, T.U.; Rahman, M.M. Morphological Characterization of Hydrogels. In Cellulose-Based Superabsorbent Hydrogels; IMondal, H., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 819–863. [Google Scholar]
- Tanaka, M.; Girard, G.; Davis, R.; Peuto, A.; Bignell, N. Recommended table for the density of water between 0 C and 40 C based on recent experimental reports. Metrologia 2001, 38, 301–309. [Google Scholar] [CrossRef]
- Xia, Z.; Patchan, M.; Maranchi, J.; Elisseeff, J.; Trexler, M. Determination of crosslinking density of hydrogels prepared from microcrystalline cellulose. J. Appl. Polym. Sci. 2012, 127, 4537–4541. [Google Scholar] [CrossRef]
- Alam, N.; Islam, S.; Christopher, L.P. Sustainable Production of Cellulose-Based Hydrogels with Superb Absorbing Potential in Physiological Saline. ACS Omega 2019, 4, 9419–9426. [Google Scholar] [CrossRef]
- Fariba, G.; Farahani, V.; Farahani, V. Theoretical descriptio of hydrogel swelling: A review. 2010. Iran. Polym. J. 2010, 15, 375–398. [Google Scholar]
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3, 6. [Google Scholar] [CrossRef]
- Andrade-Vivero, P.; Fernandez-Gabriel, E.; Alvarez-Lorenzo, C.; Concheiro, A. Improving the Loading and Release of NSAIDs from pHEMA Hydrogels by Copolymerization with Functionalized Monomers. J. Pharm. Sci. 2007, 96, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Younis, M.K.; Tareq, A.Z.; Kamal, I.M. Optimization of Swelling, Drug Loading and Release From Natural Polymer Hydrogels. IOP Conf. Ser. Mater. Sci. Eng. 2018, 454, 012017. [Google Scholar] [CrossRef]
- Nemeş, N.S.; Ardean, C.; Davidescu, C.M.; Negrea, A.; Ciopec, M.; Duţeanu, N.; Negrea, P.; Paul, C.; Duda-Seiman, D.; Muntean, D. Antimicrobial Activity of Cellulose Based Materials. Polymers 2022, 14, 735. [Google Scholar] [CrossRef]
- Arora, S.; Saquib, S.A.; Algarni, Y.A.; Kader, M.; Ahmad, I.; Alshahrani, M.Y.; Saluja, P.; Baba, S.M.; Abdulla, A.M.; Bavabeedu, S.S. Synergistic Effect of Plant Extracts on Endodontic Pathogens Isolated from Teeth with Root Canal Treatment Failure: An In Vitro Study. Antibiotics 2021, 10, 552. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.; Waghwani, H.K.; Connor, M.; Hamilton, W.; Tockstein, S.; Moolani, H.; Chavda, F.; Badwaik, V.; Lawrenz, M.B.; Dakshinamurthy, R. Novel Synthesis of Kanamycin Conjugated Gold Nanoparticles with Potent Antibacterial Activity. Front. Microbiol. 2016, 7, 607. [Google Scholar] [CrossRef]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef]
- Dhanani, T.; Shah, S.; Gajbhiye, N.A.; Kumar, S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab. J. Chem. 2017, 10, S1193–S1199. [Google Scholar] [CrossRef]
- Rajani, M.; Shrivastava, N.; Ravishankara, M.N. A Rapid Method for Isolation of Andrographolide from Andrographis Paniculata Nees (Kalmegh). Pharm. Biol. 2000, 38, 204–209. [Google Scholar] [CrossRef]
- Kumar, S.S.; Manoj, P.; Giridhar, P. Fourier transform infrared spectroscopy (FTIR) analysis, chlorophyll content and antioxidant properties of native and defatted foliage of green leafy vegetables. J. Food Sci. Technol. 2015, 52, 8131–8139. [Google Scholar] [CrossRef]
- Chai, D.; Wang, G.; Fang, L.; Li, H.; Liu, S.; Zhu, H.; Zheng, J. The optimization system for preparation of TG1 competent cells and electrotransformation. Microbiologyopen 2020, 9, e1043. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Zhang, K.; Wang, H. Whole-Genome Sequence of Phage-Resistant Strain Escherichia coli DH5α. Genome Announc. 2018, 6, e00097-18. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.; Muzzin, O.; Chlenov, M.; Sun, J.L.; Olson, C.; Weinman, O.; Trester-Zedlitz, M.L.; Darst, S.A. Structure of the Bacterial RNA Polymerase Promoter Specificity σ Subunit. Mol. Cell 2002, 9, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Donay, J.-L.; Fernandes, P.; Lagrange, P.H.; Herrmann, J.-L. Evaluation of the Inoculation Procedure Using a 0.25 McFarland Standard for the BD Phoenix Automated Microbiology System. J. Clin. Microbiol. 2007, 45, 4088–4089. [Google Scholar] [CrossRef]
- Inda, N.I.; Mastura, S.; Satrimafitrah, P. Ethanolic extract of local sorghum seedcoat (Sorghum bicolor [L.] Moench) as a potential bacterial growth inhibitor. J. Physics Conf. Ser. 2021, 1763, 012063. [Google Scholar] [CrossRef]
- Udekwu, K.I.; Parrish, N.; Ankomah, P.; Baquero, F.; Levin, B.R. Functional relationship between bacterial cell density and the efficacy of antibiotics. J. Antimicrob. Chemother. 2009, 63, 745–757. [Google Scholar] [CrossRef]
- Beal, J.; Farny, N.G.; Haddock-Angelli, T.; Selvarajah, V.; Baldwin, G.S.; Buckley-Taylor, R.; Gershater, M.; Kiga, D.; Marken, J.; Sanchania, V.; et al. Robust estimation of bacterial cell count from optical density. Commun. Biol. 2020, 3, 1–29. [Google Scholar] [CrossRef]
- Singhal, M.; Paul, A.; Singh, H.P. Synthesis and reducing power assay of methyl semicarbazone derivatives. J. Saudi Chem. Soc. 2014, 18, 121–127. [Google Scholar] [CrossRef]
- El Jemli, M.; Kamal, R.; Marmouzi, I.; Zerrouki, A.; Cherrah, Y.; Alaoui, K. Radical-Scavenging Activity and Ferric Reducing Ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.). Adv. Pharmacol. Sci. 2016, 2016, 1–6. [Google Scholar] [CrossRef]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Khan, R.A.; Khan, M.R.; Sahreen, S.; Ahmed, M. Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens. Chem. Cent. J. 2012, 6, 43. [Google Scholar] [CrossRef]
- Cao, S.; Wan, C.; Yu, Y.; Zhou, S.; Liu, W.; Tian, S. Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures. Pharmacogn. Mag. 2011, 7, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Anosike, C.A.; Obidoa, O.; Ezeanyika, L.U. Membrane stabilization as a mechanism of the anti-inflammatory activity of methanol extract of garden egg (Solanum aethiopicum). DARU J. Pharm. Sci. 2012, 20, 76. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. In Vitro Anti-Inflammatory Properties of Selected Green Leafy Vegetables. Biomedicines 2018, 6, 107. [Google Scholar] [CrossRef] [PubMed]
- Aidoo, D.B.; Konja, D.; Henneh, I.T.; Ekor, M. Protective Effect of Bergapten against Human Erythrocyte Hemolysis and Protein Denaturation In Vitro. Int. J. Inflamm. 2021, 2021, 1–7. [Google Scholar] [CrossRef]
- Navarra, M.A.; Bosco, C.D.; Moreno, J.S.; Vitucci, F.M.; Paolone, A.; Panero, S. Synthesis and Characterization of Cellulose-Based Hydrogels to Be Used as Gel Electrolytes. Membranes 2015, 5, 810–823. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Cai, K.; Zhang, B.; Tang, S.; Zhang, W.; Liu, W. Antibacterial polysaccharide-based hydrogel dressing containing plant essential oil for burn wound healing. Burn. Trauma 2021, 9, tkab041. [Google Scholar] [CrossRef]
- Zu, Y.; Zhang, Y.; Zhao, X.; Shan, C.; Zu, S.; Wang, K.; Li, Y.; Ge, Y. Preparation and characterization of chitosan–polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int. J. Biol. Macromol. 2012, 50, 82–87. [Google Scholar] [CrossRef]
- Gull, N.; Maqsood, S.; Taqi, M.; Shafiq, S.K.M.; Islam, A.; Asim, A.; Hafeez, S.; Ullah, R. In vitro study of chitosan-based multi-responsive hydrogels as drug release vehicles: A preclinical study. RSC Adv. 2019, 53, 31078–31091. [Google Scholar] [CrossRef] [PubMed]
- Korsmeyer, R.W.; Peppas, N.A. Solute and penetrant diffusion in swellable polymers. III. Drug release from glassy poly(HEMA-co-NVP) copolymers. J. Control. Release 1984, 1, 89–98. [Google Scholar] [CrossRef]
- Heredia, N.S.; Vizuete, K.; Flores-Calero, M.; Pazmiño, V.K.; Pilaquinga, F.; Kumar, B.; Debut, A. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid). PLoS ONE 2022, 17, e0264825. [Google Scholar] [CrossRef]
- Wintola, O.A.; Afolayan, A.J. The antibacterial, phytochemicals and antioxidants evaluation of the root extracts of Hydnora africanaThunb. used as antidysenteric in Eastern Cape Province, South Africa. BMC Complement. Altern. Med. 2015, 15, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Extracts | Dry Plant (g) | Solvent (mL) | Dry Extract (g) | Yield (%) |
---|---|---|---|---|
EG-methanolic | 15.51 | 150 | 1.39 | 8.97 |
EG-ethanolic | 14.98 | 150 | 0.95 | 6.37 |
Secondary Metabolite | Performed Test | EG-Methanolic | EG-Ethanolic |
---|---|---|---|
Quaternary alkaloids and/or free amino acids | Mayer test | ++ | + |
Dragendorff test | +++ | ++ | |
Wagner test | ++ | + | |
Coumarins and lactones | NaOH test | + | + |
Saponins | Frothing test | +++ | +++ |
Terpenes and steroids | Liebermann-Buchard test | + | ++ |
Terpenoids | Salkowski test | +++ | +++ |
Flavonoids | Alkaline reagent test | + | + |
Shinoda test | + | + | |
Quinones | Bontrager test | − | +++ |
Acid-base test | − | + | |
Phenols and tannins | Ferric chloride test | +++ | ++ |
Glycosides | Keller-Killiani test | − | ++ |
Carbohydrates | Benedict’s test | + | + |
Wavelength (nm) | EG-Methanolic (nm) | EG-Ethanolic (nm) | Metabolites | Ref |
---|---|---|---|---|
234–676 | 295 320 410 615 675 | 285 325 405 615 675 | Alkaloids, flavonoids, and phenol | [25] |
230–350 | 295 320 | 285 325 | Flavonoids and their derivates | |
350–500 | 410 | 405 | Tannins, carotenoids, and carotenoids | [26] |
600–700 | 675 | 615 675 | Chlorophyll | [27] |
Inhibition Halo (mm) | Positive Control | Negative Control | ||||||
---|---|---|---|---|---|---|---|---|
Plant Extract mg/mL | 1.5 | 2.5 | 5 | 10 | 15 | 20 | Kanamycin (50 mg/mL) | Water Type 1 |
EG-methanolic | - | 1.9 | 2.6 | 2.8 | 2.3 | 2.5 | 13.0 | - |
EG-ethanolic | - | 0.9 | 2.1 | 2.3 | 2.0 | 1.8 | 15.0 | - |
Plant Extract | FRAP Value in AEAC (mg AA/g) | Reducing Power (%RP) |
---|---|---|
EG-methanolic | 7.96 | 68.41 |
EG-ethanolic | 7.60 | 65.68 |
Plant Extract | Total Antioxidant Activity (%) |
---|---|
EG-methanolic | 99.76 |
EG-ethanolic | 51.24 |
Plant Extract | Diameter (cm) | ||
---|---|---|---|
/NRC | /MCC | Positive Control | |
EG-methanolic | NA | 3.17 | 3.43 |
EG-ethanolic | NA | 2.93 | 3.49 |
Without extract | NA | NA | 3.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamora-Mendoza, L.; Vispo, S.N.; De Lima, L.; Mora, J.R.; Machado, A.; Alexis, F. Hydrogel for the Controlled Delivery of Bioactive Components from Extracts of Eupatorium glutinosum Lam. Leaves. Molecules 2023, 28, 1591. https://doi.org/10.3390/molecules28041591
Zamora-Mendoza L, Vispo SN, De Lima L, Mora JR, Machado A, Alexis F. Hydrogel for the Controlled Delivery of Bioactive Components from Extracts of Eupatorium glutinosum Lam. Leaves. Molecules. 2023; 28(4):1591. https://doi.org/10.3390/molecules28041591
Chicago/Turabian StyleZamora-Mendoza, Lizbeth, Santiago Nelson Vispo, Lola De Lima, José R. Mora, António Machado, and Frank Alexis. 2023. "Hydrogel for the Controlled Delivery of Bioactive Components from Extracts of Eupatorium glutinosum Lam. Leaves" Molecules 28, no. 4: 1591. https://doi.org/10.3390/molecules28041591
APA StyleZamora-Mendoza, L., Vispo, S. N., De Lima, L., Mora, J. R., Machado, A., & Alexis, F. (2023). Hydrogel for the Controlled Delivery of Bioactive Components from Extracts of Eupatorium glutinosum Lam. Leaves. Molecules, 28(4), 1591. https://doi.org/10.3390/molecules28041591