BaTiO3 Functional Perovskite as Photocathode in Microbial Fuel Cells for Energy Production and Wastewater Treatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of BaTiO3 Structure and Morphology
2.2. Optical Properties
2.3. Electrochemical Characterization
2.4. Performance in Single-Chamber MFC
3. Materials and Methods
3.1. Catalyst Preparation and Characterization
3.2. MFC Operation
3.3. COD Removal Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.K.; Boddula, R.; Pothu, R. Microbial fuel cells: Technologically advanced devices and approach for sustainable/renewable energy development. Energy Convers. Manag. X 2022, 13, 100160. [Google Scholar] [CrossRef]
- Tang, J.; Xu, X.; Tang, T.; Zhong, Y.; Shao, Z. Perovskite-Based Electrocatalysts for Cost-Effective Ultrahigh-Current-Density Water Splitting in Anion Exchange Membrane Electrolyzer Cell. Small Methods 2022, 6, 2201099. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, M.; Tian, X.; Tan, C.; McDaniel, C.T.; Hassett, D.J.; Gu, T. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol. Adv. 2018, 36, 1316–1327. [Google Scholar] [CrossRef]
- Kouam Ida, T.; Mandal, B. Microbial fuel cell design, application and performance: A review. Mater. Today Proc. 2022, in press. [Google Scholar] [CrossRef]
- Benzaouak, A.; Touach, N.; Mahir, H.; Elhamdouni, Y.; Labjar, N.; El Hamidi, A.; El Mahi, M.; Lotfi, E.M.; Kacimi, M.; Liotta, L.F. ZrP2O7 as a Cathodic Material in Single-Chamber MFC for Bioenergy Production. Nanomaterials 2022, 12, 3330. [Google Scholar] [CrossRef]
- Touach, N.; Ortiz-Martínez, V.M.; Salar-García, M.J.; Benzaouak, A.; Hernández-Fernández, F.; de los Ríos, A.P.; Labjar, N.; Louki, S.; El Mahi, M.; Lotfi, E.M. Influence of the preparation method of MnO2-based cathodes on the performance of single-chamber MFCs using wastewater. Sep. Purif. Technol. 2016, 171, 174–181. [Google Scholar] [CrossRef]
- Fan, M.; Li, H.; Mo, J.; Chen, Y.; Liu, J.; Zhu, J.; Shen, S. Performance comparison of activated carbon and Pt/C cathode microbial fuel cells on sulfamethoxazole degradation: Effect of salinity and mechanism study. J. Clean. Prod. 2022, 375, 134018. [Google Scholar] [CrossRef]
- Touach, N.; Ortiz-Martínez, V.M.; Salar-García, M.J.; Benzaouak, A.; Hernández-Fernández, F.; de Ríos, A.P.; El Mahi, M.; Lotfi, E.M. On the use of ferroelectric material LiNbO3 as novel photocatalyst in wastewater-fed microbial fuel cells. Particuology 2017, 34, 147–155. [Google Scholar] [CrossRef]
- Zhao, K.; Shu, Y.; Li, F.; Peng, G. Bimetallic catalysts as electrocatalytic cathode materials for the oxygen reduction reaction in microbial fuel cell: A review. Green Energy Environ. 2022, in press. [Google Scholar] [CrossRef]
- Zeng, L.Z.; Zhao, S.F.; Wang, Y.Q.; Li, H.; Li, W.S. Ni/β-Mo2C as noble-metal-free anodic electrocatalyst of microbial fuel cell based on Klebsiella pneumoniae. Int. J. Hydrog. Energy 2012, 37, 4590–4596. [Google Scholar] [CrossRef]
- Peera, S.G.; Maiyalagan, T.; Liu, C.; Ashmath, S.; Lee, T.G.; Jiang, Z.; Mao, S. A review on carbon and non-precious metal based cathode catalysts in microbial fuel cells. Int. J. Hydrog. Energy 2021, 46, 3056–3089. [Google Scholar] [CrossRef]
- Chen, C.-F.; King, G.; Dickerson, R.M.; Papin, P.A.; Gupta, S.; Kellogg, W.R.; Wu, G. Oxygen-deficient BaTiO3−x perovskite as an efficient bifunctional oxygen electrocatalyst. Nano Energy 2015, 13, 423–432. [Google Scholar] [CrossRef]
- Yang, L.; Jiao, Y.; Xu, X.; Pan, Y.; Su, C.; Duan, X.; Sun, H.; Liu, S.; Wang, S.; Shao, Z. Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustain. Chem. Eng. 2022, 10, 1899–1909. [Google Scholar] [CrossRef]
- Jin, C.; Cao, X.; Lu, F.; Yang, Z.; Yang, R. Electrochemical study of Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite as bifunctional catalyst in alkaline media. Int. J. Hydrog. Energy 2013, 38, 10389–10393. [Google Scholar] [CrossRef]
- Xu, X.; Wang, W.; Zhou, W.; Shao, Z. Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy-Related Applications. Small Methods 2018, 2, 1800071. [Google Scholar] [CrossRef]
- Ali, S.M.; Abd Al-Rahman, Y.M.; Galal, A. Catalytic Activity toward Oxygen Evolution of LaFeO3 Prepared by the Microwave Assisted Citrate Method. J. Electrochem. Soc. 2012, 159, F600. [Google Scholar] [CrossRef]
- Benzaouak, A.; Touach, N.e.; Ortiz-Martínez, V.M.; Salar-García, M.J.; Hernández-Fernández, F.J.; Perez de los Rios, A.; Mahi, M.E.; Lotfi, E.M. Ferroelectric LiTaO3 as novel photo-electrocatalyst in microbial fuel cells. Environ. Prog. Sustain. Energy 2017, 36, 1568–1574. [Google Scholar] [CrossRef]
- Louki, S.; Touach, N.; Benzaouak, A.; Ortiz-Martínez, V.; Salar-García, M.; Hernández-Fernández, F.; de los Ríos, A.; El Mahi, M.; Lotfi, E. Characterization of New Nonstoichiometric Ferroelectric (Li0. 95Cu0. 15) Ta0. 76Nb0. 19O3 and Comparative Study With (Li0. 95Cu0. 15) Ta0. 57Nb0. 38O3 as Photocatalysts in Microbial Fuel Cells. J. Electrochem. Energy Convers. Storage 2019, 16, 021009. [Google Scholar] [CrossRef]
- Louki, S.; Touach, N.e.; Benzaouak, A.; Salar-García, M.J.; Ortiz-Martínez, V.M.; Hernández-Fernández, F.J.; de los Ríos, A.P.; El Mahi, M.; Lotfi, E.M. Preparation of new ferroelectric Li0. 95Ta0. 57Nb0. 38Cu0. 15O3 materials as photocatalysts in microbial fuel cells. Can. J. Chem. Eng. 2018, 96, 1656–1662. [Google Scholar] [CrossRef]
- Touach, N.; Benzaouak, A.; Toyir, J.; El Hamidi, A.; El Mahi, M.; Lotfi, E.M.; Kacimi, M.; Liotta, L.F. Bioenergy Generation and Wastewater Purification with Li0. 95Ta0. 76Nb0. 19Mg0. 15O3 as New Air-Photocathode for MFCs. Catalysts 2022, 12, 1424. [Google Scholar] [CrossRef]
- Briscoe, J.; Dunn, S. Piezoelectricity and ferroelectricity. In Nanostructured Piezoelectric Energy Harvesters; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–17. [Google Scholar]
- Dasireddy, V.D.B.C.; Likozar, B. Photocatalytic CO2 reduction to methanol over bismuth promoted BaTiO3 perovskite nanoparticle catalysts. Renew. Energy 2022, 195, 885–895. [Google Scholar] [CrossRef]
- Shiozaki, R.; Andersen, A.G.; Hayakawa, T.; Hamakawa, S.; Suzuki, K.; Shimizu, M.; Takehira, K. Partial oxidation of methane over a Ni/BaTiO 3 catalyst prepared by solid phase crystallization. J. Chem. Soc. Faraday Trans. 1997, 93, 3235–3242. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, J.; Wang, R.; Wei, K. Ammonia synthesis over ruthenium catalyst supported on perovskite type BaTiO3. Catal. Commun. 2013, 32, 11–14. [Google Scholar] [CrossRef]
- Wang, B.; Yao, S.; Peng, Y.; Xu, Y. Toluene removal over TiO2-BaTiO3 catalysts in an atmospheric dielectric barrier discharge. J. Environ. Chem. Eng. 2018, 6, 3819–3826. [Google Scholar] [CrossRef]
- Li, L.; Salvador, P.A.; Rohrer, G.S. Photocatalysts with internal electric fields. Nanoscale 2014, 6, 24–42. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Nadeem, M.A.; Idriss, H. Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review. Surf. Sci. Rep. 2016, 71, 1–31. [Google Scholar] [CrossRef]
- Giocondi, J.L.; Rohrer, G.S. Spatial separation of photochemical oxidation and reduction reactions on the surface of ferroelectric BaTiO3. J. Phys. Chem. B 2001, 105, 8275–8277. [Google Scholar] [CrossRef]
- Chen, L.; Li, H.; Wu, Z.; Feng, L.; Yu, S.; Zhang, H.; Gao, J.; Mai, Y.-W.; Jia, Y. Enhancement of pyroelectric catalysis of ferroelectric BaTiO3 crystal: The action mechanism of electric poling. Ceram. Int. 2020, 46, 16763–16769. [Google Scholar] [CrossRef]
- Kappadan, S.; Gebreab, T.W.; Thomas, S.; Kalarikkal, N. Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants. Mater. Sci. Semicond. Process. 2016, 51, 42–47. [Google Scholar] [CrossRef]
- Devi, L.G.; Nithya, P.M. Preparation, characterization and photocatalytic activity of BaTiF6 and BaTiO3: A comparative study. J. Environ. Chem. Eng. 2018, 6, 3565–3573. [Google Scholar] [CrossRef]
- Devi, L.G.; Nithya, P. Photocatalytic activity of Hemin (Fe (III) porphyrin) anchored BaTiO 3 under the illumination of visible light: Synergetic effects of photosensitization, photo-Fenton & photocatalysis processes. Inorg. Chem. Front. 2018, 5, 127–138. [Google Scholar]
- Xia, Y.; Jia, Y.; Qian, W.; Xu, X.; Wu, Z.; Han, Z.; Hong, Y.; You, H.; Ismail, M.; Bai, G.; et al. Pyroelectrically Induced Pyro-Electro-Chemical Catalytic Activity of BaTiO3 Nanofibers under Room-Temperature Cold–Hot Cycle Excitations. Metals 2017, 7, 122. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xiao, L.; Zhang, Y.; Sun, H. Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye. J. Mater. 2020, 6, 256–262. [Google Scholar] [CrossRef]
- Xu, X.; Wu, Z.; Jia, Y.; Li, W.; Liu, Y.; Zhang, Y.; Xue, A.X. Multiferroic properties of nanopowder-synthesized ferroelectric-ferromagnetic 0.6 BaTiO 3-0.4 NiFe 2 O 4 ceramic. J. Nanomater. 2015, 16, 231. [Google Scholar]
- Masekela, D.; Hintsho-Mbita, N.C.; Sam, S.; Yusuf, T.L.; Mabuba, N. Application of BaTiO3-based catalysts for piezocatalytic, photocatalytic and piezo-photocatalytic degradation of organic pollutants and bacterial disinfection in wastewater: A comprehensive review. Arab. J. Chem. 2023, 16, 104473. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Ribeiro, R.A.P.; Longo, E.; Bomio, M.R.D.; Motta, F.V.; de Lazaro, S.R. Temperature dependence on phase evolution in the BaTiO3 polytypes studied using ab initio calculations. Int. J. Quantum Chem. 2020, 120, e26054. [Google Scholar] [CrossRef]
- Li, G.; Xie, J.; Wang, J.; Xia, L.; Li, Y.; Hu, W. Nanoscale Surface Disorder for Enhanced Solar Absorption and Superior Visible-Light Photocatalytic Property in Ti-Rich BaTiO3 Nanocrystals. ACS Omega 2019, 4, 9673–9679. [Google Scholar] [CrossRef] [Green Version]
- Charoen-amornkitt, P.; Suzuki, T.; Tsushima, S. Ohmic resistance and constant phase element effects on cyclic voltammograms using a combined model of mass transport and equivalent circuits. Electrochim. Acta 2017, 258, 433–441. [Google Scholar] [CrossRef]
- Hermouche, L.; Aqil, Y.; Abbi, K.; El Hamdouni, Y.; Ouanji, F.; El Hajjaji, S.; El Mahi, M.; Lotfi, E.m.; Labjar, N. Eco-friendly modified carbon paste electrode by Bigarreau Burlat kernel shells for simultaneous trace detection of cadmium, lead, and copper. Chem. Data Collect. 2021, 32, 100642. [Google Scholar] [CrossRef]
- Veer Raghavulu, S.; Venkata Mohan, S.; Venkateswar Reddy, M.; Mohanakrishna, G.; Sarma, P.N. Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. Int. J. Hydrogen Energy 2009, 34, 7547–7554. [Google Scholar] [CrossRef]
- Choudhury, P.; Bhunia, B.; Mahata, N.; Bandyopadhyay, T.K. Optimization for the improvement of power in equal volume of single chamber microbial fuel cell using dairy wastewater. J. Indian Chem. Soc. 2022, 99, 100489. [Google Scholar] [CrossRef]
- Ghasemi, M.; Sedighi, M.; Tan, Y.H. Carbon nanotube/Pt cathode nanocomposite electrode in microbial fuel cells for wastewater treatment and bioenergy production. Sustainability 2021, 13, 8057. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Kundu, P.P. Recent advances and perspectives in platinum-free cathode catalysts in microbial fuel cells. J. Environ. Chem. Eng. 2021, 9, 105662. [Google Scholar] [CrossRef]
- Lam, S.-M.; Sin, J.-C.; Zeng, H.; Lin, H.; Li, H.; Mohamed, A.R.; Lim, J.W. Ameliorating Cu2+ reduction in microbial fuel cell with Z-scheme BiFeO3 decorated on flower-like ZnO composite photocathode. Chemosphere 2022, 287, 132384. [Google Scholar] [CrossRef] [PubMed]
- Ali Ansari, S.; Mansoob Khan, M.; Omaish Ansari, M.; Hwan Cho, M. Improved electrode performance in microbial fuel cells and the enhanced visible light-induced photoelectrochemical behaviour of PtOx@M-TiO2 nanocomposites. Ceram. Int. 2015, 41, 9131–9139. [Google Scholar] [CrossRef]
- Ma, J.; Chen, D.; Zhang, W.; An, Z.; Zeng, K.; Yuan, M.; Shen, J. Enhanced performance and degradation of wastewater in microbial fuel cells using titanium dioxide nanowire photocathodes. RSC Adv. 2021, 11, 2242–2252. [Google Scholar] [CrossRef]
- Bhowmick, G.D.; Noori, M.T.; Das, I.; Neethu, B.; Ghangrekar, M.M.; Mitra, A. Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell. Int. J. Hydrogen Energy 2018, 43, 7501–7510. [Google Scholar] [CrossRef]
- Bhowmick, G.D.; Chakraborty, I.; Ghangrekar, M.M.; Mitra, A. TiO2/Activated carbon photo cathode catalyst exposed to ultraviolet radiation to enhance the efficacy of integrated microbial fuel cell-membrane bioreactor. Bioresour. Technol. Rep. 2019, 7, 100303. [Google Scholar] [CrossRef]
- He, Y.; Chen, K.; Leung, M.K.H.; Zhang, Y.; Li, L.; Li, G.; Xuan, J.; Li, J. Photocatalytic fuel cell–A review. Chem. Eng. J. 2022, 428, 131074. [Google Scholar] [CrossRef]
- Chang, L.; McMillen, M.; Gregg, J. The influence of point defects and inhomogeneous strain on the functional behavior of thin film ferroelectrics. Appl. Phys. Lett. 2009, 94, 212905. [Google Scholar] [CrossRef]
- Wood, D.; Tauc, J. Weak absorption tails in amorphous semiconductors. Phys. Rev. B 1972, 5, 3144. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie III, D.P. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi 2015, 252, 1700–1710. [Google Scholar] [CrossRef]
- Hernández-Fernández, F.J.; Pérez de los Ríos, A.; Mateo-Ramírez, F.; Godínez, C.; Lozano-Blanco, L.J.; Moreno, J.I.; Tomás-Alonso, F. New application of supported ionic liquids membranes as proton exchange membranes in microbial fuel cell for waste water treatment. Chem. Eng. J. 2015, 279, 115–119. [Google Scholar] [CrossRef]
- Larrosa-Guerrero, A.; Scott, K.; Head, I.M.; Mateo, F.; Ginesta, A.; Godinez, C. Effect of temperature on the performance of microbial fuel cells. Fuel 2010, 89, 3985–3994. [Google Scholar] [CrossRef]
BaTiO3 Sample | a Eg (eV) | Pmax (mW m−2) | I at Pmax (mA m−2) | OCV (mV) | b CODr after 120 h (%) |
---|---|---|---|---|---|
Absence of light | - | 64.0 | 1440 | 280 | 74.5 |
Presence of light | 3.77 | 498.0 | 2408.5 | 387 | 90 |
COD (mg L−1) | a BOD (mg L−1) | Dissolved Oxygen (mg L−1) | b EC (µS cm−1) | pH | Temperature (°C) | |
---|---|---|---|---|---|---|
Wastewater tested | 2500 | 440 | 0.8 | 4330 | 7.8 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touach, N.; Benzaouak, A.; Toyir, J.; El Hamdouni, Y.; El Mahi, M.; Lotfi, E.M.; Labjar, N.; Kacimi, M.; Liotta, L.F. BaTiO3 Functional Perovskite as Photocathode in Microbial Fuel Cells for Energy Production and Wastewater Treatment. Molecules 2023, 28, 1894. https://doi.org/10.3390/molecules28041894
Touach N, Benzaouak A, Toyir J, El Hamdouni Y, El Mahi M, Lotfi EM, Labjar N, Kacimi M, Liotta LF. BaTiO3 Functional Perovskite as Photocathode in Microbial Fuel Cells for Energy Production and Wastewater Treatment. Molecules. 2023; 28(4):1894. https://doi.org/10.3390/molecules28041894
Chicago/Turabian StyleTouach, Noureddine, Abdellah Benzaouak, Jamil Toyir, Youssra El Hamdouni, Mohammed El Mahi, El Mostapha Lotfi, Najoua Labjar, Mohamed Kacimi, and Leonarda Francesca Liotta. 2023. "BaTiO3 Functional Perovskite as Photocathode in Microbial Fuel Cells for Energy Production and Wastewater Treatment" Molecules 28, no. 4: 1894. https://doi.org/10.3390/molecules28041894
APA StyleTouach, N., Benzaouak, A., Toyir, J., El Hamdouni, Y., El Mahi, M., Lotfi, E. M., Labjar, N., Kacimi, M., & Liotta, L. F. (2023). BaTiO3 Functional Perovskite as Photocathode in Microbial Fuel Cells for Energy Production and Wastewater Treatment. Molecules, 28(4), 1894. https://doi.org/10.3390/molecules28041894