The Network Basis for the Structural Thermostability and the Functional Thermoactivity of Aldolase B
Abstract
:1. Introduction
2. Results
2.1. The Biggest Grid28 in Monomer B of Aldolase B-A149P at 277 K Had a Predicted Tm 18 °C
2.2. The Melting of the Biggest Grid28 in Monomer B of Aldolase B-A149P at 291 K Produced the Biggest Grid25 with a Calculated Tm 29 °C
2.3. The Biggest Grid27 in Monomer A of Aldolase B-A149P at 277 K Had a Predicted Tm 15 °C
2.4. The Melting of the Biggest Grid27 in Monomer A of Aldolase B-A149P at 291 K Produced the Biggest Grid14 with a Calculated Tm 41 °C
2.5. The Same Biggest Grid14 with the Same Tm 41 °C Appeared in Monomer D of Wild-Type Aldolase B at Room Temperature (293 K)
2.6. The Biggest Grid11 in Monomer A of Wild-Type Aldolase B at Room Temperature (293 K) Had a Predicted Tm 52 °C
3. Discussion
4. Materials and Methods
4.1. Data Mining Resources
4.2. Standards for Non-Covalent Interactions
4.3. Preparation of Topological Grid Maps by Using Graph Theory
4.4. Equation
4.5. Ethics Statement
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
References
- Malay, A.D.; Procious, S.L.; Tolan, D.R. The temperature dependence of activity and structure for the most prevalent mutant aldolase B associated with hereditary fructose intolerance. Arch. Biochem. Biophys. 2002, 408, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Malay, A.D.; Allen, K.N.; Tolan, D.R. Structure of the thermolabile mutant aldolase B, A149P: Molecular basis of hereditary fructose intolerance. J. Mol. Biol. 2005, 347, 135–144. [Google Scholar] [CrossRef]
- Tolan, D.R. Molecular basis of hereditary fructose intolerance: Mutations and polymorphisms in the human aldolase B gene. Hum. Mutat. 1995, 6, 210–218. [Google Scholar] [CrossRef]
- Baerlocher, K.; Gitzelmann, R.; Steinmann, B.; Gitzelmann-Cumarumsay, N. Hereditary fructose intolerance in early childhood: A major diagnostic challenge. Helv. Paediat. Acta 1978, 33, 465–487. [Google Scholar] [PubMed]
- Cox, T.M. Hereditary fructose intolerance. Quart. J. Med. 1988, 68, 585–594. [Google Scholar] [PubMed]
- Jonstrup, A.T.; Fredsøe, J.; Andersen, A.H. DNA Hairpins as Temperature Switches, Thermometers and Ionic Detectors. Sensors 2013, 13, 5937–5944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalby, A.; Dauter, Z.; Littlechild, J.A. Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: Mechanistic implications. Protein Sci. 1999, 8, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Miotto, M.; Olimpieri, P.P.; Rienzo, L.D.; Ambrosetti, F.; Corsi, P.; Lepore, R.; Tartaglia, G.G.; Milanetti, E. Insights on protein thermal stability: A graph representation of molecular interactions. Bioinformatics 2019, 35, 2569–2577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalby, A.; Tolan, D.R.; Littlechild, J.A. Crystal structure of human liver fructose 1,6-bisphos-phate aldolase. Acta Crystallog. Sect. D 2001, 57, 1526–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, F.X. Protein Structure: A Practical Approach; Creighton, T.E., Ed.; IRL Press: Oxford, UK, 1989; pp. 251–285. [Google Scholar]
- Baron, C.B.; Tolan, D.R.; Choi, K.H.; Coburn, R.F.; Aldolase, A. Ins(1,4,5)P3-binding domains as determined by site-directed mutagenesis. Biochem. J. 1999, 341 Pt 3, 805–812. [Google Scholar] [CrossRef]
- Choi, K.H.; Shi, J.; Hopkins, C.E.; Tolan, D.R.; Allen, K.N. Snapshots of catalysis: The structure of fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate. Biochemistry 2001, 40, 13868–13875. [Google Scholar] [CrossRef]
- Arakaki, T.L.; Pezza, J.A.; Cronin, M.A.; Hopkins, C.E.; Zimmer, D.B.; Tolan, D.R.; Allen, K.N. Structure of human brain fructose 1,6-bisphosphate aldolase: Linking isozyme structure with function. Protein Sci. 2004, 13, 3077–3084. [Google Scholar] [CrossRef]
- Pezza, J.A.; Stopa, J.D.; Brunyak, E.M.; Allen, K.N.; Tolan, D.R. Thermodynamic Analysis Shows Conformational Coupling/Dynamics Confers Substrate Specificity in Fructose-1,6-bisphosphate Aldolase. Biochemistry 2007, 46, 13010–13018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, C.Y.; Nakai, N.; Chang, D. Amino acid sequence of rabbit muscle aldolase and the structure of the active center. Science 1974, 183, 1204–1206. [Google Scholar] [CrossRef] [PubMed]
- Maurady, A.; Zdanov, A.; de Moissac, D.; Beaudry, D.; Sygusch, J. A conserved glutamate residue exhibits multifunctional catalytic roles in D -fructose-1,6-bisphosphate aldolases. J. Biol. Chem. 2002, 277, 9474–9483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sygusch, J.; Beaudry, D.; Allaire, M. Molecular architecture of rabbit skeletal muscle aldolase at 2.7-A resolution. Proc. Natl. Acad. Sci. USA 1987, 84, 7846–7850. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.H.; Mazurkie, A.S.; Morris, A.J.; Utheza, D.; Tolan, D.R.; Allen, K.N. Structure of a fructose-1,6-bis(phosphate) aldolase liganded to its natural substrate in a cleavage-defective mutant at 2.3 A. Biochemistry 1999, 38, 12655–12664. [Google Scholar] [CrossRef]
- Blom, N.; Sygusch, J. Product binding and role of the C-terminal region in class I D-fructose 1,6-bisphosphate aldolase. Nat. Struct. Biol. 1997, 4, 36–39. [Google Scholar] [CrossRef]
- Morris, A.J.; Tolan, D.R. Lysine-146 of rabbit muscle aldolase is essential for cleavage and condensation of the C3–C4 bond of fructose 1,6-bis(phosphate). Biochemistry 1994, 33, 12291–12297. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.J.; Davenport, R.C.; Tolan, D.R. A lysine to arginine substitution at position 146 of rabbit aldolase A shifts the rate-determining step to Schiff base formation. Protein Eng. 1996, 9, 61–67. [Google Scholar] [CrossRef]
- Blonski, C.; Demoissac, D.; Périé, J.; Sygusch, J. Inhibition of rabbit muscle aldolase by phosphorylated aromatic compounds. Biochem. J. 1997, 323, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Rellos, P.; Sygusch, J.; Cox, T.M. Expression, purification, and characterization of natural mutants of human aldolase B: Role of quaternary structure in catalysis. J. Biol. Chem. 2000, 275, 1145–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamaria, R.; Tamasi, S.; Del Piano, G.; Sebastio, G.; Andria, G.; Borrone CFaldella, G.; Izzo, P.; Salvatore, F. Molecular basis of hereditary fructose intolerance in Italy: Identification of two novel mutations in the aldolase B gene. J. Med.Genet. 1996, 33, 786–788. [Google Scholar] [CrossRef] [Green Version]
- Santamaria, R.; Esposito, G.; Vitagliano, L.; Race, V.; Paglionico, I.; Zancan LZagari, A.; Salvatore, F. Functional and molecular modelling studies of two hereditary fructose intolerance-causing mutations at arginine 303 in human liver aldolase. Biochem. J. 2000, 350, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, R.; Vitagliano, L.; Tamasi, S.; Izzo, P.; Zancan, L.; Zagari, A.; Salvatore, F. Novel six-nucleotide deletion in the hepatic fructose-1,6-bisphosphate aldolase gene in a patient with hereditary fructose intolerance and enzyme structure-function implications. Eur. J. Hum. Genet. 1999, 7, 409–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cross, N.C.; de Franchis, R.; Sebastio, G.; Dazzo, C.; Tolan, D.R.; Gregori, C.; Odievre, M.; Vidailhet, M.; Romano, V.; Mascali, G.; et al. Molecular analysis of aldolase B genes in hereditary fructose intolerance. Lancet 1990, 335, 306–309. [Google Scholar] [CrossRef]
- Ali, M.; Cox, T.M. Diverse mutations in the aldolase B gene that underlie the prevalence of hereditary fructose intolerance. Am. 7Hum Genet. 1995, 56, 1002–1005. [Google Scholar]
- Floyd, R.W. Algorithm-97—Shortest Path. Commun. Acm. 1962, 5, 345. [Google Scholar] [CrossRef]
Construct | Wild-Type | A149P | ||||
---|---|---|---|---|---|---|
PDB ID | 1QO5 | 1XDL | 1XDM | |||
Sampling temperature | Room temperature (293 K) | 277 K | 291 K | |||
Monomers in a tetramer | A | D | A | B | A | B |
The name of the biggest Grid | Grid11 | Grid14 | Grid27 | Grid28 | Grid14 | Grid25 |
The biggest grid size (Smax), a.a | 11 | 14 | 27 | 28 | 14 | 25 |
Equivalent H-bonds in Smax | 2 | 1.5 | 1.5 | 2.0 | 1.5 | 2.5 |
Total non-covalent interactions (N) | 49 | 47 | 37 | 38 | 37 | 39 |
Total grid sizes (S), a.a. | 140 | 139 | 135 | 128 | 126 | 147 |
Systematic thermal instability (Ti) | 2.86 | 2.96 | 3.65 | 3.37 | 3.41 | 3.77 |
Calculated Tm | 52 °C | 41 °C | 15 °C | 18 °C | 41 °C | 29 °C |
Measured Tm for tertiary structure | 50 °C | 40 °C | 40°C | 30 °C | ||
Measured Tth for the activity | 50 °C | 40 °C | 15 °C | 15 °C | 40 °C | |
Ref. for measured Tm or Tth | [1,2] | [1,2] | [2] | [2] | [1,2] | [1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G. The Network Basis for the Structural Thermostability and the Functional Thermoactivity of Aldolase B. Molecules 2023, 28, 1850. https://doi.org/10.3390/molecules28041850
Wang G. The Network Basis for the Structural Thermostability and the Functional Thermoactivity of Aldolase B. Molecules. 2023; 28(4):1850. https://doi.org/10.3390/molecules28041850
Chicago/Turabian StyleWang, Guangyu. 2023. "The Network Basis for the Structural Thermostability and the Functional Thermoactivity of Aldolase B" Molecules 28, no. 4: 1850. https://doi.org/10.3390/molecules28041850
APA StyleWang, G. (2023). The Network Basis for the Structural Thermostability and the Functional Thermoactivity of Aldolase B. Molecules, 28(4), 1850. https://doi.org/10.3390/molecules28041850