Headspace Solid Phase Micro-Extraction of Volatile Constituents Produced from Saudi Ruta chalepensis and Molecular Docking Study of Potential Antioxidant Activity
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Essential Oil
2.2. In Vitro Antioxidant Study
2.3. In-Silico Study for the Phytoconstituents in Essential Oil
2.4. Acute Systemic Toxicity (LD50)
3. Discussion
4. Materials and Methods
4.1. Plant Material, Essential Oil Extraction, and GC/MS Analysis
4.2. Biological Activity
Antioxidant Activity
- DPPH Assay
- Nitric oxide radical scavenging assay
- FRAP Assay
4.3. In Silico Activities
Molecular Dockings
4.4. Acute Systemic Toxicity (LD50)
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Balwan, W.K.; Kour, S. Lifestyle Diseases: The Link between Modern Lifestyle and Threat to Public Health. Saudi J. Med. Pharm. Sci. 2021, 7, 179–184. [Google Scholar] [CrossRef]
- Ghalloo, B.A.; Khan, K.-u.-R.; Ahmad, S.; Aati, H.Y.; Al-Qahtani, J.H.; Ali, B.; Mukhtar, I.; Hussain, M.; Shahzad, M.N.; Ahmed, I. Phytochemical Profiling, In Vitro Biological Activities, and In Silico Molecular Docking Studies of Dracaena reflexa. Molecules 2022, 27, 913. [Google Scholar] [CrossRef] [PubMed]
- Dilshad, R.; Khan, K.-U.; Ahmad, S.; Aati, H.Y.; Al-Qahtani, J.H.; Sherif, A.E.; Hussain, M.; Ghalloo, B.A.; Tahir, H.; Basit, A.; et al. Phytochemical profiling, in vitro biological activities, and in-silico molecular docking studies of Typha domingensis. Arab. J. Chem. 2022, 15, 104133. [Google Scholar] [CrossRef]
- Dilshad, R.; Khan, K.-U.; Saeed, L.; Sherif, A.E.; Ahmad, S.; Ovatlarnporn, C.; Nasim, J.; Hussain, M.; Ghalloo, B.A.; Basit, A.; et al. Chemical Composition and Biological Evaluation of Typha domingensis Pers. to Ameliorate Health Pathologies: In Vitro and In Silico Approaches. BioMed Res. Int. 2022, 2022, 8010395. [Google Scholar] [CrossRef] [PubMed]
- Dragland, S.; Senoo, H.; Wake, K.; Holte, K.; Blomhoff, R. Several Culinary and Medicinal Herbs Are Important Sources of Dietary Antioxidants. J. Nutr. 2003, 133, 1286–1290. [Google Scholar] [CrossRef] [Green Version]
- Boughendjioua, H. Yield, Chemical Composition and Antibacterial Activity of Ruta chalepensis L. essential oil growing spontaneously in Algeria. Pharm. Pharmacol. Int. J. 2019, 7, 33–36. [Google Scholar] [CrossRef]
- Alotaibi, S.M.; Saleem, M.S.; Al-Humaidi, J.G. Phytochemical contents and biological evaluation of Ruta chalepennsis L. growing in Saudi Arabia. Saudi Pharm. J. 2018, 26, 504–508. [Google Scholar] [CrossRef]
- Nahar, L.; El-Seedi, H.; Khalifa, S.; Mohammadhosseini, M.; Sarker, S. Ruta Essential Oils: Composition and Bioactivities. Molecules 2021, 26, 4766. [Google Scholar] [CrossRef]
- Pollio, A.; De Natale, A.; Appetiti, E.; Aliotta, G.; Touwaide, A. Continuity and change in the Mediterranean medical tradition: Ruta spp. (rutaceae) in Hippocratic medicine and present practices. J. Ethnopharmacol. 2008, 116, 469–482. [Google Scholar] [CrossRef]
- Boudjema, K.; Guerdouba, A.; Hali, L. Composition, Physicochemical Analysis, Antimicrobial and Anti-Inflammatory Activities of the Essential Oils Obtained from Ruta chalepensis. L Growing Wild in Northen of Algeria. J. Chem. Soc. Pak. 2018, 40, 1054. [Google Scholar]
- Isman, M.B. Botanical Insecticides, Deterrents, and Repellents in Modern Agriculture and an Increasingly Regulated World. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Jaradat, N.; Adwan, L.; K’Aibni, S.; Zaid, A.N.; Shtaya, M.J.Y.; Shraim, N.; Assali, M. Variability of Chemical Compositions and Antimicrobial and Antioxidant Activities of Ruta chalepensis Leaf Essential Oils from Three Palestinian Regions. BioMed Res. Int. 2017, 2017, 2672689. [Google Scholar] [CrossRef] [Green Version]
- Aati, H.Y.; Perveen, S.; Orfali, R.; Al-Taweel, A.M.; Aati, S.; Wanner, J.; Khan, A.; Mehmood, R. Chemical composition and antimicrobial activity of the essential oils of Artemisia absinthium, Artemisia scoparia, and Artemisia sieberi grown in Saudi Arabia. Arab. J. Chem. 2020, 13, 8209–8217. [Google Scholar] [CrossRef]
- Peeriga, R.; Adarapu, K.P.; Kurama, A.; Mohammed, N.; Atmakuri, L.R.; Kumar, D. In silico Investigation on Phytoconstituents in Pamburus missionis S. for Antioxidant Activity. Pharmacogn. Res. 2022, 14, 246–250. [Google Scholar] [CrossRef]
- Aati, H.; El-Gamal, A.; Shaheen, H.; Kayser, O. Traditional use of ethnomedicinal native plants in the Kingdom of Saudi Arabia. J. Ethnobiol. Ethnomed. 2019, 15, 2. [Google Scholar] [CrossRef]
- Caputi, L.; Aprea, E. Use of Terpenoids as Natural Flavouring Compounds in Food Industry. Recent Pat. Food Nutr. Agric. 2011, 3, 9–16. [Google Scholar] [CrossRef]
- Merghache, S.; Hamza, M.; Bendahou, M.; Tabti, B. Chemical Composition and Antimicrobial Activity of Ruta chalepensis L. essential oil from Algeria. Asian J. Chem. 2008, 20, 2989. [Google Scholar]
- Diniz do Nascimento, L.; De Moraes, A.A.B.; Da Costa, K.S.; Galúcio, J.M.P.; Taube, P.S.; Costa, C.M.L.; Cruz, J.N.; Andrade, E.H.D.A.; De Faria, L.J.G. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Attia, F.A.k.; Liu, Z.; Li, C.; Wei, J.; Kang, W. Antioxidant Activity and Total Phenolic Content of Essential Oils and Extracts of Sweet Basil (Ocimum basilicum L.) Plants. Food Sci. Hum. Wellness 2019, 8, 299–305. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and Antioxidant Methods: An Updated Overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [Green Version]
- Baig, M.H.; Ahmad, K.; Rabbani, G.; Danishuddin, M.; Choi, I. Computer Aided Drug Design and its Application to the Development of Potential Drugs for Neurodegenerative Disorders. Curr. Neuropharmacol. 2018, 16, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Calderon, O.; Chacaltana-Ramos, L.J.; Huayanca-Gutiérrez, I.C.; Algarni, M.A.; Alqarni, M.; Batiha, G.E.S. Chemical Constituents, In vitro Antioxidant Activity and In silico Study on NADPH Oxidase of Allium sativum L. (garlic) Essential Oil. Antioxidants 2021, 10, 1844. [Google Scholar] [CrossRef] [PubMed]
- Aati, H.Y.; Perveen, S.; Aati, S.; Orfali, R.; Alqahtani, J.H.; Al-Taweel, A.M.; Wanner, J.; Aati, A.Y. Headspace Solid-Phase Microextraction Method for Extracting Volatile Constituents from the Different Parts of Saudi Anethum graveolens L. and their Antimicrobial Activity. Heliyon 2022, 8, e09051. [Google Scholar] [CrossRef] [PubMed]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of Nitrate, Nitrite, and [15N] Nitrate in Biological Fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Idris, M.O.; Adeniji, S.E.; Habib, K.; Adeiza, A.A. Molecular Docking of Some Novel Quinoline Derivatives as Potent Inhibitors of Human Breast Cancer Cell Line. Lab-Silico 2021, 2, 30–37. [Google Scholar]
- Aati, H.Y.; Anwar, M.; Al-Qahtani, J.; Al-Taweel, A.; Khan, K.-u.-R.; Aati, S.; Usman, F.; Ghalloo, B.A.; Asif, H.M.; Shirazi, J.H.; et al. Phytochemical Profiling, In Vitro Biological Activities, and In-Silico Studies of Ficus vasta Forssk.: An Unexplored Plant. Antibiotics 2022, 11, 1155. [Google Scholar] [CrossRef]
- Karber, G. Beitrag Zur Kollecktiven Behandlung Pharmakologischer Reihenversuche. Arch. Exp. Pathol. Pharmakol. 1931, 162, 480–483. [Google Scholar] [CrossRef]
# | Compound | Rt (min.) | RI | %Conc. |
---|---|---|---|---|
1 | Ethyl 2-methylbutyrate | 10.88 | 845.00 | 0.10 |
2 | α-Thujene | 14.71 | 931.00 | 0.10 |
3 | α-Pinene | 15.15 | 940.00 | 0.10 |
4 | Camphene | 15.94 | 957.00 | 0.10 |
5 | Benzaldehyde | 16.16 | 961.00 | 0.10 |
6 | Sabinene | 17.00 | 979.00 | 0.10 |
7 | β-Pinene | 17.30 | 985.00 | 0.10 |
8 | 2-Octanone | 17.40 | 987.00 | 0.10 |
9 | Myrcene | 17.58 | 991.00 | 0.10 |
10 | Octan–2-ol | 17.85 | 996.00 | 0.10 |
11 | α-Phellandrene | 18.51 | 1010.00 | 0.10 |
12 | α-Terpinene | 19.11 | 1022.00 | 0.10 |
13 | p-Cymene | 19.45 | 1029.00 | 0.20 |
14 | Limonene | 19.73 | 1034.00 | 2.60 |
15 | Artemisia ketone | 21.00 | 1060.00 | 1.60 |
16 | γ-Terpinene | 21.17 | 1063.00 | 0.10 |
17 | cis-sabinene hydrate | 21.61 | 1072.00 | 0.30 |
18 | 2-Nonanone | 22.53 | 1090.00 | 20.00 |
19 | Terpinen–4-ol | 22.70 | 1094.00 | 0.20 |
20 | 2-Nonanol | 22.87 | 1097.00 | 1.50 |
21 | Linalool | 22.97 | 1099.00 | 0.50 |
22 | Nonanal | 23.10 | 1102.00 | 0.10 |
23 | Oct–2-yl acetate | 24.69 | 1134.00 | 0.30 |
24 | Geijerene | 25.59 | 1153.00 | 1.40 |
25 | Camphor | 25.65 | 1154.00 | 2.70 |
26 | Borneol | 26.70 | 1176.00 | 0.10 |
27 | 2-Decanone | 27.43 | 1190.00 | 1.60 |
28 | α-Terpineol | 27.74 | 1197.00 | 0.10 |
29 | cis-dihydrocarvone | 28.02 | 1203.00 | 0.30 |
30 | trans-dihydrocarvone | 28.42 | 1211.00 | 0.60 |
31 | 2-Nonyl acetate | 29.43 | 1233.00 | 7.50 |
32 | Carvone | 30.24 | 1250.00 | 1.30 |
33 | Isogeijerene C | 31.00 | 1266.00 | 0.10 |
34 | 2-Undecanone | 32.33 | 1295.00 | 37.30 |
35 | 2-Undecanol | 32.53 | 1299.00 | 0.70 |
36 | 3-Nonyl acetate | 32.87 | 1306.00 | 0.10 |
37 | 2-Decyl acetate | 33.94 | 1330.00 | 0.10 |
38 | Piperitenone | 34.85 | 1351.00 | 0.10 |
39 | 6-Dodecanone | 35.47 | 1365.00 | 1.20 |
40 | (Z)-ethyl cinnamate | 36.09 | 1379.00 | 0.10 |
41 | 8-epi-Dictamnol | 36.48 | 1387.00 | 0.10 |
42 | Biphenyl | 36.65 | 1391.00 | 2.40 |
43 | 2-Dodecanone | 36.74 | 1393.00 | 0.50 |
44 | β-Elemene | 37.28 | 1406.00 | 0.30 |
45 | 2-Undecyl acetate | 38.25 | 1428.00 | 1.40 |
46 | (E)-β-caryophyllene | 38.80 | 1442.00 | 0.70 |
47 | Dictamnol | 38.96 | 1445.00 | 0.20 |
48 | (E)-β-farnesene | 39.56 | 1460.00 | 0.30 |
49 | (E)-Ehyl cinnamate | 40.01 | 1470.00 | 0.30 |
50 | α-curcumene | 40.91 | 1492.00 | 0.30 |
51 | 2-Tridecanone | 41.04 | 1495.00 | 0.70 |
52 | Germacrene D | 41.33 | 1502.00 | 0.20 |
53 | β-Selinene | 41.63 | 1509.00 | 0.10 |
54 | α-Selinene | 41.95 | 1517.00 | 0.10 |
55 | β-Sesquiphellandrene | 42.68 | 1535.00 | 0.30 |
56 | δ-Cadinene | 42.81 | 1539.00 | 0.10 |
57 | (E)-α-Bisabolene | 43.31 | 1551.00 | 0.20 |
58 | Elemol | 43.83 | 1564.00 | 0.20 |
59 | (E)-Nerolidol | 43.99 | 1568.00 | 0.10 |
60 | cis-Davanone | 44.99 | 1593.00 | 0.20 |
61 | Dulcinyl | 45.45 | 1605.00 | 0.80 |
62 | Dill apiole | 46.52 | 1633.00 | 0.60 |
63 | β-Eudesmol | 48.13 | 1675.00 | 0.10 |
64 | 7-Methoxycoumarin | 50.60 | 1742.00 | 0.10 |
65 | Psoralen | 54.43 | 1851.00 | 3.20 |
66 | Methyl palmitate | 56.89 | 1923.00 | 0.10 |
67 | Moskachane D | 61.33 | 2043.00 | 0.10 |
68 | Bergaptene | 62.91 | 2081.00 | 0.10 |
Cyclic Monoterpenes | 9.30 | |||
Acyclic (Hydrocarbon) Monoterpenes | 0.60 | |||
Cyclic Sesquiterpenes | 3.10 | |||
Acyclic (Hydrocarbon) Sesquiterpenes | 0.40 | |||
Cyclic Diterpenes | 0.10 | |||
Other Chemical Classes | 84.20 | |||
Total % | 97.70 |
Sample | Dose (µL) | DPPH Scavenging Activity | Nitric oxide Scavenging Activity | Reducing Power (FRAP) Potential |
---|---|---|---|---|
Essential oil | 10 | 11.07 ± 4.68 | 15.70 ± 12.81 | 0.32 ± 0.02 |
Essential oil | 20 | 20.09 ± 6.24 | 37.57 ± 3.43 | 0.65 ± 0.07 |
Essential oil | 50 | 49.67 ± 6.25 | 49.31 ± 2.76 | 0.89 ± 0.07 |
Essential oil | 100 | 86.25 ± 1.22 | 82.30 ± 4.73 | 1.43 ± 0.05 |
Ascorbic acid | 100 | 91.07 ± 2.28 | 89.68 ± 3.49 | 1.97 ± 0.11 |
IC 50 (% Inhibition) | DPPH Scavenging Method | Nitric Oxide Scavenging Method | Reducing Power (FRAP) Method |
---|---|---|---|
Essential oil | 40.26% | 36.88% | 19.09% |
Ascorbic acid | 20.94% | 24.75% | 16.10% |
Sr. No. | Ligands | Highest to Lowest Mode of Conformation with Corresponding Binding Affinities in ΔG (Kcal/mol) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
1 | 7-Methoxycoumarin | −7.6 | −7.6 | −7.5 | −7.4 | −7.2 | −6.9 | −6.9 | −6.8 | −6.6 |
2 | α-Selinene | −7.9 | −7.8 | −7.6 | −7.3 | −7.0 | −6.7 | −6.7 | −6.3 | −6.3 |
3 | Bergapten | −8.1 | −8 | −7.9 | −7.7 | −7.7 | −7.6 | −7.4 | −7.0 | −6.9 |
4 | δ-Cadinene | −8.3 | −8.1 | −8.0 | −7.9 | −7.8 | −7.6 | −7.5 | −7.3 | −7.0 |
5 | β-Selinene | −7.4 | −7.3 | −6.9 | −6.9 | −6.6 | −6.2 | −6.1 | −6.1 | −6.0 |
6 | Sesquiphellandrene | −7.6 | −7.5 | −7.3 | −7.2 | −7.2 | −7.1 | −7.1 | −6.9 | −6.8 |
7 | trans-β-Farnesene | −7.7 | −7.5 | −7.4 | −7.3 | −7.3 | −7.2 | −7.2 | −7.2 | −7.0 |
8 | Nerolidol | −7.5 | −7.2 | −7.1 | −7.1 | −6.9 | −6.7 | −6.7 | −6.7 | −6.5 |
9 | (E)-α-bisabolene | −8.5 | −8.2 | −8.1 | −8.0 | −7.5 | −7.3 | −7.2 | −7.2 | −7.1 |
10 | Psoralen | −8.6 | −8.5 | −7.9 | −7.8 | −7.7 | −7.6 | −7.6 | −7.4 | −7.4 |
11 | Germacrene D | −8.1 | −8 | −6.9 | −6.9 | −6.7 | −6.7 | −6.6 | −6.3 | −6.1 |
12 | Biphenyl | −7.8 | −7.8 | −7.8 | −7.8 | −7.8 | −7.7 | −7.7 | −7.5 | −7.4 |
13 | β-Eudesmol | −8.0 | −7.8 | −7.6 | −7.4 | −7.3 | −6.9 | −6.5 | −6.4 | −6.4 |
14 | Dictamnol | −7.4 | −7.1 | −6.9 | −6.6 | −6.5 | −6.4 | −6.3 | −6.2 | −6.2 |
15 | Ascorbic acid (Standard) | −7.1 | −6.9 | −6.7 | −6.5 | −6.4 | −6.3 | −6.2 | −6.1 | −6.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aati, H.Y.; Attia, H.; Babtin, R.; Al-Qahtani, N.; Wanner, J. Headspace Solid Phase Micro-Extraction of Volatile Constituents Produced from Saudi Ruta chalepensis and Molecular Docking Study of Potential Antioxidant Activity. Molecules 2023, 28, 1891. https://doi.org/10.3390/molecules28041891
Aati HY, Attia H, Babtin R, Al-Qahtani N, Wanner J. Headspace Solid Phase Micro-Extraction of Volatile Constituents Produced from Saudi Ruta chalepensis and Molecular Docking Study of Potential Antioxidant Activity. Molecules. 2023; 28(4):1891. https://doi.org/10.3390/molecules28041891
Chicago/Turabian StyleAati, Hanan Y., Hala Attia, Razan Babtin, Najla Al-Qahtani, and Juergen Wanner. 2023. "Headspace Solid Phase Micro-Extraction of Volatile Constituents Produced from Saudi Ruta chalepensis and Molecular Docking Study of Potential Antioxidant Activity" Molecules 28, no. 4: 1891. https://doi.org/10.3390/molecules28041891
APA StyleAati, H. Y., Attia, H., Babtin, R., Al-Qahtani, N., & Wanner, J. (2023). Headspace Solid Phase Micro-Extraction of Volatile Constituents Produced from Saudi Ruta chalepensis and Molecular Docking Study of Potential Antioxidant Activity. Molecules, 28(4), 1891. https://doi.org/10.3390/molecules28041891