Investigating the Conformations of a Family of [M2L3]4+ Helicates Using Single Crystal X-ray Diffraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterisation
2.2. Crystallography
3. Materials and Methods
3.1. General Synthetic Procedure
3.2. Physical Measurements
3.3. SCXRD
3.4. Refinement Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hannon, M.J.; Childs, L.J. Helices and helicates: Beautiful supramolecular motifs with emerging applications. Supramol. Chem. 2006, 16, 7–22. [Google Scholar] [CrossRef]
- Piguet, C.; Bernardinelli, G.; Hopfgartner, G. Helicates as versatile supramolecular complexes. Chem. Rev. 1997, 97, 2005–2062. [Google Scholar] [CrossRef] [PubMed]
- Piguet, C.; Borkovec, M.; Hamacek, J.; Zeckert, K. Strict self-assembly of polymetallic helicates: The concepts behind the semantics. Coord. Chem. Rev. 2005, 249, 705–726. [Google Scholar] [CrossRef]
- Albrecht, M. Catecholate-based helicates. Eur. J. Inorg. Chem. 2020, 2020, 2227–2237. [Google Scholar] [CrossRef]
- Ono, T.; Ishihama, K.; Taema, A.; Harada, T.; Furusho, K.; Hasegawa, M.; Nojima, Y.; Abe, M.; Hisaeda, Y. Dinuclear triple-stranded helicates composed of tetradentate ligands with Aluminium(III) chromophores: Optical resolution and multi-color circularly polarized luminescence properties. Angew. Chem. Int. Ed. 2021, 60, 2614–2618. [Google Scholar] [CrossRef]
- Darawsheh, M.; Barrios, L.A.; Roubeau, O.; Teat, S.J.; Aromí, G. Encapsulation of a CrIII single-ion magnet within an FeII spin-crossover supramolecular host. Angew. Chem. Int. Ed. 2018, 57, 13509–13513. [Google Scholar] [CrossRef]
- Zhang, D.; Ronson, T.K.; Nitschke, J.R. Functional Capsules via Subcomponent Self-Assembly. Acc. Chem. Res. 2018, 51, 2423–2436. [Google Scholar] [CrossRef]
- Leninger, S.; Olenyuk, B.; Stang, P.J. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals. Chem. Rev. 2000, 100, 853–908. [Google Scholar] [CrossRef]
- Cook, T.R.; Stang, P.J. Recent Developments in the Preparation and Chemistry of Metallcycles and Metallacages via Coordination. Chem. Rev. 2015, 115, 7001–7045. [Google Scholar] [CrossRef]
- Caulder, D.L.; Raymond, K.N. The Rational Design of High Symmetry Coordination Clusters. J. Chem. Soc. Dalton Trans. 1999, 1185–1200. [Google Scholar] [CrossRef]
- Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.; Kusukawa, K.; Biradha, K. Molecular paneling via Coordination. Chem. Commun. 2001, 509–518. [Google Scholar] [CrossRef]
- Li, F.; Lindoy, L.F. Metalloligand Strategies for Assembling Heteronuclear Nanocages—Recent Developments. Aust. J. Chem. 2019, 72, 731–741. [Google Scholar] [CrossRef]
- Li, F.; Lindoy, L.F. Complementarity and Preorganisation in the Assembly of Heterometallic—Organic Cages via the Metalloligand Approach—Recent Advances. Chemistry 2022, 4, 1439–1456. [Google Scholar] [CrossRef]
- Li, L.; Fanna, D.J.; Shepherd, N.D.; Lindoy, L.F.; Li, F. Constructing coordination nanocages: The metalloligand approach. J. Incl. Phenom. Macrocycl. Chem. 2015, 82, 3–12. [Google Scholar] [CrossRef]
- Srivastava, S.; Gupta, R. Metalloligands to material: Design strategies and network topologies. CrystEngComm 2016, 18, 9185–9208. [Google Scholar] [CrossRef]
- Kumar, G.; Kumar, G.; Gupta, R. Effect of pyridyl donors from organic ligands versus metalloligands on material design. Inorg. Chem. Front. 2021, 8, 1334–1373. [Google Scholar] [CrossRef]
- Reichel, F.; Clegg, J.K.; Gloe, K.; Gloe, K.; Weigand, J.J.; Reynolds, J.K.; Li, C.-G.; Aldrich-Wright, J.R.; Kepert, C.J.; Lindoy, L.F.; et al. Self-assembly of an imidazolate-bridged FeIII/CuII heterobimetallic cage. Inorg. Chem. 2014, 53, 688–690. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Y.; Avdeev, M.; Lindoy, L.F.; Harman, D.G.; Zheng, R.; Cheng, Z.; Aldrich-Wright, J.R.; Li, F. Self-assembly of a unique 3d/4f heterometallic square prismatic box-like coordination cage. Dalton Trans. 2016, 45, 9407–9411. [Google Scholar] [CrossRef]
- Li, L.; Craze, A.R.; Fanna, D.J.; Brock, A.J.; Clegg, J.K.; Lindoy, L.F.; Aldrich-Wright, J.R.; Reynolds, J.K.; Li, F. Synthesis and characterisation of two Cu(I) metalloligands based on tetradentate tripodal ligands. Polyhedron 2017, 125, 44–49. [Google Scholar] [CrossRef]
- Min, H.; Craze, A.R.; Wallis, M.J.; Tokunaga, R.; Taira, T.; Hirai, Y.; Bhadbhade, M.M.; Fanna, D.J.; Marjo, C.E.; Hayami, S.; et al. Spin crossover induced by changing the identity of the secondary metal species in a face-centred FeII8NiII6 cubic cage. Chem. Eur. J. 2022. accepted author manuscript. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Craze, A.R.; Taira, T.; Wallis, M.J.; Bhadbhade, M.M.; Tian, R.; Fanna, D.J.; Wuhrer, R.; Hayami, S.; Clegg, J.K.; et al. Self-Assembly of a Rare High Spin FeII/PdII Tetradecanuclear Cubic Cage Constructed via the Metalloligand Approach. Chemistry 2022, 4, 535–547. [Google Scholar] [CrossRef]
- Jansze, S.M.; Wise, M.D.; Vologzhanina, A.V.; Scopelliti, R.; Severin, K. PdII2L4-type coordination cages up to three nanometers in size. Chem. Sci. 2016, 8, 1901–1908. [Google Scholar] [CrossRef]
- Shen, C.; Kennedy, A.D.W.; Donald, W.A.; Torres, A.M.; Price, W.S.; Beves, J.E. Self-assembled supramolecular cages containing dinuclear ruthenium(II) polypyridyl complexes. Inorg. Chim. Acta. 2016, 458, 122–128. [Google Scholar] [CrossRef]
- Ramsay, W.J.; Ronson, T.K.; Clegg, J.K.; Nitschke, J.R. Bidirectional regulation of halide binding in a heterometallic supramolecular cube. Angew. Chem. Int. Ed. 2013, 50, 13439–13443. [Google Scholar] [CrossRef]
- Gil-Hernández, B.; Calahorro, A.J.; Gilia, P.; Sanchiz, J. Effect of the apical ligand on the geometry and magnetic properties of copper(II)/mesoxalate trinuclear units. Dalton Trans. 2017, 46, 5260–5268. [Google Scholar] [CrossRef]
- Xi, X.; Fang, Y.; Dong, T.; Cui, Y. Bottom-up assembly from a helicate to homochiral micro- and mesoporous metal-organic frameworks. Angew. Chem. Int. Ed. 2011, 50, 1154–1158. [Google Scholar] [CrossRef]
- Giraldi, E.; Depallens, A.B.; Oritz, D.; Fadaei-Tirani, F.; Scopelliti, R.; Severin, K. Boronate ester-capped helicates. Chem. Eur. J. 2020, 26, 7578–7582. [Google Scholar] [CrossRef]
- Wallis, M.J.; Craze, A.R.; Zenno, H.; Tokunaga, R.; Taira, T.; Min, H.; Bhadbhade, M.M.; Bhattacharyya, S.K.; Tian, R.; Rich, A.; et al. Unique spin crossover pathways differentiated by scan rate in a new dinuclear Fe(II) triple helicate: Mechanistic deductions enabled by synchrotron radiation studies. ChemRxiv 2022. [Google Scholar] [CrossRef]
- Ketkaew, R.; Tantirungrotechai, Y.; Harding, D.J.; Harding, P.; Chastanet, G.; Guionneau, P.; Marchivie, M. OctaDist: A tool for calculating distortion parameters in spin crossover and coordination complexes. Dalton Trans. 2021, 50, 1086–1096. [Google Scholar] [CrossRef]
- Cowieson, N.P.; Aragao, D.; Clift, M.; Ericsson, D.J.; Gee, C.; Harrop, S.J.; Mudie, N.; Panjikar, S.; Price, J.R.; Riboldi-Tunnicliffe, A.; et al. MX1: A bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron. J. Synchrotron Rad. 2015, 22, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Kabsch, W. XDS. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 1993, 26, 795–800. [Google Scholar] [CrossRef]
- SADABS; Version 2014/5; Bruker AXS Inc.: Madison, WI, USA, 2001.
- Bruker. APEX3, SAINT and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2016. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta. Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELX-2014: Programs for Crystal Structure Analysis; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta. Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Guzei, I.A. An idealized molecular geometry library for refinement of poorly behaved molecular fragments with constraints. J. Appl. Crystallogr. 2014, 47, 806–809. [Google Scholar] [CrossRef]
Compounds | Temperature (K) | Average M(II)-N Distance (Å) | ζ (Å) | Σ (˚) | Θ (˚) | Intermetallic Distances (Å) a |
---|---|---|---|---|---|---|
[Mn2L3](ClO4)4 | 100 | Mn1: 2.26, Mn2: 2.26 | Mn1: 0.20, Mn2: 0.27 | Mn1: 98.4, Mn2: 101.5 | Mn1: 313.0, Mn2: 347.8 | 11.65 |
[Fe2L3](BF4)4 [HS-LS] [28] | 100 | Fe1:2.20, Fe2: 2.00 | Fe1: 0.20 Fe2: 0.10 | Fe1: 83.4, Fe2: 58.3 | Fe1: 264.5, Fe2: 189.7 | 11.46 |
[Fe2L3](BF4)4 [HS–HS] [28] | 250 | Fe1: 2.19, Fe2: 2.20 | Fe1: 0.22, Fe2: 0.25 | Fe1: 89.1, Fe2: 84.9 | Fe1: 278.2, Fe2: 286.5 | 11.56 |
[Co2L3](BF4)4 | 100 | Co1: 2.15, Co2: 2.15 | Co1: 0.21, Co2: 0.23 | Co1: 80.7, Co2: 78.9 | Co1: 252.6, Co2: 278.0 | 11.56 |
[Ni2L3](BF4)4 | 100 | Ni1: 2.10, Ni2: 2.11 | Ni1: 0.23, Ni2: 0.20 | Ni1: 68.2, Ni2: 70.2 | Ni1: 218.9, Ni2: 233.7 | 11.54 |
[Cu2L3](BF4)4 (Cu1-2) | 100 b | Cu1: 2.16, Cu2: 2.16 | Cu1: 0.95, Cu2: 1.03 | Cu1: 73.9, Cu2: 94.6 | Cu1: 257.1, Cu2: 307.4 | 11.67 |
[Cu2L3](BF4)4 (Cu3-4) | Cu3: 2.17, Cu4: 2.16 | Cu3: 0.99, Cu4: 1.06 | Cu3: 74.2, Cu4: 93.4 | Cu3: 253.8, Cu4: 311.4 | 11.71 | |
[Cu2L3](BF4)4 (Cu5-6) | Cu5: 2.17, Cu6: 2.16 | Cu5: 1.03, Cu6: 0.89 | Cu5: 82.3, Cu6: 86.4 | Cu5: 255.8, Cu6: 256.0 | 11.54 | |
[Zn2L3](BF4)4 | 100 | Zn1: 2.18, Zn2: 2.18 | Zn1: 0.31, Zn2: 0.36 | Zn1: 84.9, Zn2: 85.1 | Zn1: 262.0, Zn2: 287.1 | 11.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wallis, M.J.; Min, H.; Lindoy, L.F.; Li, F. Investigating the Conformations of a Family of [M2L3]4+ Helicates Using Single Crystal X-ray Diffraction. Molecules 2023, 28, 1404. https://doi.org/10.3390/molecules28031404
Wallis MJ, Min H, Lindoy LF, Li F. Investigating the Conformations of a Family of [M2L3]4+ Helicates Using Single Crystal X-ray Diffraction. Molecules. 2023; 28(3):1404. https://doi.org/10.3390/molecules28031404
Chicago/Turabian StyleWallis, Matthew J., Hyunsung Min, Leonard F. Lindoy, and Feng Li. 2023. "Investigating the Conformations of a Family of [M2L3]4+ Helicates Using Single Crystal X-ray Diffraction" Molecules 28, no. 3: 1404. https://doi.org/10.3390/molecules28031404
APA StyleWallis, M. J., Min, H., Lindoy, L. F., & Li, F. (2023). Investigating the Conformations of a Family of [M2L3]4+ Helicates Using Single Crystal X-ray Diffraction. Molecules, 28(3), 1404. https://doi.org/10.3390/molecules28031404