Study of the Counter Cation Effects on the Supramolecular Structure and Electronic Properties of a Dianionic Oxamate-Based {NiII2} Helicate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis, IR Spectroscopy, Thermal Analysis, and X-ray Powder Diffraction
2.2. Description of the Crystal Structures of 1 and 2
2.3. Theoretical Study
2.4. Electrochemical Behavior of the Supramolecular Materials
2.5. XANES Spectroscopy Study
3. Materials and Methods
3.1. Reagents
3.2. Preparation of the Oxamate Ligand and Complexes 1 and 2
3.3. X-ray Data Collection and Structure Refinement
3.4. Physical Measurements
3.5. Theoretical Calculations
3.6. Electrochemical Experiment Set Up
3.7. XANES Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Do Pim, W.D.; Mendonça, F.G.; Brunet, G.; Facey, G.A.; Chevallier, F.; Bucher, C.; Baker, R.T.; Murugesu, M. Anion-Dependent Catalytic C-C Bond Cleavage of a Lignin Model within a Cationic Metal-Organic Framework. ACS Appl. Mater. Interfaces 2021, 13, 688–695. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Rosi, N.L. Tuning MOF CO2 Adsorption Properties via Cation Exchange. J. Am. Chem. Soc. 2010, 132, 5578–5579. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Mukherjee, S.; Harvey-Reid, N.C.; Bezrukov, A.A.; Tan, K.; Martins, V.; Vandichel, M.; Pham, T.; Van Wyk, L.M.; Oyekan, K.; et al. Breaking the Trade-off between Selectivity and Adsorption Capacity for Gas Separation. Chem 2021, 7, 3085–3098. [Google Scholar] [CrossRef]
- Park, S.S.; Hontz, E.R.; Sun, L.; Hendon, C.H.; Walsh, A.; Van Voorhis, T.; Dincə, M. Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal-Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 1774–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paiva, F.F.; Ferreira, L.A.; Rosa, I.M.L.; da Silva, R.M.R.; Sigoli, F.; Cambraia Alves, O.; Garcia, F.; Guedes, G.P.; Marinho, M.V. Heterobimetallic Metallacrown of EuIIICuII5 with 5-Methyl-2-Pyrazinehydroxamic Acid: Synthesis, Crystal Structure, Magnetism, and the Influence of CuII Ions on the Photoluminescent Properties. Polyhedron 2021, 209, 115–466. [Google Scholar] [CrossRef]
- Simões, T.R.G.; Marinho, M.V.; Pasán, J.; Stumpf, H.O.; Moliner, N.; Lloret, F.; Julve, M. On the Magneto-Structural Role of the Coordinating Anion in Oxamato-Bridged Copper(II) Derivatives. Dalton Trans. 2019, 48, 10260–10274. [Google Scholar] [CrossRef] [PubMed]
- Rosa, I.M.L.; Costa, M.C.S.; Vitto, B.S.; Amorim, L.; Correa, C.C.; Pinheiro, C.B.; Doriguetto, A.C. Influence of Synthetic Methods in the Structure and Dimensionality of Coordination Polymers. Cryst. Growth Des. 2016, 16, 1606–1616. [Google Scholar] [CrossRef]
- Marinho, M.V.; Simões, T.R.G.; Ribeiro, M.A.; Pereira, C.L.M.; Machado, F.C.; Pinheiro, C.B.; Stumpf, H.O.; Cano, J.; Lloret, F.; Julve, M. A Two-Dimensional Oxamate- and Oxalate-Bridged CuIIMnII Motif: Crystal Structure and Magnetic Properties of (Bu4N)2[Mn2{Cu(opba)}2ox]. Inorg. Chem. 2013, 52, 8812–8819. [Google Scholar] [CrossRef]
- Journaux, Y.; Ferrando-Soria, J.; Pardo, E.; Ruiz-Garcia, R.; Julve, M.; Lloret, F.; Cano, J.; Li, Y.; Lisnard, L.; Yu, P.; et al. Design of Magnetic Coordination Polymers Built from Polyoxalamide Ligands: A Thirty Year Story. Eur. J. Inorg. Chem. 2018, 2018, 228–247. [Google Scholar] [CrossRef] [Green Version]
- Pardo, E.; Carrasco, R.; Ruiz-Garcia, R.; Julve, M.; Lloret, F.; Muñoz, M.C.; Journaux, Y.; Ruiz, E.; Cano, J. Structure and Magnetism of Dinuclear Copper(II) Metallacyclophanes with Oligoacenebis(Oxamate) Bridging Ligands: Theoretical Predictions on Wirelike Magnetic Coupling. J. Am. Chem. Soc. 2008, 130, 576–585. [Google Scholar] [CrossRef]
- Dul, M.C.; Pardo, E.; Lescouëzec, R.; Journaux, Y.; Ferrando-Soria, J.; Ruiz-García, R.; Cano, J.; Julve, M.; Lloret, F.; Cangussu, D.; et al. Supramolecular Coordination Chemistry of Aromatic Polyoxalamide Ligands: A Metallosupramolecular Approach toward Functional Magnetic Materials. Coord. Chem. Rev. 2010, 254, 2281–2296. [Google Scholar] [CrossRef] [Green Version]
- Grancha, T.; Ferrando-Soria, J.; Castellano, M.; Julve, M.; Pasán, J.; Armentano, D.; Pardo, E. Oxamato-Based Coordination Polymers: Recent Advances in Multifunctional Magnetic Materials. Chem. Commun. 2014, 50, 7569–7585. [Google Scholar] [CrossRef] [PubMed]
- Grancha, T.; Mon, M.; Lloret, F.; Ferrando-Soria, J.; Journaux, Y.; Pasán, J.; Pardo, E. Double Interpenetration in a Chiral Three-Dimensional Magnet with a (10,3)-a Structure. Inorg. Chem. 2015, 54, 8890–8892. [Google Scholar] [CrossRef] [PubMed]
- Mon, M.; Ferrando-Soria, J.; Verdaguer, M.; Train, C.; Paillard, C.; Dkhil, B.; Versace, C.; Bruno, R.; Armentano, D.; Pardo, E. Postsynthetic Approach for the Rational Design of Chiral Ferroelectric Metal-Organic Frameworks. J. Am. Chem. Soc. 2017, 139, 8098–8101. [Google Scholar] [CrossRef] [PubMed]
- Ferrando-Soria, J.; Fabelo, O.; Castellano, M.; Cano, J.; Fordham, S.; Zhou, H.C. Multielectron Oxidation in a Ferromagnetically Coupled Dinickel(II) Triple Mesocate. Chem. Commun. 2015, 51, 13381–13384. [Google Scholar] [CrossRef] [PubMed]
- Simões, T.R.G.; do Pim, W.D.; Silva, I.F.; Oliveira, W.X.C.; Pinheiro, C.B.; Pereira, C.L.M.; Lloret, F.; Julve, M.; Stumpf, H.O. Solvent-Driven Dimensionality Control in Molecular Systems Containing CuII, 2,2′-Bipyridine and an Oxamato-Based Ligand. CrystEngComm 2013, 15, 10165–10170. [Google Scholar] [CrossRef]
- Dul, M.C.; Lescouëzec, R.; Chamoreau, L.M.; Journaux, Y.; Carrasco, R.; Castellano, M.; Ruiz-García, R.; Cano, J.; Lloret, F.; Julve, M.; et al. Self-Assembly, Metal Binding Ability, and Magnetic Properties of Dinickel(II) and Dicobalt(II) Triple Mesocates. CrystEngComm 2012, 14, 5639–5648. [Google Scholar] [CrossRef]
- Pardo, E.; Morales-Osorio, I.; Julve, M.; Lloret, F.; Cano, J.; Ruiz-García, R.; Pasán, J.; Ruiz-Pérez, C.; Ottenwaelder, X.; Journaux, Y. Magnetic Anisotropy of a High-Spin Octanuclear Nickel(II) Complex with a Meso-Helicate Core. Inorg. Chem. 2004, 43, 7594–7596. [Google Scholar] [CrossRef] [PubMed]
- Cangussu, D.; Pardo, E.; Dul, M.C.; Lescouëzec, R.; Herson, P.; Journaux, Y.; Pedroso, E.F.; Pereira, C.L.M.; Stumpf, H.O.; Carmen Muñoz, M.; et al. Rational Design of a New Class of Heterobimetallic Molecule-Based Magnets: Synthesis, Crystal Structures, and Magnetic Properties of Oxamato-Bridged M3′ M2 (M′ = LiI and MnII; M = NiII and CoII) Open-Frameworks with a Three-Dimensional Honeycomb Architect. Inorg. Chim. Acta 2008, 361, 3394–3402. [Google Scholar] [CrossRef]
- Lisnard, L.; Chamoreau, L.M.; Li, Y.; Journaux, Y. Solvothermal Synthesis of Oxamate-Based Helicate: Temperature Dependence of the Hydrogen Bond Structuring in the Solid. Cryst. Growth Des. 2012, 12, 4955–4962. [Google Scholar] [CrossRef] [Green Version]
- Mariano, L.D.S.; Rosa, I.M.L.; de Campos, N.R.; Doriguetto, A.C.; Dias, D.F.; do Pim, W.D.; Valdo, A.K.S.M.; Martins, F.T.; Ribeiro, M.A.; de Paula, E.E.B.; et al. Polymorphic Derivatives of NiII and CoII Mesocates with 3D Networks and “Brick and Mortar” Structures: Preparation, Structural Characterization, and Cryomagnetic Investigation of New Single-Molecule Magnets. Cryst. Growth Des. 2020, 20, 2462–2476. [Google Scholar] [CrossRef]
- Zheng, X.D.; Lu, T.B. Constructions of Helical Coordination Compounds. CrystEngComm 2010, 12, 324–336. [Google Scholar] [CrossRef]
- Zhou, H.L.; Bai, J.; Tian, X.Y.; Mo, Z.W.; Chen, X.M. Dynamic Pendulum Effect of an Exceptionally Flexible Pillared-Layer Metal-Organic Framework. Chin. J. Chem. 2021, 39, 2718–2724. [Google Scholar] [CrossRef]
- Huang, X.C.; Zhang, J.P.; Lin, Y.Y.; Chen, X.M. Triple-Stranded Helices and Zigzag Chains of Copper(I) 2-Ethylimidazolate: Solvent Polarity-Induced Supramolecular Isomerism. Chem. Commun. 2005, 17, 2232–2234. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, R.; Faus, J.; Julve, M.; Lloret, F.; Cano, J.; Ottenwaelder, X.; Journaux, Y.; Mun, M.C. Ferromagnetic Coupling through Spin Polarization in a Dinuclear Copper(II) Metallacyclophane. Angew. Chem. Int. Ed. 2001, 1, 3039–3042. [Google Scholar]
- Pereira, C.L.M.; Pedroso, E.F.; Stumpf, H.O.; Novak, M.A.; Ricard, L.; Ruiz-García, R.; Rivière, E.; Journaux, Y. A CuIICoII Metallacyclophane-Based Metamagnet with a Corragated Brick-Wall Sheet Architecture. Angew. Chem. Int. Ed. 2004, 43, 956–958. [Google Scholar] [CrossRef]
- Pardo, E.; Bernot, K.; Julve, M.; Lloret, F.; Cano, J.; Ruiz-García, R.; Delgado, F.S.; Ruiz-Pérez, C.; Ottenwaelder, X.; Journaux, Y. Spin Control in Ladderlike Hexanuclear Copper(II) Complexes with Metallacyclophane Cores. Inorg. Chem. 2004, 43, 2768–2770. [Google Scholar] [CrossRef]
- Pardo, E.; Cangussu, D.; Dul, M.-C.; Lescouëzec, R.; Herson, P.; Journaux, Y.; Pedroso, E.F.; Pereira, C.L.M.; Muñoz, M.C.; Ruiz-García, R.; et al. A Metallacryptand-Based Manganese(II)–Cobalt(II) Ferrimagnet with a Three-Dimensional Honeycomb Open-Framework Architecture. Angew. Chem. Int. Ed. 2008, 47, 4211–4216. [Google Scholar] [CrossRef]
- Ferrando-Soria, J.; Ruiz-García, R.; Cano, J.; Stiriba, S.E.; Vallejo, J.; Castro, I.; Julve, M.; Lloret, F.; Amorõs, P.; Pasán, J.; et al. Reversible Solvatomagnetic Switching in a Spongelike Manganese(II)-Copper(II) 3D Open Framework with a Pillared Square/Octagonal Layer Architecture. Chem. Eur. J. 2012, 18, 1608–1617. [Google Scholar] [CrossRef]
- Ferrando-Soria, J.; Grancha, T.; Pasán, J.; Ruiz-Pérez, C.; Cañadillas-Delgado, L.; Journaux, Y.; Julve, M.; Cano, J.; Lloret, F.; Pardo, E. Solid-State Aggregation of Metallacyclophane-Based MnIICuII One-Dimensional Ladders. Inorg. Chem. 2012, 2, 7019–7021. [Google Scholar] [CrossRef]
- Grancha, T.; Tourbillon, C.; Julve, M.; Lloret, F.; Fabelo, O.; Pardo, E. Self-Assembly of a Chiral Three-Dimensional Manganese(II)–Copper(II) Coordination Polymer with a Double Helical Architecture. CrystEngComm 2013, 2, 9312–9315. [Google Scholar] [CrossRef]
- Oliveira, W.X.C.; Ribeiro, M.A.; Pinheiro, C.B.; Da Costa, M.M.; Fontes, A.P.S.; Nunes, W.C.; Cangussu, D.; Julve, M.; Stumpf, H.O.; Pereira, C.L.M. Palladium(II)-Copper(II) Assembling with Bis(2-pyridylcarbonyl)amidate and Bis(oxamate) Type Ligands. Cryst. Growth Des. 2015, 15, 1325–1335. [Google Scholar] [CrossRef]
- De Campos, N.R.; Simosono, C.A.; Rosa, I.M.L.; da Silva, R.M.R.; Doriguetto, A.C.; do Pim, W.D.; Simões, T.R.G.; Valdo, A.K.S.M.; Martins, F.T.; Sarmiento, C.V.; et al. Building-up Host–Guest Helicate Motifs and Chains: A Magneto-Structural Study of New Field-Induced Cobalt-Based Single-Ion Magnets. Dalton Trans. 2021, 50, 10707–10728. [Google Scholar] [CrossRef] [PubMed]
- Wallace, V.M.; Dhumal, N.R.; Zehentbauer, F.M.; Kim, H.J.; Kiefer, J. Revisiting the Aqueous Solutions of Dimethyl Sulfoxide by Spectroscopy in the Mid- and Near-Infrared: Experiments and Car-Parrinello Simulations. J. Phys. Chem. B 2015, 119, 14780–14789. [Google Scholar] [CrossRef]
- Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. Shape: Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools; Eletronic Structure Group Universitat de Barcelona: Barcelona, Spain, 2013. [Google Scholar]
- Romero, M.J.; Martínez-Calvo, M.; Maneiro, M.; Zaragoza, G.; Pedrido, R.; González-Noya, A.M. Selective Metal-Assisted Assembly of Mesocates or Helicates with Tristhiosemicarbazone Ligands. Inorg. Chem. 2019, 58, 881–889. [Google Scholar] [CrossRef]
- Mayans, J.; Font-Bardia, M.; di Bari, L.; Arrico, L.; Zinna, F.; Pescitelli, G.; Escuer, A. From Mesocates to Helicates: Structural, Magnetic and Chiro-Optical Studies on Nickel(II) Supramolecular Assemblies Derived from Tetradentate Schiff Bases. Chem. Eur. J. 2018, 24, 7653–7663. [Google Scholar] [CrossRef]
- Wu, B.; Li, S.; Lei, Y.; Hu, H.; Amadeu, D.S. The Effect of the Spacer of Bis (Biurea) Ligands on the Structure of A2L3 -Type (A = Anion) Phosphate Complexes. Chem. Eur. J. 2015, 21, 2588–2593. [Google Scholar] [CrossRef]
- Lin, S.Y.; Xu, G.F.; Zhao, L.; Guo, Y.N.; Guo, Y.; Tang, J. Observation of Slow Magnetic Relaxation in Triple-Stranded Lanthanide Helicates. Dalton Trans. 2011, 40, 8213–8217. [Google Scholar] [CrossRef]
- Lisboa, L.S.; Riisom, M.; Vasdev, R.A.S.; Jamieson, S.M.F.; Wright, L.J.; Hartinger, C.G.; Crowley, J.D. Cavity-Containing [Fe2L3]4+ Helicates: An Examination of Host-Guest Chemistry and Cytotoxicity. Front. Chem. 2021, 9, 697684. [Google Scholar] [CrossRef]
- Albrecht, M. Catecholate-Based Helicates. Eur. J. Inorg. Chem. 2020, 2020, 2227–2237. [Google Scholar] [CrossRef]
- Zhang, Z.; Dolphin, D. A Triple-Stranded Helicate and Mesocate from the Same Metal and Ligand. Chem. Commun. 2009, 6931–6933. [Google Scholar] [CrossRef] [PubMed]
- Mitina, T.G.; Blatov, V.A. Topology of 2-Periodic Coordination Networks: Toward Expert Systems in Crystal Design. Cryst. Growth Des. 2013, 13, 1655–1664. [Google Scholar] [CrossRef]
- Alexandrov, E.V.; Shevchenko, A.P.; Blatov, V.A. Topological Databases: Why Do We Need Them for Design of Coordination Polymers? Cryst. Growth Des. 2019, 19, 2604–2614. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Bruker APEX3. Bruker APEX3, V2019.1-0; Bruker AXS Inc.: Madison, WI, USA, 2019. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- MacRae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied Topological Analysis of Crystal Structures with the Program Package Topospro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Shamanaev, I.V. Crystal Structure Representation for Neural Networks Using Topological Approach. Mol. Inform. 2017, 36, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Head-gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Shyjun, S.U.; et al. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Stevens, W.; Raus, M.; Basch, H.; Jasien, P.G. Relativistic Compact Effective Potentials and Efficient, Shared-Exponent Basis Sets for the Third-, Fourth-, and Fifth-Row Atoms. Can. J. Chem. 1992, 70, 612. [Google Scholar] [CrossRef]
- Dos Reis, R.D.; Kaneko, U.F.; Francisco, B.A.; Fonseca, J., Jr.; Eleoterio, M.A.S.; Souza-Neto, N.M. Preliminary Overview of the Extreme Condition Beamline (EMA) at the New Brazilian Synchrotron Source (Sirius). J. Phys. Conf. Ser. 2020, 1609, 012015. [Google Scholar] [CrossRef]
- Hill, S.; Datta, S.; Liu, J.; Inglis, R.; Milios, C.J.; Feng, P.L.; Henderson, J.J.; del Barco, E.; Brechin, E.K.; Hendrickson, D.N. Magnetic Quantum Tunneling: Insights from Simple Molecule-Based Magnets. Dalton Trans. 2010, 39, 4693–4707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
1 | 2 | |
---|---|---|
Empirical formula | C34H44K2N6Ni2O27S2 | C33H50N6Ni3O31 |
Formula weight/g mol−1 | 1228.45 | 1202.05 |
T/K | 296 (2) | 293 (2) |
Wavenumber/Å | Mo Kα | Mo Kα |
Crystal system | Monoclinic | Orthorhombic |
Space group | P21/n | Fddd |
a/Å | 11.684 (2) | 18.6873 (8) |
b/Å | 25.948 (3) | 30.9191 (13) |
c/Å | 16.255 (2) | 36.0368 (14) |
β/° | 91.24 (2) | |
V/Å3 | 4927.0 (12) | 20,821.9 (15) |
Z | 4 | 16 |
ρcalc/g cm−3 | 1.656 | 1.320 |
Refl. Measured | 19,570 | 59,179 |
Refl. Independent | 9087 | 4611 |
Refl. observed [I > 2σ (I)] | 6726 | 3933 |
No. of parameters refined | 688 | 290 |
Rint. | 0.039 | 0.044 |
R [F2 > 2σ (F2)] | 0.052 | 0.046 |
wR (F2) | 0.154 | 0.133 |
GOF over F2 | 1.05 | 1.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simosono, C.A.; da Silva, R.M.R.; De Campos, N.R.; Silva, M.A.R.; Doriguetto, A.C.; Flores, L.S.; Correa, C.C.; Simões, T.R.G.; Valdo, A.K.S.M.; Martins, F.T.; et al. Study of the Counter Cation Effects on the Supramolecular Structure and Electronic Properties of a Dianionic Oxamate-Based {NiII2} Helicate. Molecules 2023, 28, 2086. https://doi.org/10.3390/molecules28052086
Simosono CA, da Silva RMR, De Campos NR, Silva MAR, Doriguetto AC, Flores LS, Correa CC, Simões TRG, Valdo AKSM, Martins FT, et al. Study of the Counter Cation Effects on the Supramolecular Structure and Electronic Properties of a Dianionic Oxamate-Based {NiII2} Helicate. Molecules. 2023; 28(5):2086. https://doi.org/10.3390/molecules28052086
Chicago/Turabian StyleSimosono, Cintia A., Rafaela M. R. da Silva, Nathália R. De Campos, Marye Agnes R. Silva, Antônio C. Doriguetto, Leonã S. Flores, Charlane C. Correa, Tatiana R. G. Simões, Ana Karoline S. M. Valdo, Felipe T. Martins, and et al. 2023. "Study of the Counter Cation Effects on the Supramolecular Structure and Electronic Properties of a Dianionic Oxamate-Based {NiII2} Helicate" Molecules 28, no. 5: 2086. https://doi.org/10.3390/molecules28052086
APA StyleSimosono, C. A., da Silva, R. M. R., De Campos, N. R., Silva, M. A. R., Doriguetto, A. C., Flores, L. S., Correa, C. C., Simões, T. R. G., Valdo, A. K. S. M., Martins, F. T., Garcia, F., Guedes, G. P., Galvão, B. R. L., Cancino-Bernardi, J., dos Reis, R. D., Stumpf, H. O., Justino, D. D., Ortega, P. F. R., do Pim, W. D., ... Marinho, M. V. (2023). Study of the Counter Cation Effects on the Supramolecular Structure and Electronic Properties of a Dianionic Oxamate-Based {NiII2} Helicate. Molecules, 28(5), 2086. https://doi.org/10.3390/molecules28052086