Studies on the Prediction and Extraction of Methanol and Dimethyl Carbonate by Hydroxyl Ammonium Ionic Liquids
Abstract
:1. Introduction
2. Results and Discussion
2.1. COSMO-RS Prediction Results
2.2. Molecular Interaction Analysis
2.2.1. Effect of Anions on Molecular Interaction
2.2.2. Effect of Cations on Molecular Interaction
2.3. Extraction Experiment
2.4. Recyclability
3. Materials and Methods
3.1. Computational Methods
3.2. Extraction Performance Index of ILs Using the COSMO-RS Model
3.3. Materials and Reagents
3.4. Synthesis of ILs
3.5. Extraction Experiments
3.6. Sample Analysis
3.7. Evaluation Index of Extraction Performance in Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhang, M.; Xu, Y.; Williams, B.L.; Xiao, M.; Wang, S.; Han, D.; Sun, L.; Meng, Y. Catalytic materials for direct synthesis of dimethyl carbonate (DMC) from CO2. J. Clean. Prod. 2021, 279, 123344. [Google Scholar] [CrossRef]
- Wang, X.; Hu, H.; Chen, B.; Dang, L.; Gao, G. Efficient synthesis of dimethyl carbonate via transesterification of ethylene carbonate catalyzed by swelling poly(ionic liquid)s. Green Chem. Eng. 2021, 2, 423–430. [Google Scholar] [CrossRef]
- Pacheco, M.A.; Marshall, C.L. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels 1997, 11, 2–29. [Google Scholar] [CrossRef]
- Zi, K.; Tu, X.K.; Huang, Y.Q.; Shen, R.Y.; Pan, K.Y. Effects of diesel oil-DMC blend fuel on performances of diesel engine. Neiranji Gongcheng/Chin. Intern. Combust. Engine Eng. 2007, 28, 63–66+70. [Google Scholar]
- Huang, S.; Yan, B.; Wang, S.; Ma, X. Recent advances in dialkyl carbonates synthesis and applications. Chem. Soc. Rev. 2015, 44, 3079–3116. [Google Scholar] [CrossRef]
- Aresta, M.; Galatola, M. Life cycle analysis applied to the assessment of the environmental impact of alternative synthetic processes. The dimethylcarbonate case: Part 1. J. Clean. Prod. 1999, 7, 181–193. [Google Scholar] [CrossRef]
- Figueiredo, M.C.; Trieu, V.; Eiden, S.; Koper, M.T.M. Spectro-Electrochemical Examination of the Formation of Dimethyl Carbonate from CO and Methanol at Different Electrode Materials. J. Am. Chem. Soc. 2017, 139, 14693–14698. [Google Scholar] [CrossRef]
- Wang, J.Q.; Sun, J.; Cheng, W.G.; Shi, C.Y.; Dong, K.; Zhang, X.P.; Zhang, S.J. Synthesis of dimethyl carbonate catalyzed by carboxylic functionalized imidazolium salt via transesterification reaction. Catal. Sci. Technol. 2012, 2, 600–605. [Google Scholar] [CrossRef]
- Shi, L.; Wang, S.J.; Wong, D.S.H.; Huang, K. Novel Process Design of Synthesizing Propylene Carbonate for Dimethyl Carbonate Production by Indirect Alcoholysis of Urea. Ind. Eng. Chem. Res. 2017, 56, 11531–11544. [Google Scholar] [CrossRef]
- Bian, J.; Wei, X.W.; Jin, Y.R.; Wang, L.; Luan, D.C.; Guan, Z.P. Direct synthesis of dimethyl carbonate over activated carbon supported Cu-based catalysts. Chem. Eng. J. 2010, 165, 686–692. [Google Scholar] [CrossRef]
- Wei, H.-M.; Wang, F.; Zhang, J.-L.; Liao, B.; Zhao, N.; Xiao, F.-k.; Wei, W.; Sun, Y.-H. Design and Control of Dimethyl Carbonate–Methanol Separation via Pressure-Swing Distillation. Ind. Eng. Chem. Res. 2013, 52, 11463–11478. [Google Scholar] [CrossRef]
- Matsuda, H.; Inaba, K.; Nishihara, K.; Sumida, H.; Kurihara, K.; Tochigi, K.; Ochi, K. Separation Effects of Renewable Solvent Ethyl Lactate on the Vapor–Liquid Equilibria of the Methanol + Dimethyl Carbonate Azeotropic System. J. Chem. Eng. Data 2017, 62, 2944–2952. [Google Scholar] [CrossRef]
- Shen, Y.; Su, Z.; Zhao, Q.; Shan, R.; Zhu, Z.; Cui, P.; Wang, Y. Molecular simulation and optimization of extractive distillation for separation of dimethyl carbonate and methanol. Process Saf. Environ. Prot. 2022, 158, 181–188. [Google Scholar] [CrossRef]
- Vopička, O.; Pilnáček, K.; Friess, K. Separation of methanol-dimethyl carbonate vapour mixtures with PDMS and PTMSP membranes. Sep. Purif. Technol. 2017, 174, 1–11. [Google Scholar] [CrossRef]
- Číhal, P.; Dendisová, M.; Švecová, M.; Hrdlička, Z.; Durďáková, T.-M.; Budd, P.M.; Harrison, W.; Friess, K.; Vopička, O. Sorption, swelling and plasticization of PIM-1 in methanol-dimethyl carbonate vapour mixtures. Polymer 2021, 218, 123509. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Cao, C.; Xu, L.; Liu, G. Experimental and correlated liquid-liquid equilibrium data for dimethyl adipate + 1,6-hexanediol + water or ethylene glycol. J. Mol. Liq. 2019, 284, 39–44. [Google Scholar] [CrossRef]
- Liu, X.; Xu, D.; Diao, B.; Gao, J.; Zhang, L.; Ma, Y.; Wang, Y. Separation of Dimethyl Carbonate and Methanol by Deep Eutectic Solvents: Liquid–Liquid Equilibrium Measurements and Thermodynamic Modeling. J. Chem. Eng. Data 2018, 63, 1234–1239. [Google Scholar] [CrossRef]
- Brennecke, J.F.; Maginn, E.J. Ionic liquids: Innovative fluids for chemical processing. AIChE J. 2001, 47, 2384–2389. [Google Scholar] [CrossRef]
- Cai, F.; Ibrahim, J.J.; Gao, L.; Wei, R.; Xiao, G. A study on the liquid–liquid equilibrium of 1-alkyl-3-methylimidazolium dialkylphosphate with methanol and dimethyl carbonate. Fluid Phase Equilibria 2014, 382, 254–259. [Google Scholar] [CrossRef]
- Wen, G.; Geng, X.; Bai, W.; Wang, Y.; Gao, J. Ternary liquid-liquid equilibria for systems containing (dimethyl carbonate or methyl acetate + methanol + 1-methylmidazole hydrogen sulfate) at 298.15 K and 318.15 K. J. Chem. Thermodyn. 2018, 121, 49–54. [Google Scholar] [CrossRef]
- Chen, S.; Dong, L.; Zhang, J.; Cheng, W.; Huo, F.; Su, Q.; Hua, W. Effects of imidazolium-based ionic liquids on the isobaric vapor–liquid equilibria of methanol + dimethyl carbonate azeotropic systems. Chin. J. Chem. Eng. 2020, 28, 766–776. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, J.; Wang, R.; Ma, E.; Wu, L.; Bai, J.; Wang, J. Study of the toluene absorption capacity and mechanism of ionic liquids using COSMO-RS prediction and experimental verification. Green Energy Environ. 2021, 6, 339–349. [Google Scholar] [CrossRef]
- Jiang, C.; Cheng, H.; Qin, Z.; Wang, R.; Chen, L.; Yang, C.; Qi, Z.; Liu, X. COSMO-RS prediction and experimental verification of 1,5-pentanediamine extraction from aqueous solution by ionic liquids. Green Energy Environ. 2021, 6, 422–431. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, H.; Duan, M.; Hao, X.; Yang, Q.; Zhang, Q.; Huang, X. Liquid-liquid extraction of lithium from aqueous solution using novel ionic liquid extractants via COSMO-RS and experiments. Fluid Phase Equilibria 2018, 459, 129–137. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Jiang, Y.; Lei, Z.; Zhang, J.; Zhu, R.; Ren, J. Methyl chloride dehydration with ionic liquid based on COSMO-RS model. Green Energy Environ. 2021, 6, 413–421. [Google Scholar] [CrossRef]
- Eckert, F.; Klamt, A. Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE J. 2002, 48, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Sellaoui, L.; Guedidi, H.; Masson, S.; Reinert, L.; Levêque, J.-M.; Knani, S.; Lamine, A.B.; Khalfaoui, M.; Duclaux, L. Steric and energetic interpretations of the equilibrium adsorption of two new pyridinium ionic liquids and ibuprofen on a microporous activated carbon cloth: Statistical and COSMO-RS models. Fluid Phase Equilibria 2016, 414, 156–163. [Google Scholar] [CrossRef]
- Meng, H.; Ge, C.-T.; Ren, N.-N.; Ma, W.-Y.; Lu, Y.-Z.; Li, C.-X. Complex Extraction of Phenol and Cresol from Model Coal Tar with Polyols, Ethanol Amines, and Ionic Liquids Thereof. Ind. Eng. Chem. Res. 2014, 53, 355–362. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, L.; Ye, Y.; Chen, L.; Qi, Z.; Freund, H.; Sundmacher, K. An Overview of Mutual Solubility of Ionic Liquids and Water Predicted by COSMO-RS. Ind. Eng. Chem. Res. 2012, 51, 6256–6264. [Google Scholar] [CrossRef]
- Bezold, F.; Weinberger, M.E.; Minceva, M. Assessing solute partitioning in deep eutectic solvent-based biphasic systems using the predictive thermodynamic model COSMO-RS. Fluid Phase Equilibria 2017, 437, 23–33. [Google Scholar] [CrossRef]
- Bicak, N. A new ionic liquid: 2-Hydroxy ethylammonium formate. J. Mol. Liq. 2004, 116, 15. [Google Scholar] [CrossRef]
- Iglesias, M.; Torres, A.; Gonzalez-Olmos, R.; Salvatierra, D. Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-Hydroxy ethylammonium formate (2-HEAF)+ short hydroxylic solvents}. J. Chem. Thermodyn. 2008, 40, 119–133. [Google Scholar] [CrossRef]
Extractant | Initial Concentration of Methanol | DMC Phase (%) | IL Phase (%) | D | S | E | ||||
---|---|---|---|---|---|---|---|---|---|---|
xMeOH | xDMC | xIL | xMeOH | xDMC | xIL | |||||
[MEA][Frc] | 10% | 2.54 | 97.44 | 0.02 | 9.46 | 4.25 | 86.29 | 3.72 | 85.27 | 79.20% |
20% | 5.50 | 94.46 | 0.03 | 17.72 | 4.59 | 77.69 | 3.22 | 66.23 | 79.25% | |
30% | 8.65 | 91.30 | 0.05 | 24.50 | 4.70 | 70.80 | 2.83 | 54.97 | 79.29% | |
[MEA][Ac] | 10% | 2.13 | 97.85 | 0.02 | 9.98 | 14.69 | 75.33 | 4.70 | 31.29 | 83.31% |
20% | 4.10 | 95.86 | 0.04 | 19.08 | 15.32 | 65.60 | 4.65 | 29.10 | 85.84% | |
30% | 6.86 | 93.09 | 0.05 | 27.60 | 16.34 | 56.06 | 4.02 | 22.92 | 86.81% | |
[MEA[Prp] | 10% | 2.23 | 97.52 | 0.25 | 10.54 | 15.40 | 74.07 | 4.73 | 29.93 | 83.24% |
20% | 4.73 | 94.99 | 0.27 | 18.95 | 16.90 | 64.15 | 4.00 | 22.50 | 83.76% | |
30% | 7.24 | 92.42 | 0.35 | 28.28 | 17.99 | 53.74 | 3.91 | 20.07 | 86.93% |
Extractant | Initial Concentration of Methanol | DMC Phase (%) | IL Phase (%) | D | S | E | ||||
---|---|---|---|---|---|---|---|---|---|---|
xMeOH | xDMC | xIL | xMeOH | xDMC | xIL | |||||
[MEA][Ac] | 10% | 2.13 | 97.85 | 0.02 | 9.98 | 14.69 | 75.33 | 4.70 | 31.29 | 83.31% |
20% | 4.10 | 95.86 | 0.04 | 19.08 | 15.32 | 65.60 | 4.65 | 29.10 | 85.84% | |
30% | 6.86 | 93.09 | 0.05 | 27.60 | 16.34 | 56.06 | 4.02 | 22.92 | 86.81% | |
[DEA][Ac] | 10% | 2.66 | 97.05 | 0.29 | 12.44 | 15.75 | 71.81 | 4.68 | 28.84 | 80.77% |
20% | 4.70 | 94.95 | 0.35 | 19.70 | 20.58 | 59.72 | 4.20 | 19.35 | 82.97% | |
30% | 7.99 | 91.62 | 0.39 | 31.14 | 21.12 | 47.74 | 3.90 | 16.91 | 86.13% | |
[TEA][Ac] | 10% | 2.50 | 97.04 | 0.46 | 13.25 | 22.53 | 64.22 | 5.29 | 22.80 | 80.04% |
20% | 5.06 | 94.46 | 0.48 | 23.61 | 23.09 | 53.30 | 4.67 | 19.10 | 81.78% | |
30% | 8.31 | 91.16 | 0.53 | 33.25 | 23.70 | 43.04 | 4.00 | 15.39 | 83.99% |
Number | Names | Abbreviations |
---|---|---|
1 | 2-Hydroxyethylammonium | [MEA]+ |
2 | Bis(2-hydroxyethyl)ammonium | [DEA]+ |
3 | Tris(2-hydroxyethyl)ammonium | [TEA]+ |
4 | 1-Ethyl-3-methylimidazolium | [EMIM]+ |
5 | 3-Methylimidazolium | [HMIM]+ |
6 | 1-Methyl-3-methylimidazolium | [MMIM]+ |
7 | Hexadecyltrimethylammonium | [N11116]+ |
8 | Hydroxyltrimethylammonium | [N1111OH]+ |
9 | Carboxyltrimethylammonium | [N1111COOH]+ |
10 | Tetraethylammonium | [N2222]+ |
11 | Tetrabutylammonium | [N4444]+ |
12 | Methyltriethylphosphorus | [P2221]+ |
13 | Ethyltributylphosphorus | [P4442]+ |
14 | Hydroxyethyltributylphosphorus | [P4442OH]+ |
15 | Tetrabutylphosphorus | [P4444]+ |
Number | Names | Abbreviations |
---|---|---|
1 | Hexafluorophosphate | [PF6]− |
2 | Bis(trifluoromethylsulfonyl)imide | [Tf2N]− |
3 | Tetracyanoboric acid | [BCN4]− |
4 | Tetrafluoroborate | [BF4]− |
5 | Hydrogen sulfate | [HSO4]− |
6 | Thiocyanate thiocyanide | [SCN]− |
7 | Nitrate | [NO3]− |
8 | Trifluoromethanesulfonate | [OTf]− |
9 | Dihydrogen phosphate | [H2PO4]− |
10 | Hydrocarbonate | [HCO3]− |
11 | Dimethylphosphate | [DMP]− |
12 | 2-Chlorophenol | [2-CP]− |
13 | 3-Chlorophenol | [3-CP]− |
14 | Difluorophosphate | [2FPhO]− |
15 | Trifluorophosphate | [3FPhO]− |
16 | Formate | [Frc]− |
17 | 4-Chlorophenol | [4-CP]− |
18 | Benzoate | [BEN]− |
19 | Tetrafluorophosphate | [4FPhO]− |
20 | Leucinate | [Leu]− |
21 | Acetate | [Ac]− |
22 | Propionate | [Prp]− |
Names | CAS | Purity | Supplier |
---|---|---|---|
Dimethyl carbonate | 616-38-6 | ≥99% | Aladdin |
Methanol | 67-56-1 | ≥99% | Aladdin |
Ethanolamine | 141-43-5 | ≥99% | Aladdin |
Diethanolamine | 111-42-2 | ≥99% | Aladdin |
Triethanolamine | 102-71-6 | ≥99% | Aladdin |
Formic acid | 64-18-6 | ≥99% | Aladdin |
Acetic acid | 64-19-7 | ≥99% | Aladdin |
Propanoic acid | 79-09-4 | ≥99% | Aladdin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Cui, Y.; Song, Y.; Liu, Y.; Zhang, J.; Chen, S.; Dong, L.; Zhang, X. Studies on the Prediction and Extraction of Methanol and Dimethyl Carbonate by Hydroxyl Ammonium Ionic Liquids. Molecules 2023, 28, 2312. https://doi.org/10.3390/molecules28052312
Wang X, Cui Y, Song Y, Liu Y, Zhang J, Chen S, Dong L, Zhang X. Studies on the Prediction and Extraction of Methanol and Dimethyl Carbonate by Hydroxyl Ammonium Ionic Liquids. Molecules. 2023; 28(5):2312. https://doi.org/10.3390/molecules28052312
Chicago/Turabian StyleWang, Xiaokang, Yuanyuan Cui, Yingying Song, Yifan Liu, Junping Zhang, Songsong Chen, Li Dong, and Xiangping Zhang. 2023. "Studies on the Prediction and Extraction of Methanol and Dimethyl Carbonate by Hydroxyl Ammonium Ionic Liquids" Molecules 28, no. 5: 2312. https://doi.org/10.3390/molecules28052312
APA StyleWang, X., Cui, Y., Song, Y., Liu, Y., Zhang, J., Chen, S., Dong, L., & Zhang, X. (2023). Studies on the Prediction and Extraction of Methanol and Dimethyl Carbonate by Hydroxyl Ammonium Ionic Liquids. Molecules, 28(5), 2312. https://doi.org/10.3390/molecules28052312