ESIPT-Capable 4-(2-Hydroxyphenyl)-2-(Pyridin-2-yl)-1H-Imidazoles with Single and Double Proton Transfer: Synthesis, Selective Reduction of the Imidazolic OH Group and Luminescence
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of 1-Hydroxy-4-(2-Hydroxyphenyl)-5-Methyl-2-(Pyridin-2-yl)-1H-Imidazole (LOH,OH) and 4-(2-Hydroxyphenyl)-5-Methyl-2-(Pyridin-2-yl)-1H-Imidazole (LH,OH)
2.2. X-ray Single Crystal Structure of 1-Hydroxy-4-(2-Hydroxyphenyl)-5-Methyl-2-(Pyridin-2-yl)-1H-Imidazole (LOH,OH)
2.3. Tautomeric Forms of LH,OH and LOH,OH: An Introduction
2.4. Absorption Properties of LH,OH and LOH,OH in MeCN
2.5. Excitation and Emission Properties of LH,OH and LOH,OH
2.6. Elucidation of the Fluorescence and Phosphorescence Mechanisms for LH,OH and LOH,OH
3. Materials and Methods
3.1. General Information
3.2. 1-(2-Benzoyloxyphenyl)-2-(Hydroxyimino)Propan-1-One (B)
3.3. 1-Hydroxy-4-(2-Hydroxyphenyl)-5-Methyl-2-(Pyridin-2-yl)-1H-Imidazole (LOH,OH)
3.4. 4-(2-Hydroxyphenyl)-5-Methyl-2-(Pyridin-2-yl)-1H-Imidazole (LH,OH)
3.5. X-ray Crystallography
3.6. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Weller, A. Über die Fluoreszenz der Salizylsäure und verwandter Verbindungen. Naturwissenschaften 1955, 42, 175–176. [Google Scholar] [CrossRef]
- Nagaoka, S.; Nagashima, U. Intramolecular proton transfer in various electronic states of o-hydroxybenzaldehyde. Chem. Phys. 1989, 136, 153–163. [Google Scholar] [CrossRef]
- Douhal, A.; Lahmani, F.; Zewail, A.H. Proton-transfer reaction dynamics. Chem. Phys. 1996, 207, 477–498. [Google Scholar] [CrossRef]
- Formosinho, S.J.; Arnaut, L.G. Excited-state proton transfer reactions II. Intramolecular reactions. J. Photochem. Photobiol. A 1993, 75, 21–48. [Google Scholar] [CrossRef]
- Chou, P.-T. The Host/Guest Type of Excited-State Proton Transfer; a General Review. J. Chin. Chem. Soc. 2001, 48, 651–682. [Google Scholar] [CrossRef]
- Chipem, F.A.S.; Mishra, A.; Krishnamoorthy, G. The role of hydrogen bonding in excited state intramolecular charge transfer. Phys. Chem. Chem. Phys. 2012, 14, 8775–8790. [Google Scholar] [CrossRef]
- Joshi, H.C.; Antonov, L. Excited-State Intramolecular Proton Transfer: A Short Introductory Review. Molecules 2021, 26, 1475. [Google Scholar] [CrossRef]
- Dong, H.; Yang, H.; Zhao, J.; Liu, X.; Zheng, Y. Modulation of excited state proton transfer. J. Lumin. 2021, 231, 117840. [Google Scholar] [CrossRef]
- Padalkar, V.S.; Seki, S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem. Soc. Rev. 2016, 45, 169–202. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ji, S.; Chen, Y.; Guo, H.; Yang, P. Excited state intramolecular proton transfer (ESIPT): From principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys. Chem. Chem. Phys. 2012, 14, 8803–8817. [Google Scholar] [CrossRef] [PubMed]
- Tomin, V.I.; Demchenko, A.P.; Chou, P.-T. Thermodynamic vs. kinetic control of excited-state proton transfer reactions. J. Photochem. Photobiol. C Photochem. Rev. 2015, 22, 1–18. [Google Scholar] [CrossRef]
- Serdiuk, I.E.; Roshal, A.D. Exploring double proton transfer: A review on photochemical features of compounds with two proton-transfer sites. Dye. Pigment. 2017, 138, 223–244. [Google Scholar] [CrossRef]
- Gayathri, P.; Pannipara, M.; Al-Sehemi, A.G.; Anthony, S.P. Recent advances in excited state intramolecular proton transfer mechanism-based solid state fluorescent materials and stimuli-responsive fluorescence switching. CrystEngComm 2021, 23, 3771–3789. [Google Scholar] [CrossRef]
- Kwon, J.E.; Park, S.Y. Advanced Organic Optoelectronic Materials: Harnessing Excited-State Intramolecular Proton Transfer (ESIPT) Process. Adv. Mater. 2011, 23, 3615–3642. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, Z.; Fang, H. Different positions of cyano substitution controlled directionality of ESIPT processes with two asymmetric proton acceptors system: A TD-DFT study. J. Photochem. Photobiol. A 2023, 436, 114353. [Google Scholar] [CrossRef]
- Lin, M.-Y.; Li, Y.; Fu, C.-B.; Yu, X.-F. Modulating the ESIPT dynamics of 3HF derivatives via substitution and solvent effect: A theoretical study. J. Mol. Liq. 2022, 366, 120295. [Google Scholar] [CrossRef]
- Shang, C.; Sun, C. Substituent effects on photophysical properties of ESIPT-based fluorophores bearing the 4-diethylaminosalicylaldehyde core. J. Mol. Liq. 2022, 367, 120477. [Google Scholar] [CrossRef]
- Chaihan, K.; Semakul, N.; Promarak, V.; Bui, T.-T.; Kungwan, N.; Goubard, F. Tunable far-red fluorescence utilizing π-extension and substitution on the excited state intramolecular proton transfer (ESIPT) of naphthalene-based Schiff bases: A combined experimental and theoretical study. J. Photochem. Photobiol. A 2022, 431, 114047. [Google Scholar] [CrossRef]
- Su, S.; Sun, G.; Liang, X.; Fang, H. Effectively controlling the ESIPT behavior and fluorescence feature of 2-(2′-hydroxyphenyl)-4-chloromethylthiazole by changing its π-conjugation: A theoretical exploration. J. Photochem. Photobiol. A 2022, 422, 113548. [Google Scholar] [CrossRef]
- Li, Y.; Dahal, D.; Abeywickrama, C.S.; Pang, Y. Progress in Tuning Emission of the Excited-State Intramolecular Proton Transfer (ESIPT)-Based Fluorescent Probes. ACS Omega 2021, 6, 6547–6553. [Google Scholar] [CrossRef]
- Heyer, E.; Benelhadj, K.; Budzák, S.; Jacquemin, D.; Massue, J.; Ulrich, G. On the Fine-Tuning of the Excited-State Intramolecular Proton Transfer (ESIPT) Process in 2-(2′-Hydroxybenzofuran)benzazole (HBBX) Dyes. Chem. Eur. J. 2017, 23, 7324–7336. [Google Scholar] [CrossRef]
- Liang, X.; Fang, H. Fine-tuning directionality of ESIPT behavior of the asymmetric two proton acceptor system via atomic electronegativity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 266, 120406. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Guo, Q.; Lan, J.; You, J. Tuning the dual emission of keto/enol forms of excited-state intramolecular proton transfer (ESIPT) emitters via intramolecular charge transfer (ICT). Dyes Pigment. 2021, 193, 109497. [Google Scholar] [CrossRef]
- Massue, J.; Jacquemin, D.; Ulrich, G. Molecular Engineering of Excited-state Intramolecular Proton Transfer (ESIPT) Dual and Triple Emitters. Chem. Lett. 2018, 47, 1083–1089. [Google Scholar] [CrossRef]
- Shang, C.; Wang, L.; Cao, Y.; Yu, X.; Li, Y.; Sun, C.; Cui, J. Is it possible to switch ESIPT-channel of hydroxyanthraquinones with the strategy of modifying electronic groups? J. Mol. Liq. 2022, 347, 118343. [Google Scholar] [CrossRef]
- Pariat, T.; Munch, M.; Durko-Maciag, M.; Mysliwiec, J.; Retailleau, P.; Vérité, P.M.; Jacquemin, D.; Massue, J.; Ulrich, G. Impact of Heteroatom Substitution on Dual-State Emissive Rigidified 2-(2′-hydroxyphenyl)benzazole Dyes: Towards Ultra-Bright ESIPT Fluorophores. Chem. Eur. J. 2021, 27, 3483–3495. [Google Scholar] [CrossRef] [PubMed]
- Khisamov, R.M.; Ryadun, A.A.; Sukhikh, T.S.; Konchenko, S.N. Excitation wavelength-dependent room-temperature phosphorescence: Unusual properties of novel phosphinoamines. Mol. Syst. Des. Eng. 2021, 6, 1056–1065. [Google Scholar] [CrossRef]
- Kim, D.; Ahn, M.; Wee, K.-R.; Cho, D.W. Influence of picolinate ancillary ligands on unique photophysical properties of Ir(ppz)2(LX). Phys. Chem. Chem. Phys. 2022, 24, 13074–13082. [Google Scholar] [CrossRef]
- Kim, S.; Choi, J.; Cho, D.W.; Ahn, M.; Eom, S.; Kim, J.; Wee, K.-R.; Ihee, H. Solvent-modulated proton-coupled electron transfer in an iridium complex with an ESIPT ligand. Chem. Sci. 2022, 13, 3809–3818. [Google Scholar] [CrossRef]
- Fu, P.-Y.; Li, B.-N.; Zhang, Q.-S.; Mo, J.-T.; Wang, S.-C.; Pan, M.; Su, C.-Y. Thermally Activated Fluorescence vs Long Persistent Luminescence in ESIPT-Attributed Coordination Polymer. J. Am. Chem. Soc. 2022, 144, 2726–2734. [Google Scholar] [CrossRef]
- Feng, W.; Fu, G.; Huang, Y.; Zhao, Y.; Yan, H.; Lü, X. ESIPT-capable Eu3+-metallopolymer with colour-tunable emission for selective visual sensing of Zn2+ ion. J. Mater. Chem. C 2022, 10, 1090–1096. [Google Scholar] [CrossRef]
- Huang, P.; Liu, Y.; Karmakar, A.; Yang, Q.; Li, J.; Wu, F.-Y.; Deng, K.-Y. Tuning the excited-state intramolecular proton transfer (ESIPT)-based luminescence of metal–organic frameworks by metal nodes toward versatile photoluminescent applications. Dalton Trans. 2021, 50, 6901–6912. [Google Scholar] [CrossRef] [PubMed]
- Shekhovtsov, N.A.; Bushuev, M.B. Anomalous emission of an ESIPT-capable zinc(II) complex: An interplay of TADF, TICT and anti-Kasha behaviour. J. Photochem. Photobiol. A 2022, 433, 114195. [Google Scholar] [CrossRef]
- Suzuki, N.; Kubota, T.; Ando, N.; Yamaguchi, S. Photobase-Driven Excited-State Intramolecular Proton Transfer (ESIPT) in a Strapped π-Electron System. Chem. Eur. J. 2022, 28, e202103584. [Google Scholar] [CrossRef]
- Pariat, T.; Stoerkler, T.; Diguet, C.; Laurent, A.D.; Jacquemin, D.; Ulrich, G.; Massue, J. Dual Solution-/Solid-State Emissive Excited-State Intramolecular Proton Transfer (ESIPT) Dyes: A Combined Experimental and Theoretical Approach. J. Org. Chem. 2021, 86, 17606–17619. [Google Scholar] [CrossRef] [PubMed]
- Voicescu, M. On the role of pH and temperature on ground- and excited- state proton transfer of hydroxyflavones in lipidic bilayers of lecithin. J. Mol. Liq. 2022, 352, 118696. [Google Scholar] [CrossRef]
- Chowdhury, A.; Dasgupta, S.; Datta, A. Deprotonation-induced enhancement in fluorescence of 2-((2-hydroxybenzylidene)amino)phenol, a Schiff base. Chem. Phys. Impact 2021, 3, 100057. [Google Scholar] [CrossRef]
- Berezin, A.S.; Selivanov, B.; Danilenko, A.; Sukhikh, A.; Komarovskikh, A. Manganese(II) Bromide Compound with Diprotonated 1-Hydroxy-2-(pyridin-2-yl)-4,5,6,7-tetrahydrobenzimidazole: Dual Emission and the Effect of Proton Transfers. Inorganics 2022, 10, 245. [Google Scholar] [CrossRef]
- Komarovskikh, A.; Danilenko, A.; Sukhikh, A.; Syrokvashin, M.; Selivanov, B. Structure and EPR investigation of Cu(II) bifluoride complexes with zwitterionic N-hydroxyimidazole ligands. Inorg. Chim. Acta 2020, 517, 120187. [Google Scholar] [CrossRef]
- Bushuev, M.B.; Selivanov, B.A.; Pervukhina, N.V.; Naumov, D.Y.; Rakhmanova, M.I.; Sheludyakova, L.A.; Tikhonov, A.Y.; Larionov, S.V. Luminescent zinc(II) and cadmium(II) complexes based on 2-(4,5-dimethyl-1H-imidazol-2-yl)pyridine and 2-(1-hydroxy-4,5-dimethyl-1H-imidazol-2-yl)pyridine. Russ. J. Gen. Chem. 2012, 82, 1859–1868. [Google Scholar] [CrossRef]
- Bushuev, M.B.; Selivanov, B.A.; Pervukhina, N.V.; Naumov, D.Y.; Sheludyakova, L.A.; Rakhmanova, M.I.; Tikhonov, A.Y.; Larionov, S.V. Zinc(II) complexes with an imidazolylpyridine ligand: Luminescence and hydrogen bonding. J. Coord. Chem. 2014, 67, 611–622. [Google Scholar] [CrossRef]
- Liang, C. Organic polymorphs based on an AEE-active tetraphenylethene salicylaldehyde Schiff-base derivative: The effect of molecular conformation on luminescence properties. RSC Adv. 2020, 10, 29043–29050. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Liu, Y.; Zhao, J.; Jiang, L.; Chen, X.; Li, W.; Yang, Z.; Yan, Q.; Wang, S.; Chi, Z. Magic tetraphenylethene Schiff base derivatives with AIE, liquid crystalline and photochromic properties. Dyes Pigment. 2022, 202, 110222. [Google Scholar] [CrossRef]
- Ila; Brahma, M.; Ranjan, S.; Tripathi, P.; Krishnamoorthy, G. Modifying the proton transfer of 3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazole by water, confinement and confined water. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 272, 120911. [Google Scholar] [CrossRef]
- Kaya, S.; Aydın, H.G.; Keskin, S.; Ekmekci, Z.; Menges, N. Exploring of indole derivatives for ESIPT emission: A new ESIPT-based fluorescence skeleton and TD-DFT calculations. J. Photochem. Photobiol. A Chem. 2021, 420, 113487. [Google Scholar] [CrossRef]
- Zhao, G.; Shia, W.; Xin, X.; Ma, F.; Li, Y. Solvent dependence of ESIPT process in 2-(2-carbonmethoxy-3,4-dichloro-6-hydroxyphenyl) compounds. J. Mol. Liq. 2022, 354, 118807. [Google Scholar] [CrossRef]
- Dutta, S.; Manda, D. Excited state intramolecular proton transfer of 2-phenyl,3-hydroxybenzo[g]quinolones in solution and in G4 supramolecular hydrogels. J. Mol. Liq. 2022, 361, 119651. [Google Scholar] [CrossRef]
- Dutta, S.; Basu, N.; Mandal, D. ESIPT in a binary mixture of non-polar and protic polar solvents: Role of solvation dynamics. J. Photochem. Photobiol. A Chem. 2023, 435, 114240. [Google Scholar] [CrossRef]
- Sedgwick, A.C.; Wu, L.; Han, H.-H.; Bull, S.D.; He, X.-P.; James, T.D.; Sessler, J.L.; Tang, B.Z.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 47, 8842–8880. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Y.; Liu, Y. Recognition mechanism of imidazo[1,5-α]pyridine-based fluorescence probe towards thiophenols with multi-mechanisms of PET and ESIPT. J. Photochem. Photobiol. A Chem. 2023, 437, 114477. [Google Scholar] [CrossRef]
- Lu, X.-L.; He, W. Research Advances in Excited State Intramolecular Proton Transfer Fluorescent Probes Based on Combined Fluorescence Mechanism. Chin. J. Anal. Chem. 2021, 49, 184–196. [Google Scholar] [CrossRef]
- Choudhury, S.D.; Pal, H. Excited State Proton Transfer of a Versatile Fluorescent Probe in Different Reverse Micelles: An Overview. Proc. Indian Natl. Sci. Acad. 2019, 85, 507–516. [Google Scholar] [CrossRef]
- Chen, L.; Fu, P.-Y.; Wang, H.-P.; Pan, M. Excited-State Intramolecular Proton Transfer (ESIPT) for Optical Sensing in Solid State. Adv. Opt. Mater. 2021, 9, 2001952. [Google Scholar] [CrossRef]
- Zheng, H.-W.; Kang, Y.; Wu, M.; Liang, Q.-F.; Zheng, J.-Q.; Zheng, X.-J.; Jin, L.-P. ESIPT-AIE active Schiff base based on 2-(2′-hydroxyphenyl)benzo-thiazole applied as multi-functional fluorescent chemosensors. Dalton Trans. 2021, 50, 3916–3922. [Google Scholar] [CrossRef] [PubMed]
- Majeed, S.; Khan, T.A.; Waseem, M.T.; Junaid, H.M.; Khan, A.M.; Shahzad, S.A. A ratiometric fluorescent, colorimetric, and paper sensor for sequential detection of Cu2+ and glutathione in food: AIEE and reversible piezofluorochromic activity. J. Photochem. Photobiol. A Chem. 2022, 431, 114062. [Google Scholar] [CrossRef]
- Santhiya, K.; Mathivanan, M.; Tharmalingam, B.; Anitha, O.; Ghorai, S.; Natarajan, R.; Murugesapandian, B. A new J-(diethylamino)coumarin and 4-(diethylamino)phenol appended unsymmetrical thiocarbohydrazone: Detection of moisture in organic solvent and sequential fluorimetric detection of Cu2+ ions and cysteine. J. Photochem. Photobiol. A Chem. 2022, 432, 114105. [Google Scholar] [CrossRef]
- Chan, N.N.M.Y.; Idris, A.; Abidin, Z.H.Z.; Tajuddin, H.A.; Abdullah, Z. White light employing luminescent engineered large (mega) Stokes shift molecules: A review. RSC Adv. 2021, 11, 13409–13445. [Google Scholar] [CrossRef]
- Doroshenko, A.O. Physicochemical Principles of the Creation of Highly Efficient Organic Luminophores with Anomalously High Stokes’ Shifts. Theor. Exp. Chem. 2002, 38, 135–155. [Google Scholar] [CrossRef]
- Stoerkler, T.; Pariat, T.; Laurent, A.D.; Jacquemin, D.; Ulrich, G.; Massue, J. Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications. Molecules 2022, 27, 2443. [Google Scholar] [CrossRef]
- Behera, S.K.; Park, S.Y.; Gierschner, J. Dual Emission: Classes, Mechanisms, and Conditions. Angew. Chem. Int. Ed. 2021, 60, 22624–22638. [Google Scholar] [CrossRef]
- Azarias, C.; Budzák, Š.; Laurent, A.D.; Ulrich, G.; Jacquemin, D. Tuning ESIPT fluorophores into dual emitters. Chem. Sci. 2016, 7, 3763–3774. [Google Scholar] [CrossRef] [PubMed]
- Shekhovtsov, N.A.; Bushuev, M.B. Enol or keto? Interplay between solvents and substituents as a factor controlling ESIPT. J. Mol. Liq. 2022, 361, 119611. [Google Scholar] [CrossRef]
- Pandey, D.; Vennapusa, S.R. ESIPT pathways and optical properties of 7-Hydroxy-1-Indanones. J. Photochem. Photobiol. A Chem. 2022, 432, 114073. [Google Scholar] [CrossRef]
- Sathyanarayana, R.; Kumar, V.; Pujar, G.; Poojary, B.; Shankar, M.K.; Yallappa, S. Hydroxy-benzimidazoles as blue-green emitters: Synthesis, structural and DFT studies. J. Photochem. Photobiol. A Chem. 2020, 401, 112751. [Google Scholar] [CrossRef]
- Esteves, C.I.C.; Fontes, L.F.B.; Borges, A.F.N.; Rocha, J.; Silva, A.M.S.; Guieu, S. Push-pulling induces the excited-state intramolecular proton transfer in 2′-aminochalcones. Dyes Pigment. 2022, 202, 110275. [Google Scholar] [CrossRef]
- Tang, Z.; Han, H.; Ding, J.; Zhou, P. Dual fluorescence of 2-(2′-hydroxyphenyl) benzoxazole derivatives via the branched decays from the upper excited-state. Phys. Chem. Chem. Phys. 2021, 23, 27304–27311. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Shao, T.-F.; Ding, W.-H.; Li, S.-J.; Yao, Q.; Cao, W.; Wang, Z.; Ma, Y. AIE -active TPA modified Schiff base for successive sensing of Cu2+ and His via an on–off–on method and its application in bioimaging. Dalton Trans. 2023, 52, 434–443. [Google Scholar] [CrossRef]
- Trannoy, V.; Léaustic, A.; Gadan, S.; Guillot, R.; Allain, C.; Clavier, G.; Mazerat, S.; Geffroy, B.; Yu, P. A highly efficient solution and solid state ESIPT fluorophore and its OLED application. New J. Chem. 2021, 45, 3014–3021. [Google Scholar] [CrossRef]
- Singh, A.K.; Kundu, M.; Roy, S.; Roy, B.; Shah, S.S.; Nair, A.V.; Pal, B.; Mondal, M.; Singh, N.D.P. A two-photon responsive naphthyl tagged p-hydroxyphenacyl based drug delivery system: Uncaging of anti-cancer drug in the phototherapeutic window with real-time monitoring. Chem. Commun. 2020, 56, 9986–9989. [Google Scholar] [CrossRef]
- Mishra, V.R.; Ghanavatkar, C.W.; Sekar, N. Towards NIR-Active Hydroxybenzazole (HBX)-Based ESIPT Motifs: A Recent Research Trend. ChemistrySelect 2020, 5, 2103–2113. [Google Scholar] [CrossRef]
- Fery-Forgues, S.; Vanucci-Bacqué, C. Recent Trends in the Design, Synthesis, Spectroscopic Behavior, and Applications of Benzazole-Based Molecules with Solid-State Luminescence Enhancement Properties. Top. Curr. Chem. 2021, 379, 32. [Google Scholar] [CrossRef] [PubMed]
- Jeżewski, A.; Hammann, T.; Cywiński, P.J.; Gryko, D.T. Optical Behavior of Substituted 4-(2′-Hydroxyphenyl)imidazoles. J. Phys. Chem. B 2015, 119, 2507–2514. [Google Scholar] [CrossRef] [PubMed]
- Douhal, A.; Amat-Guerri, F.; Lillo, M.P.; Acuña, A.U. Proton transfer spectroscopy of 2-(2’-hydroxyphenyl)imidazole and 2-(2’-hydroxyphenyl)benzimidazole dyes. J. Photochem. Photobiol. A 1994, 78, 127–138. [Google Scholar] [CrossRef]
- Das, K.; Sarkar, N.; Majumdar, D.; Bhattacharyya, K. Excited-state intramolecular proton transfer and rotamerism of 2-(2′-hydroxyphenyl) benzimidazole. Chem. Phys. Lett. 1992, 198, 443–448. [Google Scholar] [CrossRef]
- Das, K.; Sarkar, N.; Ghosh, A.K.; Majumdar, D.; Nath, D.N.; Bhattacharyya, K. Excited-State Intramolecular Proton Transfer in 2-(2-Hydroxyphenyl)benzimidazole and -benzoxazole: Effect of Rotamerism and Hydrogen Bonding. J. Phys. Chem. 1994, 98, 9126–9132. [Google Scholar] [CrossRef]
- Gutiérrez, M.; García, E.; Monterde, C.; Sánchez, F.; Douhal, A. Modulating the spectroscopy and dynamics of a proton-transfer dye by functionalizing with phenyl groups. Phys. Chem. Chem. Phys. 2022, 24, 6828–6835. [Google Scholar] [CrossRef]
- Hurley, J.J.M.; Zhu, L. Excitation Energy-Dependent, Excited-State Intramolecular Proton Transfer-Based Dual Emission in Poor Hydrogen-Bonding Solvents. J. Phys. Chem. A 2022, 126, 5711–5720. [Google Scholar] [CrossRef]
- Munch, M.; Colombain, E.; Stoerkler, T.; Vérité, P.M.; Jacquemin, D.; Ulrich, G.; Massue, J. Blue-Emitting 2-(2′-Hydroxyphenyl)benzazole Fluorophores by Modulation of Excited-State Intramolecular Proton Transfer: Spectroscopic Studies and Theoretical Calculations. J. Phys. Chem. B 2022, 126, 2108–2118. [Google Scholar] [CrossRef]
- Wang, K.; Hu, R.; Wang, J.; Zhang, J.; Liu, J.; Zhou, L.; Zhou, L.; Li, B. Fine Tuning the Energetics of 2-(2′-Hydroxyphenyl)oxazoles to Obtain Highly Efficient Organic White-Light-Emitting Devices. ACS Mater. Lett. 2022, 4, 2337–2344. [Google Scholar] [CrossRef]
- Zeng, G.; Liang, Z.; Jiang, X.; Quan, T.; Chen, T. An ESIPT-Dependent AIE Fluorophore Based on HBT Derivative: Substituent Positional Impact on Aggregated Luminescence and its Application for Hydrogen Peroxide Detection. Chem. Eur. J. 2022, 28, e202103241. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, X.; Ma, F.; Li, Y. Substituent effect on ESIPT mechanisms and photophysical properties of HBT derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 250, 119375. [Google Scholar] [CrossRef]
- Georgiev, A.; Deneva, V.; Yordanov, D.; Völzer, T.; Wolter, S.; Fennel, F.; Lochbrunner, S.; Antonov, L. Benzothiazol picolin/isonicotinamides molecular switches: Expectations and reality. J. Mol. Liq. 2022, 356, 118968. [Google Scholar] [CrossRef]
- Shekhovtsov, N.A.; Nikolaenkova, E.B.; Berezin, A.S.; Plyusnin, V.F.; Vinogradova, K.A.; Naumov, D.Y.; Pervukhina, N.V.; Tikhonov, A.Y.; Bushuev, M.B. A 1-Hydroxy-1H-imidazole ESIPT Emitter Demonstrating anti-Kasha Fluorescence and Direct Excitation of a Tautomeric Form. ChemPlusChem 2021, 86, 1436–1441. [Google Scholar] [CrossRef]
- Shekhovtsov, N.A.; Ryadun, A.A.; Bushuev, M.B. Luminescence of a Zinc(II) Complex with a Protonated 1-Hydroxy-1H-imidazole ESIPT Ligand: Direct Excitation of a Tautomeric Form. ChemistrySelect 2021, 6, 12346–12350. [Google Scholar] [CrossRef]
- Shekhovtsov, N.A.; Ryadun, A.A.; Plyusnin, V.F.; Nikolaenkova, E.B.; Tikhonov, A.Y.; Bushuev, M.B. First 1-hydroxy-1H-imidazole-based ESIPT emitter with an O–H⋯O intramolecular hydrogen bond: ESIPT-triggered TICT and speciation in solution. New J. Chem. 2022, 46, 22804–22817. [Google Scholar] [CrossRef]
- Shekhovtsov, N.A.; Vinogradova, K.A.; Vorobyova, S.N.; Berezin, A.S.; Plyusnin, V.F.; Naumov, D.Y.; Pervukhina, N.V.; Nikolaenkova, E.B.; Tikhonov, A.Y.; Bushuev, M.B. N-Hydroxy–N-oxide photoinduced tautomerization and excitation wavelength dependent luminescence of ESIPT-capable zinc(II) complexes with a rationally designed 1-hydroxy-2,4-di(pyridin-2-yl)-1H-imidazole ESIPT-ligand. Dalton Trans. 2022, 51, 9818–9835. [Google Scholar] [CrossRef] [PubMed]
- Shekhovtsov, N.A.; Nikolaenkova, E.B.; Berezin, A.S.; Plyusnin, V.F.; Vinogradova, K.A.; Naumov, D.Y.; Pervukhina, N.V.; Tikhonov, A.Y.; Bushuev, M.B. Tuning ESIPT-coupled luminescence by expanding π-conjugation of a proton acceptor moiety in ESIPT-capable zinc(II) complexes with 1-hydroxy-1H-imidazole-based ligands. Dalton Trans. 2022, 51, 15166–15188. [Google Scholar] [CrossRef] [PubMed]
- Mason, H.L. α-Oximino and α-Amino Derivatives of o-Hydroxypropiophenone. J. Am. Chem. Soc. 1934, 56, 2499–2500. [Google Scholar] [CrossRef]
- Nikitina, P.A.; Perevalov, V.P. Methods of synthesis and physicochemical properties of 1-hydroxyimidazoles, imidazole 3-oxides, and their benzoannulated analogs. Chem. Heterocycl. Compd. 2017, 53, 123–149. [Google Scholar] [CrossRef]
- van Hirschheydt, T.; Voss, E. U.S. Patent 20050085473. Chem. Abstr. 2005, 142, 411373. [Google Scholar]
- Samsonov, V.A. Synthesis of 1,5,6,7-tetrahydro-4H-benzimidazol-4-one derivatives from 2,6-bis(hydroxyimino)cyclohexan-1-one. Russ. J. Org. Chem. 2017, 53, 66–73. [Google Scholar] [CrossRef]
- Nikolaenkova, E.B.; Os’kina, I.A.; Tikhonov, A.Y. Synthesis of 2-(3,4,5-trimethoxybenzoyl)-4(5)-phenyl-1H-imidazole. Russ. J. Org. Chem. 2017, 53, 1887–1889. [Google Scholar] [CrossRef]
- Nikolaenkova, E.B.; Tikhonov, A.Y.; Grishchenko, S.Y. Reactivity of oximes of 1-aryl(hetaryl)-2-(hydroxyamino)propan-1-ones with ethyl glyoxylate. Chem. Heterocycl. Compd. 2019, 55, 142–146. [Google Scholar] [CrossRef]
- Han, J.; Cao, B.; Li, Y.; Zhou, Q.; Sun, C.; Li, B.; Yin, H.; Shi, Y. The role played by solvent polarity in regulating the competitive mechanism between ESIPT and TICT of coumarin (E-8-((4-dimethylamino-phenylimino)-methyl)-7-hydroxy-4-methyl-2H-chromen-2-one). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 231, 118086. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, Y.; Yang, Y.; Shi, W.; Li, Y. Fluorescence deactivation mechanism for a new probe detecting phosgene based on ESIPT and TICT. Org. Chem. Front. 2019, 6, 597–602. [Google Scholar] [CrossRef]
- Qi, Y.; Lu, M.; Wang, Y.; Tang, Z.; Gao, Z.; Tian, J.; Fei, X.; Li, Y.; Liu, J. A theoretical study of the ESIPT mechanism of 3-hydroxyflavone derivatives: Solvation effect and the importance of TICT for its dual fluorescence properties. Org. Chem. Front. 2019, 6, 3136–3143. [Google Scholar] [CrossRef]
- Georgiev, A.; Yordanov, D.; Ivanova, N.; Deneva, V.; Vassilev, N.; Kamounah, F.S.; Pittelkow, M.; Crochet, A.; Fromm, K.M.; Antonov, L. 7-OH quinoline Schiff bases: Are they the long awaited tautomeric bistable switches? Dyes Pigment. 2021, 195, 109739. [Google Scholar] [CrossRef]
- Georgiev, A.; Antonov, L. 8-(Pyridin-2-yl)quinolin-7-ol as a platform for conjugated proton cranes: A DFT structural design. Micromachines 2020, 11, 901. [Google Scholar] [CrossRef] [PubMed]
- Barboza, C.A.; Morawski, O.; Olas, J.; Gawrys, P.; Banasiewicz, M.; Suwinska, K.; Shova, S.; Kozankiewicz, B.; Sobolewski, A.L. Unravelling the ambiguity of the emission pattern of donor–acceptor salicylaldimines. J. Mol. Liq. 2021, 343, 117532. [Google Scholar] [CrossRef]
- CrysAlisPro Software System, version 1.171.41.123a; Rigaku Oxford Diffraction; Rigaku Corporation: Wrocław, Poland, 2022.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chem. Acc. 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- Petersson, G.A.; Al-Laham, M.A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 1991, 94, 6081–6090. [Google Scholar] [CrossRef]
- Chemcraft-Graphical Software for Visualization of Quantum Chemistry Computations. Available online: https://www.chemcraftprog.com (accessed on 26 January 2023).
Cmpd. | State | OPh–H, Å | OPh–H···NImid, Å | OImid–H, Å | OImid–H···NPy, Å | θ1,° a | θ2,° b |
---|---|---|---|---|---|---|---|
LH,OH | S0N | 0.980 | 2.627 | – | – | 14.97 | 0.38 |
T1N | 1.006 | 2.550 | – | – | 5.79 | 0.20 | |
T1T | 1.841 | 2.603 | – | – | 4.14 | 0.25 | |
near-CI c | 3.264 | 3.411 | – | – | 84.77 | 1.92 | |
LH,OH | S0N,N | 0.988 | 2.628 | 1.010 | 2.616 | 14.78 | 0.92 |
S0T,N | 0.992 | 2.592 | 1.595 | 2.542 | 0.79 | 0.04 | |
S1T,N | 0.998 | 2.584 | 1.785 | 2.674 | 0.00 | 0.23 | |
T1N,N | 1.008 | 2.546 | 1.065 | 2.509 | −0.02 | 0.00 | |
T1N,T | 1.829 | 2.599 | 1.051 | 2.531 | −0.01 | 0.00 | |
T1T,N | 0.994 | 2.590 | 1.931 | 2.728 | −0.02 | 0.00 | |
T1T,T | 1.807 | 2.593 | 1.787 | 2.648 | −0.02 | −0.01 | |
near-CI c | 2.347 | 2.922 | 0.964 | 2.732 | 55.43 | 5.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shekhovtsov, N.A.; Nikolaenkova, E.B.; Ryadun, A.A.; Samsonenko, D.G.; Tikhonov, A.Y.; Bushuev, M.B. ESIPT-Capable 4-(2-Hydroxyphenyl)-2-(Pyridin-2-yl)-1H-Imidazoles with Single and Double Proton Transfer: Synthesis, Selective Reduction of the Imidazolic OH Group and Luminescence. Molecules 2023, 28, 1793. https://doi.org/10.3390/molecules28041793
Shekhovtsov NA, Nikolaenkova EB, Ryadun AA, Samsonenko DG, Tikhonov AY, Bushuev MB. ESIPT-Capable 4-(2-Hydroxyphenyl)-2-(Pyridin-2-yl)-1H-Imidazoles with Single and Double Proton Transfer: Synthesis, Selective Reduction of the Imidazolic OH Group and Luminescence. Molecules. 2023; 28(4):1793. https://doi.org/10.3390/molecules28041793
Chicago/Turabian StyleShekhovtsov, Nikita A., Elena B. Nikolaenkova, Alexey A. Ryadun, Denis G. Samsonenko, Alexsei Ya. Tikhonov, and Mark B. Bushuev. 2023. "ESIPT-Capable 4-(2-Hydroxyphenyl)-2-(Pyridin-2-yl)-1H-Imidazoles with Single and Double Proton Transfer: Synthesis, Selective Reduction of the Imidazolic OH Group and Luminescence" Molecules 28, no. 4: 1793. https://doi.org/10.3390/molecules28041793
APA StyleShekhovtsov, N. A., Nikolaenkova, E. B., Ryadun, A. A., Samsonenko, D. G., Tikhonov, A. Y., & Bushuev, M. B. (2023). ESIPT-Capable 4-(2-Hydroxyphenyl)-2-(Pyridin-2-yl)-1H-Imidazoles with Single and Double Proton Transfer: Synthesis, Selective Reduction of the Imidazolic OH Group and Luminescence. Molecules, 28(4), 1793. https://doi.org/10.3390/molecules28041793