Recent Trends in the Development of Novel Metal-Based Antineoplastic Drugs
Abstract
:1. Introduction
2. Novel Metal Complexes in Cancer Therapy
2.1. Platinum Coordination Compounds
2.2. Ruthenium Coordination Compounds
2.3. Gallium Coordination Compounds
2.4. Gold Coordination Compounds
2.5. Lanthanum Coordination Compounds
3. Discussion and Conclusions
- Depending on the element serving as coordination center, the complexes under review exhibit their antiproliferative activity via different pathways: DNA impairment via inter-/intra-strand crosslinks, mitochondrial function impairment, generation of ROS and apoptosis/necrosis. These effects result from a variety of biochemical and physicochemical mechanisms: DNA/protein binding, ionic mimicry, competitive inhibition of enzymes and photosensitization. This multitude of possible metal-dependent modes of anticancer action allows for consideration of potential combination therapies that improve effectiveness, avoid therapy resistance and reduce systemic toxicities;
- The activities of the metal coordination centers can be modified with a suitable choice of ligands. High cytotoxicity against tumors is not enough, unless it goes hand in hand with good selectivity and/or a suitable cancer cell targeting mechanism;
- Physicochemical mechanisms such as photoactivation, as in photodynamic therapy, allow for targeting specific areas of the body with the aid of a photosensitizer with low systemic toxicity. Developing transition metal complexes with suitable photophysical properties seems to be a suitable direction, both logical and necessary, in the search of novel anticancer treatments.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, Á. Assessment of the evolution of cancer treatment therapies. Cancers 2011, 3, 3279–3330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, T.C.; Nguyen, V.-N.; Choi, Y.; Lee, S.; Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 2021, 121, 13454–13619. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Hausinger, R.P. New metal cofactors and recent metallocofactor insights. Curr. Opin. Struct. Biol. 2019, 59, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Grass, G.; Rensing, L.; Rensing, C. Metal toxicity. Metallomics 2011, 3, 1095–1097. [Google Scholar] [CrossRef] [PubMed]
- Lucaciu, R.L.; Hangan, A.C.; Sevastre, B.; Oprean, L.S. Metallo-Drugs in Cancer Therapy: Past, Present and Future. Molecules 2022, 27, 6485. [Google Scholar] [CrossRef]
- Alessio, E.; Guo, Z. Metal anticancer complexes–activity, mechanism of action, future perspectives. Eur. J. Inorg. Chem. 2017, 2017, 1539–1540. [Google Scholar] [CrossRef] [Green Version]
- Jakupec, M.A.; Keppler, B.K. Gallium in cancer treatment. Curr. Top. Med. Chem. 2004, 4, 1575–1583. [Google Scholar] [CrossRef]
- Yin, H.Y.; Gao, J.J.; Chen, X.; Ma, B.; Yang, Z.S.; Tang, J.; Wang, B.W.; Chen, T.; Wang, C.; Gao, S. A gallium (III) complex that engages protein disulfide isomerase A3 (PDIA3) as an anticancer target. Angew. Chem. Int. Ed. 2020, 59, 20147–20153. [Google Scholar] [CrossRef]
- Peng, X.X.; Gao, S.; Zhang, J.L. Gallium (III) complexes in cancer chemotherapy. Eur. J. Inorg. Chem. 2022, 2022, e202100953. [Google Scholar] [CrossRef]
- Florea, A.-M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers 2011, 3, 1351–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, L.; Luo, Q.; Zhang, Y.; Jia, F.; Zhao, Y.; Wang, F. Advances in toxicological research of the anticancer drug cisplatin. Chem. Res. Toxicol. 2019, 32, 1469–1486. [Google Scholar] [CrossRef]
- Ho, G.Y.; Woodward, N.; Coward, J.I. Cisplatin versus carboplatin: Comparative review of therapeutic management in solid malignancies. Crit. Rev. Oncol. /Hematol. 2016, 102, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; He, Y.; Wu, S.; Zhang, S.; Song, D.; Zhu, Z.; Guo, Z.; Wang, X. Enhancing cytotoxicity of a monofunctional platinum complex via a dual-DNA-damage approach. Inorg. Chem. 2019, 58, 13150–13160. [Google Scholar] [CrossRef] [PubMed]
- Hector, S.; Bolanowska-Higdon, W.; Zdanowicz, J.; Hitt, S.; Pendyala, L. In vitro studies on the mechanisms of oxaliplatin resistance. Cancer Chemother. Pharmacol. 2001, 48, 398–406. [Google Scholar] [CrossRef]
- Dilruba, S.; Kalayda, G.V. Platinum-based drugs: Past, present and future. Cancer Chemother. Pharmacol. 2016, 77, 1103–1124. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Dong, H.Y.; Zhang, C.; Zhang, Y. Platinum-based agents for individualized Cancer Treatmen. Curr. Mol. Med. 2013, 13, 1603–1612. [Google Scholar] [CrossRef]
- Rottenberg, S.; Disler, C.; Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 2021, 21, 37–50. [Google Scholar] [CrossRef]
- Han, X.; Sun, J.; Wang, Y.; He, Z. Recent advances in platinum (IV) complex-based delivery systems to improve platinum (II) anticancer therapy. Med. Res. Rev. 2015, 35, 1268–1299. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Z.; Deng, Z.; Zhu, G. Recent advances in the synthesis, stability, and activation of platinum (IV) anticancer prodrugs. Coord. Chem. Rev. 2021, 442, 213991. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, Z.; Zhu, G. Emerging platinum (IV) prodrugs to combat cisplatin resistance: From isolated cancer cells to tumor microenvironment. Dalton Trans. 2019, 48, 2536–2544. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wang, Z.; Zhang, C.; Wang, Y.; Zhang, H.; Gan, Z.; Guo, Z.; Wang, X. Mitochondrion-targeted platinum complexes suppressing lung cancer through multiple pathways involving energy metabolism. Chem. Sci. 2019, 10, 3089–3095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eskandari, A.; Kundu, A.; Ghosh, S.; Suntharalingam, K. A triangular platinum (II) multinuclear complex with cytotoxicity towards breast cancer stem cells. Angew. Chem. 2019, 131, 12187–12192. [Google Scholar] [CrossRef]
- He, C.; Majd, M.H.; Shiri, F.; Shahraki, S. Palladium and platinum complexes of folic acid as new drug delivery systems for treatment of breast cancer cells. J. Mol. Struct. 2021, 1229, 129806. [Google Scholar] [CrossRef]
- Adams, M.; Sullivan, M.P.; Tong, K.K.; Goldstone, D.C.; Hanif, M.; Jamieson, S.M.; Hartinger, C.G. Mustards-derived Terpyridine–platinum complexes as anticancer agents: DNA alkylation vs coordination. Inorg. Chem. 2021, 60, 2414–2424. [Google Scholar] [CrossRef]
- Li, C.; Xu, F.; Zhao, Y.; Zheng, W.; Zeng, W.; Luo, Q.; Wang, Z.; Wu, K.; Du, J.; Wang, F. Platinum (II) terpyridine anticancer complexes possessing multiple mode of DNA interaction and EGFR inhibiting activity. Front. Chem. 2020, 8, 210. [Google Scholar] [CrossRef]
- Kutlu, E.; Emen, F.M.; Kismali, G.; Kınaytürk, N.K.; Kılıç, D.; Karacolak, A.I.; Demirdogen, R.E. Pyridine derivative platinum complexes: Synthesis, molecular structure, DFT and initial anticancer activity studies. J. Mol. Struct. 2021, 1234, 130191. [Google Scholar] [CrossRef]
- Mbugua, S.N.; Sibuyi, N.R.; Njenga, L.W.; Odhiambo, R.A.; Wandiga, S.O.; Meyer, M.; Lalancette, R.A.; Onani, M.O. New palladium (II) and platinum (II) complexes based on pyrrole schiff bases: Synthesis, characterization, X-ray structure, and anticancer activity. ACS Omega 2020, 5, 14942–14954. [Google Scholar] [CrossRef]
- Sankarganesh, M.; Vijay Solomon, R.; Dhaveethu Raja, J. Platinum complex with pyrimidine-and morpholine-based ligand: Synthesis, spectroscopic, DFT, TDDFT, catalytic reduction, in vitro anticancer, antioxidant, antimicrobial, DNA binding and molecular modeling studies. J. Biomol. Struct. Dyn. 2021, 39, 1055–1067. [Google Scholar] [CrossRef]
- Lozada, I.B.; Huang, B.; Stilgenbauer, M.; Beach, T.; Qiu, Z.; Zheng, Y.; Herbert, D.E. Monofunctional platinum (ii) anticancer complexes based on multidentate phenanthridine-containing ligand frameworks. Dalton Trans. 2020, 49, 6557–6560. [Google Scholar] [CrossRef]
- Tham, M.J.R.; Babak, M.V.; Ang, W.H. PlatinER: A highly potent anticancer platinum (II) complex that induces endoplasmic reticulum stress driven immunogenic cell death. Angew. Chem. Int. Ed. 2020, 59, 19070–19078. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.K.; Baek, A.-R.; Sung, B.; Yang, B.-W.; Choi, G.; Park, H.-J.; Kim, Y.-H.; Kim, M.; Ha, S.; Lee, G.-H. Synthesis, Characterization, and Anticancer Activity of Benzothiazole Aniline Derivatives and Their Platinum (II) Complexes as New Chemotherapy Agents. Pharmaceuticals 2021, 14, 832. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Ali, A.; Wang, N.; Liu, Z.; Lv, Z.; Zhang, Z.; Zhao, X.; Hao, H.; Zhang, Y.; Rahman, F.-U. Inhibition of SREBP-mediated lipid biosynthesis and activation of multiple anticancer mechanisms by platinum complexes: Ascribe possibilities of new antitumor strategies. Eur. J. Med. Chem. 2022, 227, 113920. [Google Scholar] [CrossRef]
- Nadar, R.A.; Farbod, K.; der Schilden, K.C.-v.; Schlatt, L.; Crone, B.; Asokan, N.; Curci, A.; Brand, M.; Bornhaeuser, M.; Iafisco, M. Targeting of radioactive platinum-bisphosphonate anticancer drugs to bone of high metabolic activity. Sci. Rep. 2020, 10, 5889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faihan, A.S.; Hatshan, M.R.; Kadhim, M.M.; Alqahtani, A.S.; Nasr, F.A.; Saleh, A.M.; Al-Jibori, S.A.; Al-Janabi, A.S. Promising bio-active complexes of platinum (II) and palladium (II) derived from heterocyclic thiourea: Synthesis, characterization, DFT, molecular docking, and anti-cancer studies. J. Mol. Struct. 2022, 1252, 132198. [Google Scholar] [CrossRef]
- Zeynali, H.; Keypour, H.; Hosseinzadeh, L.; Gable, R.W. The non-templating synthesis of macro-cyclic Schiff base ligands containing pyrrole and homopiperazine and their binuclear nickel (II), cobalt (II) and mononuclear platinum (II) complexes: X-ray single crystal and anticancer studies. J. Mol. Struct. 2021, 1244, 130956. [Google Scholar] [CrossRef]
- Bera, B.; Mondal, S.; Gharami, S.; Naskar, R.; Saha, K.D.; Mondal, T.K. Palladium (II) and platinum (II) complexes with ONN donor pincer ligand: Synthesis, characterization and in vitro cytotoxicity study. New J. Chem. 2022, 46, 11277–11285. [Google Scholar] [CrossRef]
- Yambulatov, D.S.; Lutsenko, I.A.; Nikolaevskii, S.A.; Petrov, P.A.; Smolyaninov, I.V.; Malyants, I.K.; Shender, V.O.; Kiskin, M.A.; Sidorov, A.A.; Berberova, N.T. α-Diimine Cisplatin Derivatives: Synthesis, Structure, Cyclic Voltammetry and Cytotoxicity. Molecules 2022, 27, 8565. [Google Scholar] [CrossRef]
- Khoury, A.; Sakoff, J.A.; Gilbert, J.; Scott, K.F.; Karan, S.; Gordon, C.P.; Aldrich-Wright, J.R. Cyclooxygenase-inhibiting platinum (iv) prodrugs with potent anticancer activity. Pharmaceutics 2022, 14, 787. [Google Scholar] [CrossRef]
- Schueffl, H.; Theiner, S.; Hermann, G.; Mayr, J.; Fronik, P.; Groza, D.; van Schonhooven, S.; Galvez, L.; Sommerfeld, N.S.; Schintlmeister, A. Albumin-targeting of an oxaliplatin-releasing platinum (iv) prodrug results in pronounced anticancer activity due to endocytotic drug uptake in vivo. Chem. Sci. 2021, 12, 12587–12599. [Google Scholar] [CrossRef]
- Shi, H.; Imberti, C.; Clarkson, G.J.; Sadler, P.J. Axial functionalisation of photoactive diazido platinum (IV) anticancer complexes. Inorg. Chem. Front. 2020, 7, 3533–3540. [Google Scholar] [CrossRef] [PubMed]
- Novohradsky, V.; Pracharova, J.; Kasparkova, J.; Imberti, C.; Bridgewater, H.E.; Sadler, P.J.; Brabec, V. Induction of immunogenic cell death in cancer cells by a photoactivated platinum (IV) prodrug. Inorg. Chem. Front. 2020, 7, 4150–4159. [Google Scholar] [CrossRef] [PubMed]
- Kostova, I. Ruthenium complexes as anticancer agents. Curr. Med. Chem. 2006, 13, 1085–1107. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, C.Y.; Nam, T.-G. Ruthenium complexes as anticancer agents: A brief history and perspectives. Drug Des. Dev. Ther. 2020, 14, 5375–5392. [Google Scholar] [CrossRef] [PubMed]
- Reedijk, B.J. Metal-ligand exchange kinetics in platinum and ruthenium complexes. Platin. Met. Rev. 2008, 52, 2–11. [Google Scholar] [CrossRef]
- Kratz, F.; Messori, L. Spectral characterization of ruthenium (III) transferrin. J. Inorg. Biochem. 1993, 49, 79–82. [Google Scholar] [CrossRef]
- Simović, A.R.; Masnikosa, R.; Bratsos, I.; Alessio, E. Chemistry and reactivity of ruthenium (II) complexes: DNA/protein binding mode and anticancer activity are related to the complex structure. Coord. Chem. Rev. 2019, 398, 113011. [Google Scholar] [CrossRef]
- Yan, Y.K.; Melchart, M.; Habtemariam, A.; Sadler, P.J. Organometallic chemistry, biology and medicine: Ruthenium arene anticancer complexes. Chem. Commun. 2005, 14, 4764–4776. [Google Scholar] [CrossRef]
- Alkış, M.E.; Keleştemür, Ü.; Alan, Y.; Turan, N.; Buldurun, K. Cobalt and ruthenium complexes with pyrimidine based schiff base: Synthesis, characterization, anticancer activities and electrochemotherapy efficiency. J. Mol. Struct. 2021, 1226, 129402. [Google Scholar] [CrossRef]
- Cole, H.D.; Roque III, J.A.; Lifshits, L.M.; Hodges, R.; Barrett, P.C.; Havrylyuk, D.; Heidary, D.; Ramasamy, E.; Cameron, C.G.; Glazer, E.C. Fine-Feature Modifications to Strained Ruthenium Complexes Radically Alter Their Hypoxic Anticancer Activity. Photochem. Photobiol. 2022, 98, 73–84. [Google Scholar] [CrossRef]
- Roque III, J.A.; Cole, H.D.; Barrett, P.C.; Lifshits, L.M.; Hodges, R.O.; Kim, S.; Deep, G.; Francés-Monerris, A.; Alberto, M.E.; Cameron, C.G. Intraligand excited states turn a ruthenium oligothiophene complex into a light-triggered Ubertoxin with anticancer effects in extreme hypoxia. J. Am. Chem. Soc. 2022, 144, 8317–8336. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Wu, X.; Shi, C.; Wen, H.; Wu, S.; Chen, J.; Huang, C.; Wang, Y.; Liu, Y. Synthesis and characterization of polypyridine ruthenium (II) complexes and anticancer efficacy studies in vivo and in vitro. J. Inorg. Biochem. 2022, 236, 111963. [Google Scholar] [CrossRef]
- Chen, J.; Tao, Q.; Wu, J.; Wang, M.; Su, Z.; Qian, Y.; Yu, T.; Wang, Y.; Xue, X.; Liu, H.-K. A lysosome-targeted ruthenium (II) polypyridyl complex as photodynamic anticancer agent. J. Inorg. Biochem. 2020, 210, 111132. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-L.; Zhu, X.-M.; Chen, N.-F.; Chen, S.-T.; Yang, Y.; Liang, H.; Chen, Z.-F. Anticancer activity of ruthenium (II) plumbagin complexes with polypyridyl as ancillary ligands via inhibiting energy metabolism and GADD45A-mediated cell cycle arrest. Eur. J. Med. Chem. 2022, 236, 114312. [Google Scholar] [CrossRef] [PubMed]
- Notaro, A.; Jakubaszek, M.; Koch, S.; Rubbiani, R.; Dömötör, O.; Enyedy, É.A.; Dotou, M.; Bedioui, F.; Tharaud, M.; Goud, B. A maltol-containing Ruthenium Polypyridyl Complex as a Potential Anticancer Agent. Chem.—Eur. J. 2020, 26, 4997–5009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licona, C.; Delhorme, J.-B.; Riegel, G.; Vidimar, V.; Cerón-Camacho, R.; Boff, B.; Venkatasamy, A.; Tomasetto, C.; Gomes, P.d.S.F.C.; Rognan, D. Anticancer activity of ruthenium and osmium cyclometalated compounds: Identification of ABCB1 and EGFR as resistance mechanisms. Inorg. Chem. Front. 2020, 7, 678–688. [Google Scholar] [CrossRef]
- Chen, D.; Guo, S.; Tang, X.; Rong, Y.; Bo, H.; Shen, H.; Zhao, Z.; Qiao, A.; Shen, J.; Wang, J. Combination of ruthenium (II) polypyridyl complex Δ-Ru1 and Taxol enhances the anti-cancer effect on Taxol-resistant cancer cells through Caspase-1/GSDMD-mediated pyroptosis. J. Inorg. Biochem. 2022, 230, 111749. [Google Scholar] [CrossRef]
- Chen, C.; Xu, C.; Li, T.; Lu, S.; Luo, F.; Wang, H. Novel NHC-coordinated ruthenium (II) arene complexes achieve synergistic efficacy as safe and effective anticancer therapeutics. Eur. J. Med. Chem. 2020, 203, 112605. [Google Scholar] [CrossRef]
- Morais, T.S.; Marques, F.; Madeira, P.J.A.; Robalo, M.P.; Garcia, M.H. Design and Anticancer Properties of New Water-Soluble Ruthenium–Cyclopentadienyl Complexes. Pharmaceuticals 2022, 15, 862. [Google Scholar] [CrossRef]
- Elsayed, S.A.; Harrypersad, S.; Sahyon, H.A.; El-Magd, M.A.; Walsby, C.J. Ruthenium (II)/(III) DMSO-based complexes of 2-aminophenyl benzimidazole with in vitro and in vivo anticancer activity. Molecules 2020, 25, 4284. [Google Scholar] [CrossRef]
- Janković, N.; Milović, E.; Jovanović, J.Đ.; Marković, Z.; Vraneš, M.; Stanojković, T.; Matić, I.; Crnogorac, M.Đ.; Klisurić, O.; Cvetinov, M. A new class of half-sandwich ruthenium complexes containing Biginelli hybrids: Anticancer and anti-SARS-CoV-2 activities. Chem.-Biol. Interact. 2022, 363, 110025. [Google Scholar] [CrossRef] [PubMed]
- Kar, B.; Das, U.; De, S.; Pete, S.; Sharma, A.; Roy, N.; SK, A.K.; Panda, D.; Paira, P. GSH-resistant and highly cytoselective ruthenium (II)-p-cymene-(imidazo [4,5-f][1,10] phenanthrolin-2-yl) phenol complexes as potential anticancer agents. Dalton Trans. 2021, 50, 10369–10373. [Google Scholar] [CrossRef] [PubMed]
- De, S.; Kumar, R.S.; Gauthaman, A.; Kumar, S.A.; Paira, P.; Moorthy, A.; Banerjee, S. Luminescent ruthenium (II)-para-cymene complexes of aryl substituted imidazo-1, 10-phenanthroline as anticancer agents and the effect of remote substituents on cytotoxic activities. Inorg. Chim. Acta 2021, 515, 120066. [Google Scholar] [CrossRef]
- Oliveira, K.M.; Honorato, J.; Goncalves, G.R.; Cominetti, M.R.; Batista, A.A.; Correa, R.S. Ru (II)/diclofenac-based complexes: DNA, BSA interaction and their anticancer evaluation against lung and breast tumor cells. Dalton Trans. 2020, 49, 12643–12652. [Google Scholar] [CrossRef]
- Engelbrecht, Z.; Roberts, K.E.; Hussan, A.; Amenuvor, G.; Cronje, M.J.; Darkwa, J.; Makhubela, B.C.; Sitole, L. Synthesis and anti-cancer activity of bis-amino-phosphine ligand and its ruthenium (II) complexes. Bioorganic Med. Chem. Lett. 2020, 30, 127492. [Google Scholar] [CrossRef]
- Alsaeedi, M.S.; Babgi, B.A.; Abdellattif, M.H.; Jedidi, A.; Humphrey, M.G.; Hussien, M.A. DNA-binding capabilities and anticancer activities of ruthenium (II) cymene complexes with (Poly) cyclic aromatic diamine ligands. Molecules 2020, 26, 76. [Google Scholar] [CrossRef]
- Sonkar, C.; Malviya, N.; Sinha, N.; Mukherjee, A.; Pakhira, S.; Mukhopadhyay, S. Selective anticancer activities of ruthenium (II)-tetrazole complexes and their mechanistic insights. BioMetals 2021, 34, 795–812. [Google Scholar] [CrossRef]
- Khan, T.A.; Bhar, K.; Thirumoorthi, R.; Roy, T.K.; Sharma, A.K. Design, synthesis, characterization and evaluation of the anticancer activity of water-soluble half-sandwich ruthenium (II) arene halido complexes. New J. Chem. 2020, 44, 239–257. [Google Scholar] [CrossRef]
- Khater, M.; Brazier, J.A.; Greco, F.; Osborn, H.M. Anticancer evaluation of new organometallic ruthenium (II) flavone complexes. RSC Med. Chem. 2023. [Google Scholar] [CrossRef]
- Gu, Y.-Q.; Shen, W.-Y.; Yang, Q.-Y.; Chen, Z.-F.; Liang, H. Ru (III) complexes with pyrazolopyrimidines as anticancer agents: Bioactivities and the underlying mechanisms. Dalton Trans. 2022, 51, 1333–1343. [Google Scholar] [CrossRef]
- Fabijańska, M.; Kasprzak, M.M.; Ochocki, J. Ruthenium (II) and Platinum (II) Complexes with Biologically Active Aminoflavone Ligands Exhibit In Vitro Anticancer Activity. Int. J. Mol. Sci. 2021, 22, 7568. [Google Scholar] [CrossRef] [PubMed]
- Studer, V.; Anghel, N.; Desiatkina, O.; Felder, T.; Boubaker, G.; Amdouni, Y.; Ramseier, J.; Hungerbühler, M.; Kempf, C.; Heverhagen, J.T. Conjugates containing two and three trithiolato-bridged dinuclear ruthenium (II)-arene units as in vitro antiparasitic and anticancer agents. Pharmaceuticals 2020, 13, 471. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Lamb, R.W.; Cameron, C.G.; Park, S.; Oladipupo, O.; Gray, J.L.; Xu, Y.; Cole, H.D.; Bonizzoni, M.; Kim, Y. Singlet Oxygen Formation vs Photodissociation for Light-Responsive Protic Ruthenium Anticancer Compounds: The Oxygenated Substituent Determines Which Pathway Dominates. Inorg. Chem. 2021, 60, 2138–2148. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, K.M.; Honorato, J.; Demidoff, F.C.; Schultz, M.S.; Netto, C.D.; Cominetti, M.R.; Correa, R.S.; Batista, A.A. Lapachol in the design of a new ruthenium (II)-diphosphine complex as a promising anticancer metallodrug. J. Inorg. Biochem. 2021, 214, 111289. [Google Scholar] [CrossRef]
- Mihaila, M.; Hotnog, C.M.; Bostan, M.; Munteanu, A.C.; Vacaroiu, I.A.; Brasoveanu, L.I.; Uivarosi, V. Anticancer activity of some ruthenium (III) complexes with quinolone antibiotics: In vitro cytotoxicity, cell cycle modulation, and apoptosis-inducing properties in LoVo colon cancer cell line. Appl. Sci. 2021, 11, 8594. [Google Scholar] [CrossRef]
- Fandzloch, M.; Dobrzańska, L.; Jędrzejewski, T.; Jezierska, J.; Wiśniewska, J.; Łakomska, I. Synthesis, structure and biological evaluation of ruthenium (III) complexes of triazolopyrimidines with anticancer properties. JBIC J. Biol. Inorg. Chem. 2020, 25, 109–124. [Google Scholar] [CrossRef]
- Kanaoujiya, R.; Singh, D.; Minocha, T.; Yadav, S.K.; Srivastava, S. Synthesis, characterization of ruthenium (III) macrocyclic complexes of 1, 4, 8, 11-tetraazacyclotetradecane (cyclam) and in vitro assessment of anti-cancer activity. Mater. Today Proc. 2022, 65, 3143–3149. [Google Scholar]
- Wadas, T.J.; Wong, E.H.; Weisman, G.R.; Anderson, C.J. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev. 2010, 110, 2858–2902. [Google Scholar] [CrossRef] [Green Version]
- Chitambar, C.R.; Zivkovic, Z. Uptake of gallium-67 by human leukemic cells: Demonstration of transferrin receptor-dependent and transferrin-independent mechanisms. Cancer Res. 1987, 47, 3929–3934. [Google Scholar]
- Johnston, G.S. Clinical applications of gallium in oncology. Int. J. Nucl. Med. Biol. 1981, 8, 249–255. [Google Scholar] [CrossRef]
- Vallabhajosula, S.R.; Harwig, J.; Wolf, W. The mechanism of tumor localization of gallium-67 citrate: Role of transferrin binding and effect of tumor pH. Int. J. Nucl. Med. Biol. 1981, 8, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, L.R. Mechanisms of therapeutic activity for gallium. Pharmacol. Rev. 1998, 50, 665–682. [Google Scholar] [PubMed]
- Todorov, L.; Kostova, I.; Traykova, M. Lanthanum, Gallium and their Impact on Oxidative Stress. Curr. Med. Chem. 2019, 26, 4280–4295. [Google Scholar] [CrossRef] [PubMed]
- Leitao, R.C.; Silva, F.; Ribeiro, G.H.; Santos, I.C.; Guerreiro, J.F.; Mendes, F.; Batista, A.A.; Pavan, F.R.; Maia, P.I.d.S.; Paulo, A. Gallium and indium complexes with isoniazid-derived ligands: Interaction with biomolecules and biological activity against cancer cells and Mycobacterium tuberculosis. J. Inorg. Biochem. 2022, 240, 112091. [Google Scholar] [CrossRef]
- Hreusova, M.; Novohradsky, V.; Markova, L.; Kostrhunova, H.; Potočňák, I.; Brabec, V.; Kasparkova, J. Gallium (III) Complex with Cloxyquin Ligands Induces Ferroptosis in Cancer Cells and Is a Potent Agent against Both Differentiated and Tumorigenic Cancer Stem Rhabdomyosarcoma Cells. Bioinorg. Chem. Appl. 2022, 2022, 3095749. [Google Scholar] [CrossRef]
- Chitambar, C.R.; Antholine, W.E. Iron-targeting antitumor activity of gallium compounds and novel insights into triapine®-metal complexes. Antioxid. Redox Signal. 2013, 18, 956–972. [Google Scholar] [CrossRef] [Green Version]
- Lessa, J.A.; Parrilha, G.L.; Beraldo, H. Gallium complexes as new promising metallodrug candidates. Inorg. Chim. Acta 2012, 393, 53–63. [Google Scholar] [CrossRef]
- Chitambar, C.R. Gallium-containing anticancer compounds. Future Med. Chem. 2012, 4, 1257–1272. [Google Scholar] [CrossRef] [Green Version]
- Chitambar, C.R. Medical applications and toxicities of gallium compounds. Int. J. Environ. Res. Public Health 2010, 7, 2337–2361. [Google Scholar] [CrossRef] [Green Version]
- Soll, M.; Goswami, T.K.; Chen, Q.-C.; Saltsman, I.; Teo, R.D.; Shahgholi, M.; Lim, P.; Di Bilio, A.J.; Cohen, S.; Termini, J. Cell-penetrating protein/corrole nanoparticles. Sci. Rep. 2019, 9, 2294. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Liu, T.; Zhao, W.; Zheng, X.; Wang, Y. Synthesis, crystal structure and antiproliferative mechanisms of gallium (iii) complexes with benzoylpyridine thiosemicarbazones. RSC Adv. 2020, 10, 18553–18559. [Google Scholar] [CrossRef]
- dos SS Firmino, G.; Andre, S.C.; Hastenreiter, Z.; Campos, V.K.; Abdel-Salam, M.A.; de Souza-Fagundes, E.M.; Lessa, J.A. In vitro assessment of the cytotoxicity of Gallium (III) complexes with Isoniazid-Derived Hydrazones: Effects on clonogenic survival of HCT-116 cells. Inorg. Chim. Acta 2019, 497, 119079. [Google Scholar] [CrossRef]
- Robin, P.; Singh, K.; Suntharalingam, K. Gallium (iii)-polypyridyl complexes as anti-osteosarcoma stem cell agents. Chem. Commun. 2020, 56, 1509–1512. [Google Scholar] [CrossRef]
- Litecká, M.; Hreusova, M.; Kašpárková, J.; Gyepes, R.; Smolková, R.; Obuch, J.; David, T.; Potočňák, I. Low-dimensional compounds containing bioactive ligands. Part XIV: High selective antiproliferative activity of tris (5-chloro-8-quinolinolato) gallium (III) complex against human cancer cell lines. Bioorganic Med. Chem. Lett. 2020, 30, 127206. [Google Scholar] [CrossRef] [PubMed]
- Wilke, N.L.; Abodo, L.O.; Frias, C.; Frias, J.; Baas, J.; Jakupec, M.A.; Keppler, B.K.; Prokop, A. The gallium complex KP46 sensitizes resistant leukemia cells and overcomes Bcl-2-induced multidrug resistance in lymphoma cells via upregulation of Harakiri and downregulation of XIAP in vitro. Biomed. Pharmacother. 2022, 156, 113974. [Google Scholar] [CrossRef] [PubMed]
- Pricker, S.P. Medical uses of gold compounds: Past, present and future. Gold Bull. 1996, 29, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Navarro, M. Gold complexes as potential anti-parasitic agents. Coord. Chem. Rev. 2009, 253, 1619–1626. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, G.; Xu, Z.; Zhao, S.; Liu, W. Advances in alkynyl gold complexes for use as potential anticancer agents. Coord. Chem. Rev. 2020, 423, 213492. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, X.; Chang, X.; Liang, Z.; Lv, L.; Shan, M.; Lu, Q.; Wen, Z.; Gust, R.; Liu, W. Recent development of gold (I) and gold (III) complexes as therapeutic agents for cancer diseases. Chem. Soc. Rev. 2022. [Google Scholar] [CrossRef]
- Che, C.-M.; Sun, R.W.-Y. Therapeutic applications of gold complexes: Lipophilic gold (III) cations and gold (I) complexes for anti-cancer treatment. Chem. Commun. 2011, 47, 9554–9560. [Google Scholar] [CrossRef]
- Nardon, C.; Boscutti, G.; Fregona, D. Beyond platinums: Gold complexes as anticancer agents. Anticancer. Res. 2014, 34, 487–492. [Google Scholar] [PubMed]
- Bian, M.; Fan, R.; Jiang, G.; Wang, Y.; Lu, Y.; Liu, W. Halo and pseudohalo gold (I)–NHC complexes derived from 4, 5-diarylimidazoles with excellent in vitro and in vivo anticancer activities against HCC. J. Med. Chem. 2020, 63, 9197–9211. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Bensdorf, K.; Proetto, M.; Abram, U.; Hagenbach, A.; Gust, R. NHC gold halide complexes derived from 4, 5-diarylimidazoles: Synthesis, structural analysis, and pharmacological investigations as potential antitumor agents. J. Med. Chem. 2011, 54, 8605–8615. [Google Scholar] [CrossRef] [PubMed]
- Walther, W.; Althagafi, D.; Curran, D.; O’Beirne, C.; Mc Carthy, C.; Ott, I.; Basu, U.; Büttner, B.; Sterner-Kock, A.; Müller-Bunz, H. In-vitro and in-vivo investigations into the carbene-gold anticancer drug candidates NHC*-Au-SCSNMe2 and NHC*-Au-S-GLUC against advanced prostate cancer PC3. Anti-Cancer Drugs 2020, 31, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Gulzar, S.; Ammara, U.; Abid, Z.; Shahid, M.; Ashraf, R.S.; Baig, N.; Kawde, A.-N.; Bhatia, G.; Isab, A.A.; Altaf, M. Synthesis, in vitro anticancer activity and reactions with biomolecule of gold (I)-NHC carbene complexes. J. Mol. Struct. 2022, 1255, 132482. [Google Scholar] [CrossRef]
- Meyer, A.; Gutiérrez, A.; Ott, I.; Rodríguez, L. Phosphine-bridged dinuclear gold (I) alkynyl complexes: Thioredoxin reductase inhibition and cytotoxicity. Inorg. Chim. Acta 2013, 398, 72–76. [Google Scholar] [CrossRef]
- Arcau, J.; Andermark, V.; Aguiló, E.; Gandioso, A.; Moro, A.; Cetina, M.; Lima, J.C.; Rissanen, K.; Ott, I.; Rodríguez, L. Luminescent alkynyl-gold (I) coumarin derivatives and their biological activity. Dalton Trans. 2014, 43, 4426–4436. [Google Scholar] [CrossRef]
- Rawat, A.; Reddy, A.V.B. Recent advances on anticancer activity of coumarin derivatives. Eur. J. Med. Chem. Rep. 2022, 100038. [Google Scholar] [CrossRef]
- Andermark, V.; Göke, K.; Kokoschka, M.; El Maaty, M.A.A.; Lum, C.T.; Zou, T.; Sun, R.W.-Y.; Aguilo, E.; Oehninger, L.; Rodríguez, L. Alkynyl gold (I) phosphane complexes: Evaluation of structure–activity-relationships for the phosphane ligands, effects on key signaling proteins and preliminary in-vivo studies with a nanoformulated complex. J. Inorg. Biochem. 2016, 160, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Alsaeedi, M.S.; Babgi, B.A.; Hussien, M.A.; Abdellattif, M.H.; Humphrey, M.G. DNA-binding and anticancer activity of binuclear gold (I) alkynyl complexes with a phenanthrenyl bridging ligand. Molecules 2020, 25, 1033. [Google Scholar] [CrossRef] [Green Version]
- Chui, C.-H.; Wong, R.S.-M.; Gambari, R.; Cheng, G.Y.-M.; Yuen, M.C.-W.; Chan, K.-W.; Tong, S.-W.; Lau, F.-Y.; Bo-San Lai, P.; Lam, K.-H. Antitumor activity of diethynylfluorene derivatives of gold (I). Bioorganic Med. Chem. 2009, 17, 7872–7877. [Google Scholar] [CrossRef] [PubMed]
- De Nisi, C.B.; Leonzio, M.; Sartor, G.; Fato, R.; Naldi, M.; Monari, M.; Calonghi, N.; Bandini, M. Synthesis, cytotoxicity and anti-cancer activity of new alkynyl-gold (i) complexes Assunta. Dalton Trans. 2016, 45, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Marmol, I.; Castellnou, P.; Alvarez, R.; Gimeno, M.C.; Rodríguez-Yoldi, M.J.; Cerrada, E. Alkynyl Gold (I) complexes derived from 3-hydroxyflavones as multi-targeted drugs against colon cancer. Eur. J. Med. Chem. 2019, 183, 111661. [Google Scholar] [CrossRef] [PubMed]
- Babgi, B.A.; Alsayari, J.; Alenezi, H.M.; Abdellatif, M.H.; Eltayeb, N.E.; Emwas, A.-H.M.; Jaremko, M.; Hussien, M.A. Alteration of anticancer and protein-binding properties of gold (I) Alkynyl by phenolic Schiff bases moieties. Pharmaceutics 2021, 13, 461. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, L.; Yang, W.S.; Chintha, C.; Morrison, L.; Samali, A.; Ramos, J.W.; Erxleben, A. Gold (I) Complexes with a Quinazoline Carboxamide Alkynyl Ligand: Synthesis, Cytotoxicity, and Mechanistic Studies. Eur. J. Inorg. Chem. 2021, 2021, 1921–1928. [Google Scholar] [CrossRef]
- Xie, Q.; Su, M.; Liu, Y.; Zhang, D.; Li, Z.; Bai, M. Translocator protein (TSPO)-Targeted agents for photodynamic therapy of cancer. Photodiagnosis Photodyn. Ther. 2021, 34, 102209. [Google Scholar] [CrossRef]
- Bian, M.; Sun, Y.; Liu, Y.; Xu, Z.; Fan, R.; Liu, Z.; Liu, W. A gold (i) complex containing an oleanolic acid derivative as a potential anti-ovarian-cancer agent by inhibiting trxr and activating ros-mediated ers. Chem.–Eur. J. 2020, 26, 7092–7108. [Google Scholar] [CrossRef]
- Aminin, D.L.; Menchinskaya, E.S.; Pisliagin, E.A.; Silchenko, A.S.; Avilov, S.A.; Kalinin, V.I. Anticancer activity of sea cucumber triterpene glycosides. Mar. Drugs 2015, 13, 1202–1223. [Google Scholar] [CrossRef]
- Tabrizi, L.; Romanova, J. Antiproliferative Activity of Gold (I) N-Heterocyclic Carbene and Triphenylphosphine Complexes with Ibuprofen Derivatives as Effective Enzyme Inhibitors. Appl. Organomet. Chem. 2020, 34, e5618. [Google Scholar] [CrossRef]
- Evans, C.H. Biochemistry of the Lanthanides; Springer Science & Business Media: New York, NY, USA, 2013; Volume 8. [Google Scholar]
- Huang, P.; Li, J.; Zhang, S.; Chen, C.; Han, Y.; Liu, N.; Xiao, Y.; Wang, H.; Zhang, M.; Yu, Q. Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepatocytes: Accumulation and oxidative damage. Environ. Toxicol. Pharmacol. 2011, 31, 25–32. [Google Scholar] [CrossRef]
- He, X.; Zhang, Z.; Zhang, H.; Zhao, Y.; Chai, Z. Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats. Toxicol. Sci. 2008, 103, 354–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.-L.; Zhao, Z.-Q.; Zhang, C.-G.; Feng, J.-Z.; Ke, Z.-L.; Su, M.-J. Changes in lipid peroxidation, the redox system and ATPase activities in plasma membranes of rice seedling roots caused by lanthanum chloride. Biometals 2000, 13, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Damment, S.; Beevers, C.; Gatehouse, D. Evaluation of the potential genotoxicity of the phosphate binder lanthanum carbonate. Mutagenesis 2005, 20, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chundawat, N.S.; Jadoun, S.; Zarrintaj, P.; Chauhan, N.P.S. Lanthanide complexes as anticancer agents: A review. Polyhedron 2021, 207, 115387. [Google Scholar] [CrossRef]
- Deghadi, G.R.; Mohamed, G.G. Can New Series of Half-sandwich Lanthanum (III), Erbium (III), and Ytterbium (III) Complexes of Organometallic Ferrocenyl Schiff Base Ligands Display Biological Activities as Antibacterial and Anticancer Drugs? Comments Inorg. Chem. 2022, 42, 368–401. [Google Scholar] [CrossRef]
- Deghadi, R.G.; Abbas, A.A.; Mohamed, G.G. Theoretical and experimental investigations of new bis (amino triazole) schiff base ligand: Preparation of its UO2 (II), Er (III), and La (III) complexes, studying of their antibacterial, anticancer, and molecular docking. Appl. Organomet. Chem. 2021, 35, e6292. [Google Scholar] [CrossRef]
- Abo El-Maali, N.; Wahman, A.Y.; Aly, A.A.; Nassar, A.Y.; Sayed, D.M. Anticancer activity of lanthanum (III) and europium (III) 5-fluorouracil complexes on Caco-2 cell line. Appl. Organomet. Chem. 2020, 34, e5594. [Google Scholar] [CrossRef]
- Shahraki, S.; Shiri, F.; Heidari Majd, M.; Dahmardeh, S. Investigating the biological potency of novel lanthanum (III) amino acid complex: MCF-7 breast cancer cell line, BSA and β-LG as targets. J. Iran. Chem. Soc. 2019, 16, 301–313. [Google Scholar] [CrossRef]
- Bhat, V.V.; Chetana, P.; Dhale, M.A.; Soman, S. Synthesis, characterization, in vitro biological evaluation and molecular docking studies of newly synthesized mononuclear lanthanum (III) complexes of N, N’-bis (2-aminoethyl) oxamide and phenanthroline bases. J. Mol. Struct. 2022, 1270, 133903. [Google Scholar] [CrossRef]
- Qin, Q.-P.; Wang, Z.-F.; Tan, M.-X.; Huang, X.-L.; Zou, H.-H.; Zou, B.-Q.; Shi, B.-B.; Zhang, S.-H. Complexes of lanthanides (III) with mixed 2, 2′-bipyridyl and 5, 7-dibromo-8-quinolinoline chelating ligands as a new class of promising anti-cancer agents. Metallomics 2019, 11, 1005–1015. [Google Scholar] [CrossRef]
- Abdolmaleki, S.; Aliabadi, A.; Ghadermazi, M. Two La (III) complexes containing pyridine-2, 6-dicarboxylate as in vitro potent cytotoxic agents toward human lymphocyte cells. Inorg. Chim. Acta 2022, 542, 121152. [Google Scholar] [CrossRef]
- Aramesh-Boroujeni, Z.; Aramesh, N.; Jahani, S.; Khorasani-Motlagh, M.; Kerman, K.; Noroozifar, M. Experimental and computational interaction studies of terbium (III) and lanthanide (III) complexes containing 2, 2′-bipyridine with bovine serum albumin and their in vitro anticancer and antimicrobial activities. J. Biomol. Struct. Dyn. 2021, 39, 5105–5116. [Google Scholar] [CrossRef] [PubMed]
Citation Number | Metal Ion/Ligand Type | Effective against | Biological Activity (If Investigated) |
---|---|---|---|
[22] | Pt(II), triphenylphosphonium-pyridine | A549; HL-7702 | mtDNA lesions, impairment of mitochondrial membrane potential |
[23] | Pt(II), triangular polynuclear complex | HMLER; HMLER-shEcad; MCF10A | DNA intercalation; DNA groove binding |
[24] | Pt(II), folic acid | MCF-7 | increased Bak1/Bclx ratios and Caspase-3 activity |
[25] | Pt(II), terpyridine | HCT116; SW480; NCI-H460; SiHa | Binding to L-histidine, 9-ethylguanine and L-cysteine |
[26] | Pt(II), terpyridine | A549; A549/DDP; A431; HeLa; MCF-7 | DNA binding; EGFR inhibition |
[27] | Pt(II), substituted pyridines | DLD-1 | n/a |
[28] | Pt(II), pyrrole-substituted Schiff bases | Caco-2; HeLa; Hep-G2; MCF-7; PC-3 | DNA intercalation |
[29] | Pt(II), Schiff base | MCF-7 | CT-DNA binding |
[30] | Pt(II), phenanthridine | A2780; A2780cis; SKOV-3; MDA-MB-231; A549 | Apoptosis |
[31] | Pt(II), N-heterocyclic carbene (NHC) | CT26 | Induction of endoplasmic reticulum stress, increase in ROS |
[32] | Pt(II), benzothiazole aniline | C6; HeLa; HT-29; MCF-7 | DNA intercalation |
[33] | Pt(II), pyridine cationic | MCF-7; A549; Hep-G2 | sterol regulatory element-binding protein 1 (SREBP-1) targeting, lipid biogenesis inhibition |
[34] | Pt(II), radioactive bisphosphonate | n/a | Theragnostic, bone accumulation in mice |
[35] | Pt(II), thiourea | LoVo; MCF-7 | n/a |
[36] | Pt(II), macrocyclic Schiff base | HeLa; A549 | n/a |
[37] | Pt(II), ONN-“pincer” | Hep-G2 | n/a |
[38] | Pt(II), 1,4-diaza-1,3-butadiene | SCOV-3 | n/a |
[39] | Pt(IV), axial ligands indomethacin/ acetylsalicylic acid | A2780 ADDP | n/a |
[40] | Pt(IV), axial maleamide | CT-26 (in vivo murine model) | Albumin binding enhances drug accumulation in cancer cells |
[41] | Pt(IV), mono- and di-axial diazido complex | A2780; A549 | Photocytotoxicity, DNA binding, ROS generation |
[42] | Pt(IV), diazido complex | A2780 | UV-induced photocytotoxicity, ROS generation, immunogenic cell death |
Citation Number | Metal Ion/Ligand Type | Effective against | Biological Activity (If Investigated) |
---|---|---|---|
[49] | Ru(II), p-cymene, Shiff base | Caco-2 | n/a |
[50,51] | Ru(II), polypyridine, 1,10-phenanthroline | SKMEL-28 | Photocytotoxicity, ROS generation |
[52] | Ru(II), polypyridine | B16; HepG2; A549 | Disrupted cell migration, G0/G1 cell cycle arrest, ROS generation, mitochondrial membrane penetration |
[53] | Ru(II), rhein-substituted polypyridine | MCF-7; A549; NB-4; A2780; A2780R | Photocytotoxicity, autophagy |
[54] | Ru(II), 1,10-phenanthroline, plumbagin | MCG-803 in vivo murine model | Mitochondrial impairment, DNA damage, G0/G1 cell cycle arrest |
[55] | Ru(II), polypyridine, maltol | HeLa; A2780; A2780cis; A2780ADR; CT-26; CT-26LUC | Apoptosis |
[57] | Ru(II), polypyridine, | HeLa, A549 | Pyroptosis, caspase 1 activation, ROS increase |
[58] | Ru(II), NHC | A549; HT-29; HCT-116; LoVo; HeLa; A2780 | Mitochondrial dysfunction, apoptosis, disrupted cell migration |
[59] | Ru(II), cyclopentadienyl | A2780; MDAMB231; HT29 | HSA binding. |
[60] | Ru(II)/(III), 2-aminophenyl benzimidazole, DMSO | Caco-2, MCF-7, EAC(in vivo) | DNA-laddering, G2/M cell cycle arrest |
[61] | Ru(II), dinuclear, Biginelli hybrids | HeLa; A375; K562 | Inhibited cell migration and endothelial tube formation |
[62] | Ru(II), p-cymene, imidazophenanthroline | HeLa; CaCo-2 | CT-DNA and BSA binding |
[63] | Ru(II), p-cymene, imidazophenanthroline | MDB-MA-231; HeLa | CT-DNA and BSA binding |
[64] | Ru(II), diclofenac, organophosphines | A549; MDA-MB-231; MCF-7 | CT-DNA and BSA binding, apoptosis |
[65] | Ru(II), p-cymene, bis-aminophosphine | A375 | Apoptosis |
[66] | Ru(II), p-cymene, aromatic diamine | OVCAR-3; M-14; HOP-62 | CT-DNA binding |
[67] | Ru(II), dinuclear, p-cymene, tetrazole | HeLa; MCF-7; A549 | DNA and BSA binding, G0/G1 cell cycle arrest, cell migration inhibition |
[68] | Ru(II), half-sandwich arene | MCF-7 | CT-DNA and BSA binding |
[69] | Ru(II), flavone | MCF-7; MDA-MB-231 | Cell migration inhibition |
[70] | Ru(II), pyrazolopyrimidine | SCOV-3 | ROS generation, mitochondrial impairment, inhibition of cell invasion and proliferation |
[71] | Ru(II), aminoflavone | A2780; A2780cis; Toledo; Toledo-cis | Mitochondrial impairment, DNA interaction, apoptosis |
[72] | Ru(II), dinuclear, arene | A2780; A2780cisR; A24; (D-)A24cisPt8.0 | n/a |
[74] | Ru(II), diphosphine, lapachol, lawsone | MDA-MB-231; MCF-7; A549; DU-145 | DNA interaction. Cell cycle arrest, mitochondrial disruption, ROS increase |
[75] | Ru(III), quinolone antibiotics | LoVo | G0/G1 cell cycle arrest |
[76] | Ru(III), triazolopyrimidine | MCF-7, HeLa | Increased ROS generation, DNA and protein binding |
[77] | Ru(III), 1,4,8,11-tetraazacyclotetradecane | SiHa | Nuclear fragmentation, apoptosis |
Citation Number | Metal Ion/Ligand Type | Effective against | Biological Activity (If Investigated) |
---|---|---|---|
[9] | Ga(III), salen | HeLa, HepG 2, MCF-7, A549 | Protein disulfide isomerase inhibition |
[84] | Ga(III), hydrazone | MCF-7; PC-3 | n/a |
[90] | Ga(III), corrole | DU145; SK-MEL-28; MDA-MB-231; OVCAR-3 | n/a |
[91] | Ga(III), benzoylpyridine thiosemicarbazone | HepG-2 | Impaired mitochondrial function, ferritin expression downregulated, transferrin receptor-1 upregulated, activated caspase-3 increased ROS |
[92] | Ga(III), isonicotynoyl hydrazone | HL-60; MCF-7; HCT-116; PC3 | Reduced clonogenicity. |
[93] | Ga(III), polypyridine | OSC; OSCs | Damage to genomic DNA, apoptosis |
[94] | Ga(III), substituted 8-quinolinol | A2780, MDA-MB-231 and HCT116 | |
[95] | Ga(III), 8-quinolinol | BJAB mock; Nalm-6; SK-N-AS; K652 | Cell proliferation inhibition, impaired mitochondrial function, apoptosis |
Citation Number | Metal Ion/Ligand Type | Effective against | Biological Activity (If Investigated) |
---|---|---|---|
[102] | Au(I), 4,5-diarylimidazoles | HepG2; SMMC-7721; Hep3B | TrxR inhibition, ROS increase |
[104] | Au(I), NHC | OVCAR3; NCI-H522; HT29; T-47D; PC-3 | TrxR inhibition, nuclear protein Ki67 reduction |
[105] | Au(I), NHC | HCT-15; A549; MCF7 | n/a |
[110] | Au(I), phosphine, alkynylphenanthrene | MCF-7; HEPG-2; PC-3; MOLT-4 | DNA binding |
[112] | Au(I)-alkynyl, triphenylphosphane | HT29; IGROV1; HL60 | TrxR inhibition |
[113] | Au(I)-alkynyl, triphenylphosphine/ PTA | MCF-7; HepG5; Caco-2/TC7 | TrxR inhibition, COX-1/2 inhibition, increased ROS |
[114] | Au(I)-alkynyl, phosphane | OVCAR-3; HOP-62 | HSA binding |
[115] | Au(I)-alkynyl | 5637; T24 | TrxR inhibition |
[117] | Au(I)-alkynyl-triterpene | MCF-7; HT-29; HepG3; A2780 | TrxR inhibition, mitochondrial impairment, increased ROS, endoplasmic reticulum stress |
[119] | Au(I)-alkynyl-ibuprofen | MCF-7; MDA-MB-231; HT-29 | TrxR and glutathione reductase inhibition, increased ROS |
Citation Number | Metal Ion/Ligand Type | Effective against | Biological Activity (If Investigated) |
---|---|---|---|
[126] | La(III), ferrocene-substituted Schiff base | MCF-7 | Molecular docking: 3HB5 breast cancer receptor |
[127] | La(III), tetradentate Schiff base | MCF-7, HepG2 | n/a |
[128] | La(III), 5-fluorouracil | Caco2 | n/a |
[129] | La(III), tyrosine | MCF-7 | Molecular docking: interaction with site II of BSA |
[130] | La(III), polypyridine, 1,10-phenanthroline | MCF-7 | DNA intercalation, DNA cleaving |
[131] | La(III), bipyridyl | SK-OV-3/DDP; NCI-H460; HeLa; HL-7702 | n/a |
[132] | La(III), pyridine-2,6-dicarboxylate | HL60; HepG2; HT29 | ROS increase |
[133] | La(III), bipyridine | MCF-7; A-549 | Molecular docking: interaction with site III of BSA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todorov, L.; Kostova, I. Recent Trends in the Development of Novel Metal-Based Antineoplastic Drugs. Molecules 2023, 28, 1959. https://doi.org/10.3390/molecules28041959
Todorov L, Kostova I. Recent Trends in the Development of Novel Metal-Based Antineoplastic Drugs. Molecules. 2023; 28(4):1959. https://doi.org/10.3390/molecules28041959
Chicago/Turabian StyleTodorov, Lozan, and Irena Kostova. 2023. "Recent Trends in the Development of Novel Metal-Based Antineoplastic Drugs" Molecules 28, no. 4: 1959. https://doi.org/10.3390/molecules28041959
APA StyleTodorov, L., & Kostova, I. (2023). Recent Trends in the Development of Novel Metal-Based Antineoplastic Drugs. Molecules, 28(4), 1959. https://doi.org/10.3390/molecules28041959