Design, Synthesis, Biological Evaluation, and Molecular Dynamics Simulation of Influenza Polymerase PB2 Inhibitors
Abstract
:1. Introduction
2. Results
2.1. Molecular Docking
2.2. Chemistry
2.3. Biochemical Assays
2.3.1. SPR Competitive Binding Assay
2.3.2. Cytopathic Effect (CPE) Inhibition Assay and Cytotoxicity Assay
2.3.3. Metabolic Stability
2.4. Molecular Dynamics (MD) Simulation
3. Discussion
3.1. Molecular Docking Analysis
3.2. Biochemical Assay Analysis
3.2.1. SPR Competitive Binding Assay Analysis
3.2.2. CPE Inhibition Assay and Cytotoxicity Assay Analysis
3.2.3. Metabolic Stability Analysis
3.3. MD Simulation Analysis
4. Materials and Methods
4.1. Chemistry
General Procedures
- 5-fluoro-2-((4-methoxybenzyl)amino)nicotinic acid (6)
- 6-fluoro-3-(4-methoxybenzyl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (7)
- 2-chloro-5-fluoro-4-(methylthio)pyrimidine (8)
- 6-fluoro-1-(5-fluoro-4-(methylthio)pyrimidin-2-yl)-3-(4-methoxybenzyl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (9)
- 6-fluoro-1-(5-fluoro-4-(methylsulfonyl)pyrimidin-2-yl)-3-(4-methoxybenzyl)-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (11)
- (1R,2S,3S,4R)-Ethyl 3-aminobicyclo[2.2.2]octane-2-carboxylate hydrochloride (12)
- ethyl(1R,2S,3S,4R)-3-((5-fluoro-2-(6-fluoro-3-(4-methoxybenzyl)-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)pyrimidin-4-yl)amino)bicyclo[2.2.2]octane-2-carboxylate (13)
- (1R,2S,3S,4R)-3-((5-fluoro-2-(6-fluoro-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)pyrimidin-4-yl)amino)bicyclo[2.2.2]octane-2-carboxylic acid (15)
- ethyl(1R,2S,3S,4R)-3-((5-fluoro-2-(6-fluoro-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)pyrimidin-4-yl)amino)bicyclo[2.2.2]octane-2-carboxylate (I)
- tert-butyl (2-chloro-5-fluoropyridin-3-yl)carbamate (16)
- 2-chloro-5-fluoropyridin-3-amine (17)
- 2-chloro-5-fluoro-3-nitropyridine (18)
- 5-fluoro-N-(4-methoxybenzyl)-3-nitropyridin-2-amine (20)
- 5-fluoro-N2-(4-methoxybenzyl)pyridine-2,3-diamine (21)
- ethyl(1R,2S,3S,4R)-3-((5-fluoro-2-((5-fluoro-2-((4-methoxybenzyl)amino)pyridin-3-yl)amino)pyrimidin-4-yl)amino)bicyclo[2.2.2]octane-2-carboxylate (23)
- ethyl(1R,2S,3S,4R)-3-((2-((2-amino-5-fluoropyridin-3-yl)amino)-5-fluoropyrimidin-4-yl)amino)bicyclo[2.2.2]octane-2-carboxylate (24)
- ethyl (1R,2S,3S,4R)-3-((2-(2-amino-6-fluoro-1H-imidazo[4,5-b]pyridin-1-yl)-5-fluoropyrimidin-4-yl)amino)bicyclo[2.2.2]octane-2-carboxylate (25)
- (1R,2S,3S,4R)-3-((2-(2-amino-6-fluoro-1H-imidazo[4,5-b]20yridine-1-yl)-5-fluoropyrimidin-4-yl)amino)bicyclo[2.2.2]octane-2-carboxylic acid (II)
4.2. Surface Plasmon Resonance (SPR) Analysis
4.3. Preparation of Influenza Virus H1N1 (A/PuertoRico/8/1934)
4.3.1. Cells and Viruses
4.3.2. CPE Inhibition Assay
4.3.3. Cytotoxicity Assay
4.3.4. Experimental Steps of Liver Microsome Metabolism In Vitro
4.4. Chemoinformatics
4.4.1. Methods of Molecular Docking
4.4.2. Molecular Dynamics Simulations
4.4.3. Trajectory Clustering Analysis
4.4.4. Estimation Binding-Free Energy Using MM/PBSA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Capasso, C.; Nocentini, A.; Supuran, C.T. Protease inhibitors targeting the main protease and papain-like protease of coronaviruses. Expert Opin. Ther. Pat. 2021, 31, 309–324. [Google Scholar] [CrossRef]
- Iuliano, A.D.; Roguski, K.M.; Chang, H.H.; Muscatello, D.J.; Palekar, R.; Tempia, S.; Cohen, C.; Gran, J.M.; Schanzer, D.; Cowling, B.J.; et al. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet 2018, 391, 1285–1300. [Google Scholar] [CrossRef]
- Doyle, J.D.; Chung, J.R.; Kim, S.S.; Gaglani, M.; Raiyani, C.; Zimmerman, R.K.; Nowalk, M.P.; Jackson, M.L.; Jackson, L.A.; Monto, A.S.; et al. Interim Estimates of 2018–2019 Seasonal Influenza Vaccine Effectiveness—United States, February 2019. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Harding, A.T.; Heaton, N.S. Efforts to Improve the Seasonal Influenza Vaccine. Vaccines 2018, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Partridge, J.; Kieny, M.P. Global production capacity of seasonal influenza vaccine in 2011. Vaccine 2013, 31, 728–731. [Google Scholar] [CrossRef] [Green Version]
- Carrat, F.; Flahault, A. Influenza vaccine: The challenge of antigenic drift. Vaccine 2007, 25, 6852–6862. [Google Scholar] [CrossRef]
- Longini, I.M., Jr.; Nizam, A.; Xu, S.; Ungchusak, K.; Hanshaoworakul, W.; Cummings, D.A.; Halloran, M.E. Containing pandemic influenza at the source. Science 2005, 309, 1083–1087. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Launches New Global Influenza Strategy [EB/OL] (2019-03-11). Available online: https://www.who.int/zh/news-room/detail/11-03-2019-who-launches-new-global-influenza-strategy (accessed on 10 January 2020).
- Moscona, A. Neuraminidase inhibitors for influenza. N. Engl. J. Med. 2005, 353, 1363–1373. [Google Scholar] [CrossRef] [Green Version]
- Uyeki, T.M. A Step Forward in the Treatment of Influenza. N. Engl. J. Med. 2018, 379, 975–977. [Google Scholar] [CrossRef]
- Fu, Y.; Gaelings, L.; Söderholm, S.; Belanov, S.; Nandania, J.; Nyman, T.A.; Matikainen, S.; Anders, S.; Velagapudi, V.; Kainov, D.E. JNJ872 inhibits influenza A virus replication without altering cellular antiviral responses. Antiviral. Res. 2016, 133, 23–31. [Google Scholar] [CrossRef]
- Byrn, R.A.; Jones, S.M.; Bennett, H.B.; Bral, C.; Clark, M.P.; Jacobs, M.D.; Kwong, A.D.; Ledeboer, M.W.; Leeman, J.R.; McNeil, C.F.; et al. Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit. Antimicrob. Agents Chemother. 2015, 59, 1569–1582. [Google Scholar] [CrossRef] [Green Version]
- Deleu, S.; Kakuda, T.N.; Spittaels, K.; Vercauteren, J.J.; Hillewaert, V.; Lwin, A.; Leopold, L.; Hoetelmans, R.M.W. Single- and multiple-dose pharmacokinetics and safety of pimodivir, a novel, non-nucleoside polymerase basic protein 2 subunit inhibitor of the influenza A virus polymerase complex, and interaction with oseltamivir: A Phase 1 open-label study in healthy volunteers. Br. J. Clin. Pharmacol. 2018, 84, 2663–2672. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, B.; Ison, M.G.; Hallouin-Bernard, M.C.; Nilsson, A.C.; Torres, A.; Wilburn, J.M.; van Duijnhoven, W.; Van Dromme, I.; Anderson, D.; Deleu, S.; et al. A Phase 2 Study of Pimodivir (JNJ-63623872) in Combination with Oseltamivir in Elderly and NonElderly Adults Hospitalized with Influenza A Infection: OPAL study. J. Infect. Dis. 2022, 226, 109–118. [Google Scholar] [CrossRef]
- Ma, G.H.; Ye, Y.; Zhang, D.; Xu, X.; Si, P.; Peng, J.L.; Xiao, Y.L.; Cao, R.Y.; Yin, Y.L.; Chen, J.; et al. Identification and biochemical characterization of DC07090 as a novel potent small molecule inhibitor against human enterovirus 71 3C protease by structure-based virtual screening. Eur. J. Med. Chem. 2016, 124, 981–991. [Google Scholar] [CrossRef]
- Clark, M.P.; Ledeboer, M.W.; Davies, I.; Byrn, R.A.; Jones, S.M.; Perola, E.; Tsai, A.; Jacobs, M.; Nti-Addae, K.; Bandarage, U.K.; et al. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. J. Med. Chem. 2014, 57, 6668–6678. [Google Scholar] [CrossRef]
- Ma, X.; Xie, L.; Wartchow, C.; Warne, R.; Xu, Y.; Rivkin, A.; Tully, D.; Shia, S.; Uehara, K.; Baldwin, D.M.; et al. Structural basis for therapeutic inhibition of influenza A polymerase PB2 subunit. Sci. Rep. 2017, 7, 9385. [Google Scholar] [CrossRef] [Green Version]
- Bandarage, U.K.; Clark, M.P.; Perola, E.; Gao, H.; Jacobs, M.D.; Tsai, A.; Gillespie, J.; Kennedy, J.M.; Maltais, F.; Ledeboer, M.W.; et al. Novel 2-Substituted 7-Azaindole and 7-Azaindazole Analogs as Potential Anti-Viral Agents for the Treatment of Influenza. Acs. Med. Chem. Lett. 2017, 8, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Garattini, E.; Terao, M. Aldehyde oxidase and its importance in novel drug discovery: Present and future challenges. Expert Opin. Drug. Discov. 2013, 8, 641–654. [Google Scholar] [CrossRef]
- Garattini, E.; Terao, M. Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metab. Rev. 2011, 43, 374–386. [Google Scholar] [CrossRef]
- Pryde, D.C.; Dalvie, D.; Hu, Q.; Jones, P.; Obach, R.S.; Tran, T.D. Aldehyde oxidase: An enzyme of emerging importance in drug discovery. J. Med. Chem. 2010, 53, 8441–8460. [Google Scholar] [CrossRef]
- Garattini, E.; Fratelli, M.; Terao, M. Mammalian aldehyde oxidases: Genetics, evolution and biochemistry. Cell Mol. Life Sci. 2008, 65, 1019–1048. [Google Scholar] [CrossRef]
- Zetterberg, C.; Maltais, F.; Laitinen, L.; Liao, S.; Tsao, H.; Chakilam, A.; Hariparsad, N. VX-509 (Decernotinib)-Mediated CYP3A Time-dependent Inhibition: An Aldehyde Oxidase Metabolite as a Perpetrator of Drug-Drug Interactions. Drug Metab. Dispos. 2016, 44, 1286–1295. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Blacque, O.; Fox, T.; Berke, H. Hydrogenation of Imines Catalyzed by Trisphosphine-Substituted Molybdenum and Tungsten Nitrosyl Hydrides and Co-Catalytic Acid. Chem. Asian J. 2014, 9, 2896–2907. [Google Scholar] [CrossRef]
- Xiong, J.; Chaofeng, L.O.N.G.; Wang, J.; Chen, X.; Chen, K.X.; Cheng, X.I.E.; Li, P.; Peng, X.; Li, J.; Chen, S. Anti-Influenza Virus Pyrimidine Derivative. U.S. Patent 11,136,319, 5 October 2021. [Google Scholar]
- Gresley, N.M.; Griffith, W.P.; Laemmel, A.C.; Nogueira, H.I.; Parkin, B.C. Studies on polyoxo and polyperoxo-metalates. 5. Peroxide-catalysed oxidations with heteropolyperoxo-tungstates and -molybdates. J. Mol. Catal. Chem. 1997, 117, 185–198. [Google Scholar] [CrossRef]
- Palkó, M.; Hänninen, M.M.; Sillanpää, R.; Fülöp, F. Syntheses of four enantiomers of 2,3-diendo- and 3-endo-aminobicyclo [2.2.2]oct-5-ene-2-exo-carboxylic acid and their saturated analogues. Molecules 2013, 18, 15080–15093. [Google Scholar] [CrossRef] [Green Version]
- Surry, D.; Buchwald, S. Biaryl Phosphane Ligands in Palladium-Catalyzed Amination. Angew. Chem. Int. Ed. 2008, 47, 6338–6361. [Google Scholar] [CrossRef] [Green Version]
- Zak, M.; Yuen, P.W.; Liu, X.; Patel, S.; Sampath, D.; Oeh, J.; Liederer, B.M.; Wang, W.; O’Brien, T.; Xiao, Y.; et al. Minimizing CYP2C9 Inhibition of Exposed-Pyridine NAMPT (Nicotinamide Phosphoribosyltransferase) Inhibitors. J. Med. Chem. 2016, 59, 8345–8368. [Google Scholar] [CrossRef]
- Tars, K.; Leitans, J.; Kazaks, A.; Zelencova, D.; Liepinsh, E.; Kuka, J.; Makrecka, M.; Lola, D.; Andrianovs, V.; Gustina, D.; et al. Targeting Carnitine Biosynthesis: Discovery of New Inhibitors against γ-Butyrobetaine Hydroxylase. J. Med. Chem. 2012, 57, 2213–2236. [Google Scholar] [CrossRef]
- Meenakshi, R.; Shakeela, K.; Rani, S.K.; Rao, G.R. Oxidation of Aniline to Nitrobenzene Catalysed by 1-Butyl-3-methyl imidazolium phosphotungstate Hybrid Material Using m-chloroperbenzoic Acid as an Oxidant. Catal. Lett. 2017, 148, 246–257. [Google Scholar] [CrossRef]
- Shah, P.; Cheasty, A.; Foxton, C.; Raynham, T.; Farooq, M.; Gutierrez, I.F.; Lejeune, A.; Pritchard, M.; Turnbull, A.; Pang, L.; et al. Discovery of potent inhibitors of the lysophospholipase autotaxin. Bioorg. Med. Chem. Lett. 2016, 26, 5403–5410. [Google Scholar] [CrossRef]
- Lardy, S.; Schmidt, V. Thiol Catalyzed Aerobic Debenzylation of Alcohols and Amines. ChemRxiv. Camb. 2021. [Google Scholar] [CrossRef]
- Powers, J.P.; Li, S.; Jaen, J.C.; Liu, J.; Walker, N.P.; Wang, Z.; Wesche, H. Discovery and initial SAR of inhibitors of interleukin-1 receptor-associated kinase-4. Bioorg. Med. Chem. Lett. 2006, 16, 2842–2845. [Google Scholar] [CrossRef]
- Abraham, M.; Hess, B.; Spoel, D.V.D.; Hess, B. GROMACS User Manual version 5.0.7. Search PubMed 2015, 4, 85–86. [Google Scholar]
- Sitkoff, D.; Sharp, K.A.; Honig, B. Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. J. Phys. Chem. 1994, 98, 1978–1988. [Google Scholar]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R.; Lynn, A.; Open Source Drug Discovery Consortium. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model 2014, 54, 1951–1962. [Google Scholar] [CrossRef]
- Dzubiella, J.; Swanson, J.M.J.; McCammon, J.A. Coupling nonpolar and polar solvation free energies in implicit solvent models. J. Chem. Phys. 2006, 124, 084905. [Google Scholar] [CrossRef] [Green Version]
- McGowan, D.C.; Balemans, W.; Embrechts, W.; Motte, M.; Keown, J.R.; Buyck, C.; Corbera, J.; Funes, M.; Moreno, L.; Cooymans, L.; et al. Design, Synthesis, and Biological Evaluation of Novel Indoles Targeting the Influenza PB2 Cap Binding Region. J. Med. Chem. 2019, 62, 9680–9690. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, C.; Wang, L.; Xiang, Y.; Zhang, W.; Li, Y.; Zhuang, X. Comparable Intestinal and Hepatic First-Pass Effect of YL-IPA08 on the Bioavailability and Effective Brain Exposure, a Rapid Anti-PTSD and Anti-Depression Compound. Front. Pharmacol. 2020, 11, 588127. [Google Scholar] [CrossRef]
- Obach, R.S. Potent inhibition of human liver aldehyde oxidase by raloxifene. Drug Metab. Dispos. 2004, 32, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Sousa da Silva, A.W.; Vranken, W.F. ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, D.A. Amber. Curr. Biol. 2019, 29, R861–R862. [Google Scholar] [CrossRef]
- Schauperl, M.; Nerenberg, P.S.; Jang, H.; Wang, L.P.; Bayly, C.I.; Mobley, D.L.; Gilson, M.K. Non-bonded force field model with advanced restrained electrostatic potential charges (RESP2). Commun. Chem. 2020, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Miller, B.R., 3rd; McGee, T.D., Jr.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
Compounds | Docking Score | H1N1 IC50 (μM) | H3N2 IC50 (μM) | CC50 (μM) | SPR KD (μM) |
---|---|---|---|---|---|
OC | - | 2.12 ± 0.03 | 0.04 ± 0.04 | >200 | - |
VX-787 | −11.519 | <0.003 | <0.003 | >200 | 0.152 |
comp. I | −10.550 | 0.07 ± 0.02 | 0.04 ± 0.01 | >200 | 1.398 |
comp. Ⅱ | −10.475 | 0.09 ± 0.05 | 0.07 ± 0.03 | >200 | 1.670 |
Compounds | Microsome | Cytoplasm | |||
---|---|---|---|---|---|
T1/2 a (min) | Clh b (mL/min/kg) | T1/2 (min) | |||
Rat | Human | Rat | Human | Human | |
VX-787 | 349.29 | 249.46 | 1.72 | 1.49 | 150 |
comp. I | >800 | >800 | 0.53 | <0.1 | >800 |
comp. II | >800 | >800 | <0.1 | 0.46 | >800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xu, Y.; Li, W.; Che, J.; Zhao, X.; Cao, R.; Li, X.; Li, S. Design, Synthesis, Biological Evaluation, and Molecular Dynamics Simulation of Influenza Polymerase PB2 Inhibitors. Molecules 2023, 28, 1849. https://doi.org/10.3390/molecules28041849
Li X, Xu Y, Li W, Che J, Zhao X, Cao R, Li X, Li S. Design, Synthesis, Biological Evaluation, and Molecular Dynamics Simulation of Influenza Polymerase PB2 Inhibitors. Molecules. 2023; 28(4):1849. https://doi.org/10.3390/molecules28041849
Chicago/Turabian StyleLi, Xinhong, Yijie Xu, Wei Li, Jinjing Che, Xu Zhao, Ruyuan Cao, Xingzhou Li, and Song Li. 2023. "Design, Synthesis, Biological Evaluation, and Molecular Dynamics Simulation of Influenza Polymerase PB2 Inhibitors" Molecules 28, no. 4: 1849. https://doi.org/10.3390/molecules28041849
APA StyleLi, X., Xu, Y., Li, W., Che, J., Zhao, X., Cao, R., Li, X., & Li, S. (2023). Design, Synthesis, Biological Evaluation, and Molecular Dynamics Simulation of Influenza Polymerase PB2 Inhibitors. Molecules, 28(4), 1849. https://doi.org/10.3390/molecules28041849