Extraction of Gold Based on Ionic Liquid Immobilized in UiO-66: An Efficient and Reusable Way to Avoid IL Loss Caused by Ion Exchange in Solvent Extraction
Abstract
:1. Introduction
2. Results
2.1. IL Dependence of Adsorption Ratio
2.2. Characterization of [HMIm]+[BF4]−@UiO-66
2.3. Adsorption Mechanism
2.3.1. The Anion Influence on Adsorption
2.3.2. Effect of pH
2.3.3. XPS analysis of [HMIm]+[BF4]−@UiO-66
2.4. Adsorption Kinetics
2.5. Isotherm Study
2.6. Thermodynamic Study
2.7. Selectivity and Practical Application
2.8. Reusability
3. Discussion
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Synthesis of Adsorbents
4.2.1. Synthesis of UiO-66
4.2.2. Synthesis of IL/UiO-66
4.3. Characterization
4.4. Batch Adsorption Experiment
4.5. Recovery of Au(III) from Waste CPUs
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Visser, A.E.; Swatloski, R.P.; Reichert, W.M.; Davis, J.H., Jr.; Rogers, R.D.; Mayton, R.; Sheff, S.; Wierzbicki, A. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem. Commun. 2001, 1, 135–136. [Google Scholar] [CrossRef]
- Regel-Rosocka, M.; Materna, K. Ionic Liquids for Separation of Metal Ions and Organic Compounds from Aqueous Solutions. In Ionic Liquids in Separation Technology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 153–188. [Google Scholar] [CrossRef]
- Zheng, Y.; Tong, Y.; Wang, S.; Zhang, H.; Yang, Y. Mechanism of gold (III) extraction using a novel ionic liquid-based aqueous two phase system without additional extractants. Sep. Purif. Technol. 2015, 154, 123–127. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Q.; Geng, Y.; Sun, X.; Wu, D.; Yang, Y. Recovery of Au(III) from Acidic Chloride Media by Homogenous Liquid–Liquid Extraction with UCST-Type Ionic Liquids. ACS Sustain. Chem. Eng. 2019, 7, 19975–19983. [Google Scholar] [CrossRef]
- Boudesocque, S.; Mohamadou, A.; Conreux, A.; Marin, B.; Dupont, L. The recovery and selective extraction of gold and platinum by novel ionic liquids. Sep. Purif. Technol. 2019, 210, 824–834. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Q.; Geng, Y.; Wang, N.; Yang, Y. Gold(III) separation from acidic medium by amine-based ionic liquid. J. Mol. Liq. 2020, 304, 112735. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Q.; Wang, J.; Liu, R.; Zhang, G.; Yang, Y. Homogenous Liquid–Liquid Extraction of Au(III) from Acidic Medium by Ionic Liquid Thermomorphic Systems. ACS Sustain. Chem. Eng. 2021, 9, 4894–4902. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Wang, Y.; Wei, H.; Guo, J.; Yang, Y. Extraction of Au(iii) from hydrochloric acid media using a novel amide-based ionic liquid. New J. Chem. 2022, 46, 19824–19833. [Google Scholar] [CrossRef]
- Tong, Y.; Yang, H.; Li, J.; Yang, Y. Extraction of Au(III) by ionic liquid from hydrochloric acid medium. Sep. Purif. Technol. 2013, 120, 367–372. [Google Scholar] [CrossRef]
- Freire, M.G.; Neves, C.S.; Marrucho, I.M.; Coutinho, J.P.; Fernandes, A.M. Hydrolysis of Tetrafluoroborate and Hexafluorophosphate Counter Ions in Imidazolium-Based Ionic Liquids. J. Phys. Chem. A 2010, 114, 3744–3749. [Google Scholar] [CrossRef]
- Liu, X.; Yang, F.; Wu, L.; Zhou, Q.; Ren, R.; Lv, Y.K. Ionic liquid-loaded covalent organic frameworks with favorable electrochemical properties as a potential electrode material. Microporous Mesoporous Mater. 2022, 336, 111906. [Google Scholar] [CrossRef]
- Peng, X.; Chen, L.; Liu, S.; Hu, L.; Zhang, J.; Wang, A.; Yu, X.; Yan, Z. Insights into the interfacial interaction mechanisms of p-arsanilic acid adsorption on ionic liquid modified porous cellulose. J. Environ. Chem. Eng. 2021, 9, 105225. [Google Scholar] [CrossRef]
- Dong, Z.; Zhao, L. Surface modification of cellulose microsphere with imidazolium-based ionic liquid as adsorbent: Effect of anion variation on adsorption ability towards Au(III). Cellulose 2018, 25, 2205–2216. [Google Scholar] [CrossRef]
- Yang, N.; Wang, R. Molecular sieve supported ionic liquids as efficient adsorbent for CO2 capture. J. Serb. Chem. Soc. 2015, 80, 265–275. [Google Scholar] [CrossRef]
- Wu, Y.; Jia, Z.; Bo, C.; Dai, X. Preparation of magnetic β-cyclodextrin ionic liquid composite material with different ionic liquid functional group substitution contents and evaluation of adsorption performance for anionic dyes. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126147. [Google Scholar] [CrossRef]
- Navarro, R.; Saucedo, I.; Lira, M.A.; Guibal, E. Gold(III) Recovery From HCl Solutions using Amberlite XAD-7 Impregnated with an Ionic Liquid (Cyphos IL-101). Sep. Sci. Technol. 2010, 45, 1950–1962. [Google Scholar] [CrossRef]
- Wu, H.; Kudo, T.; Kim, S.-Y.; Miwa, M.; Matsuyama, S. Recovery of cesium ions from seawater using a porous silica-based ionic liquid impregnated adsorbent. Nucl. Eng. Technol. 2022, 54, 1597–1605. [Google Scholar] [CrossRef]
- Campos, K.; Domingo, R.; Vincent, T.; Ruiz, M.; Sastre, A.M.; Guibal, E. Bismuth recovery from acidic solutions using Cyphos IL-101 immobilized in a composite biopolymer matrix. Water Res. 2008, 42, 4019–4031. [Google Scholar] [CrossRef]
- Sadjadi, S.; Koohestani, F. Synthesis and catalytic activity of a novel ionic liquid-functionalized metal–organic framework. Res. Chem. Intermed. 2021, 48, 291–306. [Google Scholar] [CrossRef]
- Ma, Y.; Li, A.; Wang, C. Experimental study on adsorption removal of SO2 in flue gas by defective UiO-66. Chem. Eng. J. 2022, 455, 140687. [Google Scholar] [CrossRef]
- Dhumal, N.R.; Singh, M.P.; Anderson, J.A.; Kiefer, J.; Kim, H.J. Molecular Interactions of a Cu-Based Metal–Organic Framework with a Confined Imidazolium-Based Ionic Liquid: A Combined Density Functional Theory and Experimental Vibrational Spectroscopy Study. J. Phys. Chem. C 2016, 120, 3295–3304. [Google Scholar] [CrossRef] [Green Version]
- Kinik, F.P.; Uzun, A.; Keskin, S. Ionic Liquid/Metal-Organic Framework Composites: From Synthesis to Applications. ChemSusChem 2017, 10, 2842–2863. [Google Scholar] [CrossRef]
- Ahmad, K.; Nazir, M.A.; Qureshi, A.K.; Hussain, E.; Najam, T.; Javed, M.S.; Shah, S.S.A.; Tufail, M.K.; Hussain, S.; Khan, N.A.; et al. Engineering of Zirconium based metal-organic frameworks (Zr-MOFs) as efficient adsorbents. Mater. Sci. Eng. B 2020, 262, 114766. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Molavi, H.; Rezakazemi, M.; Tajahmadi, S.; Bahi, A.; Ko, F.; Aminabhavi, T.M.; Li, J.-R.; Arjmand, M. UiO-66 metal–organic frameworks in water treatment: A critical review. Prog. Mater. Sci. 2022, 125, 100904. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, Z.; Wang, S.; Zhang, L.; Wang, C. Experimental and DFT study on the selective adsorption mechanism of Au(Ⅲ) using amidinothiourea-functionalized UiO-66-NH2. Microporous Mesoporous Mater. 2020, 294, 109905. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Chen, D.; Ma, D.; Liu, G.; Zou, X.; Chen, Y.; Shu, R.; Song, Q.; Lv, W. Facile synthesis of acid-modified UiO-66 to enhance the removal of Cr(VI) from aqueous solutions. Sci. Total. Environ. 2019, 682, 118–127. [Google Scholar] [CrossRef]
- Hu, S.-Z.; Huang, T.; Zhang, N.; Lei, Y.-Z.; Wang, Y. Enhanced removal of lead ions and methyl orange from wastewater using polyethyleneimine grafted UiO-66-NH2 nanoparticles. Sep. Purif. Technol. 2022, 297, 121470. [Google Scholar] [CrossRef]
- Piscopo, C.G.; Polyzoidis, A.; Schwarzer, M.; Loebbecke, S. Stability of UiO-66 under acidic treatment: Opportunities and limitations for post-synthetic modifications. Microporous Mesoporous Mater. 2015, 208, 30–35. [Google Scholar] [CrossRef]
- Ouyang, J.; Chen, J.; Ma, S.; Xing, X.; Zhou, L.; Liu, Z.; Zhang, C. Adsorption removal of sulfamethoxazole from water using UiO-66 and UiO-66-BC composites. Particuology 2022, 62, 71–78. [Google Scholar] [CrossRef]
- Xue, W.; Li, Z.; Huang, H.; Yang, Q.; Liu, D.; Xu, Q.; Zhong, C. Effects of ionic liquid dispersion in metal-organic frameworks and covalent organic frameworks on CO2 capture: A computational study. Chem. Eng. Sci. 2016, 140, 1–9. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, Y.; Xue, W.; Yang, Q.; Zhong, C. Ionic Liquid/Metal–Organic Framework Composites for H2S Removal from Natural Gas: A Computational Exploration. J. Phys. Chem. C 2015, 119, 3674–3683. [Google Scholar] [CrossRef]
- Rao, M.D.; Singh, K.K.; Morrison, C.A.; Love, J.B. Challenges and opportunities in the recovery of gold from electronic waste. RSC Adv. 2020, 10, 4300–4309. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Zhang, L. Metallurgical recovery of metals from electronic waste: A review. J. Hazard. Mater. 2008, 158, 228–256. [Google Scholar] [CrossRef]
- Doidge, E.D.; Kinsman, L.M.M.; Ji, Y.; Carson, I.; Duffy, A.J.; Kordas, I.A.; Shao, E.; Tasker, P.A.; Ngwenya, B.T.; Morrison, C.A.; et al. Evaluation of Simple Amides in the Selective Recovery of Gold from Secondary Sources by Solvent Extraction. ACS Sustain. Chem. Eng. 2019, 7, 15019–15029. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, C.; Zhao, Y.; Zhou, Y.; Ma, E.; Bai, J.; Wang, J. Recycling gold from printed circuit boards gold-plated layer of waste mobile phones in “mild aqua regia” system. J. Clean. Prod. 2021, 278, 123597. [Google Scholar] [CrossRef]
- Zhang, L.; Zha, X.; Zhang, G.; Gu, J.; Zhang, W.; Huang, Y.; Zhang, J.; Chen, T. Designing a reductive hybrid membrane to selectively capture noble metallic ions during oil/water emulsion separation with further function enhancement. J. Mater. Chem. A 2018, 6, 10217–10225. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Ding, R.; Liu, T.; Zhao, H.; Zhang, X. Construction of porphyrin and viologen-linked cationic porous organic polymer for efficient and selective gold recovery. J. Hazard. Mater. 2022, 426, 128073. [Google Scholar] [CrossRef]
- Liu, F.; Peng, G.; Li, T.; Yu, G.; Deng, S. Au(III) adsorption and reduction to gold particles on cost-effective tannin acid immobilized dialdehyde corn starch. Chem. Eng. J. 2019, 370, 228–236. [Google Scholar] [CrossRef]
- Fan, R.; Xie, F.; Guan, X.; Zhang, Q.; Luo, Z. Selective adsorption and recovery of Au(III) from three kinds of acidic systems by persimmon residual based bio-sorbent: A method for gold recycling from e-wastes. Bioresour. Technol. 2014, 163, 167–171. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef]
- Katsuta, S.; Watanabe, Y.; Araki, Y.; Kudo, Y. Extraction of Gold(III) from Hydrochloric Acid into Various Ionic Liquids: Relationship between Extraction Efficiency and Aqueous Solubility of Ionic Liquids. ACS Sustain. Chem. Eng. 2015, 4, 564–571. [Google Scholar] [CrossRef]
- Ahmed, I.; Adhikary, K.K.; Lee, Y.-R.; Ho Row, K.; Kang, K.-K.; Ahn, W.-S. Ionic liquid entrapped UiO-66: Efficient adsorbent for Gd3+ capture from water. Chem. Eng. J. 2019, 370, 792–799. [Google Scholar] [CrossRef]
- Kanj, A.B.; Verma, R.; Liu, M.; Helfferich, J.; Wenzel, W.; Heinke, L. Bunching and Immobilization of Ionic Liquids in Nanoporous Metal-Organic Framework. Nano Lett. 2019, 19, 2114–2120. [Google Scholar] [CrossRef]
- Campos, K.; Vincent, T.; Bunio, P.; Trochimczuk, A.; Guibal, E. Gold Recovery from HCl Solutions using Cyphos IL-101 (a Quaternary Phosphonium Ionic Liquid) Immobilized in Biopolymer Capsules. Solvent Extr. Ion Exch. 2008, 26, 570–601. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Wang, S.; Zhang, L.; Fu, L. Highly effective and selective adsorption of Au(III) from aqueous solution by poly(ethylene sulfide) functionalized chitosan: Kinetics, isothermal adsorption and thermodynamics. Microporous Mesoporous Mater. 2022, 341, 112074. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, J.; Wang, S.; Zhang, L. Facile preparation of a remarkable MOF adsorbent for Au(III) selective separation from wastewater: Adsorption, regeneration and mechanism. J. Mol. Liq. 2022, 349, 118137. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, Z.; Hao, F.; Xie, K.; Qi, W.; Zhai, M.; Zhao, L. Ultrahigh and selective adsorption of Au(III) by rich sulfur and nitrogen-bearing cellulose microspheres and their applications in gold recovery from gold slag leaching solution. Sep. Purif. Technol. 2021, 274, 119016. [Google Scholar] [CrossRef]
- Zhou, S.; Mo, X.; Zhu, W.; Xu, W.; Tang, K.; Lei, Y. Selective adsorption of Au(III) with ultra-fast kinetics by a new metal-organic polymer. J. Mol. Liq. 2020, 319, 114125. [Google Scholar] [CrossRef]
- Xiong, C.; Wang, S.; Zhang, L.; Li, Y.; Zhou, Y.; Peng, J. Preparation of 2-Aminothiazole-Functionalized Poly(glycidyl methacrylate) Microspheres and Their Excellent Gold Ion Adsorption Properties. Polymers 2018, 10, 159. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.; Wang, S.; Zhang, L.; Hu, T.; Peng, J.; Cheng, S.; Fu, L.; Srinivasakannan, C. Selective recovery of Au(III) from aqueous solutions using 2-aminothiazole functionalized corn bract as low-cost bioadsorbent. J. Clean. Prod. 2018, 196, 1007–1015. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, X.; Wang, Z.; Yang, J.; Li, Y.; Gu, J. Specific Recovery and In Situ Reduction of Precious Metals from Waste To Create MOF Composites with Immobilized Nanoclusters. Ind. Eng. Chem. Res. 2017, 56, 13975–13982. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Liang, H.; Ning, J.; Zhou, Z.; Li, G. Equilibrium, kinetics and mechanism of Au(3+), Pd(2+) and Ag(+) ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 79, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Li, J.; Lu, W.; Wang, N.; Xiang, Z.; Yang, Y. Au(III), Pd(II) and Pt(IV) adsorption on amino-functionalized magnetic sorbents: Behaviors and cycling separation routines. Chem. Eng. J. 2020, 381, 122627. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, C.; Wang, S.; Zhang, L.; Zhang, B. Selective recovery of Au(III) from wastewater by a recyclable magnetic Ni0.6Fe2.4O4 nanoparticels with mercaptothiadiazole: Interaction models and adsorption mechanisms. J. Clean. Prod. 2019, 236, 117605. [Google Scholar] [CrossRef]
- Saadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N.E. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J. Chem. Eng. 2015, 32, 787–799. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Z. Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. J. Mol. Liq. 2019, 277, 646–648. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, Z.; Wang, S.; Zhang, L. Ultrahigh efficient and selective adsorption of Au(III) from water by novel Chitosan-coated MoS2 biosorbents: Performance and mechanisms. Chem. Eng. J. 2020, 401, 126006. [Google Scholar] [CrossRef]
- Wang, S.; Shen, M.; Qu, J.; Zhuang, X.; Ni, S.-Q.; Wu, X. Synthesis and characterization of mercapto-modified graphene/multi-walled carbon nanotube aerogels and their adsorption of Au(III) from environmental samples. J. Non-Cryst. Solids 2020, 536, 120008. [Google Scholar] [CrossRef]
- Fagbohun, E.O.; Wang, Q.; Spessato, L.; Zheng, Y.; Li, W.; Olatoye, A.G.; Cui, Y. Physicochemical regeneration of industrial spent activated carbons using a green activating agent and their adsorption for methyl orange. Surf. Interfaces 2022, 29, 101696. [Google Scholar] [CrossRef]
- Wu, S.; Wang, F.; Yuan, H.; Zhang, L.; Mao, S.; Liu, X.; Alharbi, N.S.; Rohani, S.; Lu, J. Fabrication of xanthate-modified chitosan/poly(N-isopropylacrylamide) composite hydrogel for the selective adsorption of Cu(II), Pb(II) and Ni(II) metal ions. Chem. Eng. Res. Des. 2018, 139, 197–210. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.; Chen, S. Adsorption behavior of Au(III) and Pd(II) on persimmon tannin functionalized viscose fiber and the mechanism. Int. J. Biol. Macromol. 2020, 152, 1242–1251. [Google Scholar] [CrossRef]
- Karamanoğlu, P.; Aydın, S. An economic analysis of the recovery of gold from CPU, boards, and connectors using aqua regia. Desalination Water Treat. 2015, 57, 2570–2575. [Google Scholar] [CrossRef]
- Syed, S. Recovery of gold from secondary sources—A review. Hydrometallurgy 2012, 115–116, 30–51. [Google Scholar] [CrossRef]
- Song, J.Y.; Ahmed, I.; Seo, P.W.; Jhung, S.H. UiO-66-Type Metal-Organic Framework with Free Carboxylic Acid: Versatile Adsorbents via H-bond for Both Aqueous and Nonaqueous Phases. ACS Appl. Mater. Interfaces 2016, 8, 27394–27402. [Google Scholar] [CrossRef] [PubMed]
Pseudo-Second-Order | |||
---|---|---|---|
R2 | qe(fit) | Qe(exp) | |
UiO-66 | 0.9998 | 39.326 | 39.541 |
[HMIm]+[BF4]−@UiO-66 | 0.9934 | 64.185 | 59.844 |
Langmuir | |||
---|---|---|---|
KL | qm | R2 | |
25 °C | 0.11685 | 109.89 | 0.995 |
30 °C | 0.05213 | 142.05 | 0.91634 |
35 °C | 0.02790 | 279.33 | 0.92302 |
T(K) | Kc | ΔG (kJ/moL) | ΔH (kJ/moL) | ΔS (kJ/moL) |
---|---|---|---|---|
293 | 1.7473 | −1.3594 | ||
298 | 2.5965 | −2.3641 | 36.971 | 0.13132 |
303 | 3.1197 | −2.8662 | ||
308 | 3.7279 | −3.3695 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Wang, Y.; Wang, Y.; Zhang, P.; Lu, W. Extraction of Gold Based on Ionic Liquid Immobilized in UiO-66: An Efficient and Reusable Way to Avoid IL Loss Caused by Ion Exchange in Solvent Extraction. Molecules 2023, 28, 2165. https://doi.org/10.3390/molecules28052165
Cui X, Wang Y, Wang Y, Zhang P, Lu W. Extraction of Gold Based on Ionic Liquid Immobilized in UiO-66: An Efficient and Reusable Way to Avoid IL Loss Caused by Ion Exchange in Solvent Extraction. Molecules. 2023; 28(5):2165. https://doi.org/10.3390/molecules28052165
Chicago/Turabian StyleCui, Xinyu, Yani Wang, Yanfeng Wang, Pingping Zhang, and Wenjuan Lu. 2023. "Extraction of Gold Based on Ionic Liquid Immobilized in UiO-66: An Efficient and Reusable Way to Avoid IL Loss Caused by Ion Exchange in Solvent Extraction" Molecules 28, no. 5: 2165. https://doi.org/10.3390/molecules28052165
APA StyleCui, X., Wang, Y., Wang, Y., Zhang, P., & Lu, W. (2023). Extraction of Gold Based on Ionic Liquid Immobilized in UiO-66: An Efficient and Reusable Way to Avoid IL Loss Caused by Ion Exchange in Solvent Extraction. Molecules, 28(5), 2165. https://doi.org/10.3390/molecules28052165