Mechanochemistry Frees Thiourea Dioxide (TDO) from the ‘Veils’ of Solvent, Exposing All Its Reactivity
Abstract
:1. Introduction
2. Results and Discussion
2.1. TDO as a Reducing Agent
2.2. TDO as an Electrophile
2.2.1. Procedure A
2.2.2. Procedure B
3. Materials and Methods
3.1. Materials
3.2. General Procedure A for Anilines and o-Phenylenediamines 3a–j, 3o–p, 3s Synthesis from 2-Nitroanilines 2a–j, 2o–p, 2s
3.3. General Procedure B for Heterocycles 4l–n, 4q–r Synthesis from o-Phenylenediamines 3l–n, 3q–r
3.4. General Procedure C for Heterocycles 4d–k, 4p Synthesis from 2-nitroanilines 2d–k, 2p
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Elattar, K.M.; Mert, B.D.; Monier, M.; El-Mekabaty, A. Advances in the chemical and biological diversity of heterocyclic systems incorporating pyrimido [1,6-a]pyrimidine and pyrimido[1,6-c]pyrimidine scaffolds. RSC Adv. 2020, 10, 15461–15492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammouda, M.M.; Gaffer, H.E.; Elattar, K.M. Insights into the medicinal chemistry of heterocycles integrated with a pyrazolo[1,5-a]pyrimidine scaffold. RSC Med. Chem. 2022, 13, 1150–1196. [Google Scholar] [CrossRef]
- Shrivastava, N.; Naim, M.J.; Alam, M.J.; Nawaz, F.; Ahmed, S.; Alam, O. Benzimidazole Scaffold as Anticancer Agent: Synthetic Approaches and Structure-Activity Relationship. Arch. Pharm. 2017, 350, e201700040. [Google Scholar] [CrossRef]
- Tahlan, S.; Kumar, S.; Kakkar, S.; Narasimhan, B. Benzimidazole scaffolds as promising antiproliferative agents: A review. BMC Chem. 2019, 13, 66. [Google Scholar] [CrossRef]
- Singla, P.; Luxami, V.; Paul, K. Benzimidazole-biologically attractive scaffold for protein kinase inhibitors. RSC Adv. 2014, 4, 12422–12440. [Google Scholar] [CrossRef]
- Mudi, P.K.; Mahanty, A.K.; Kotakonda, M.; Prasad, S.; Bhattacharyya, S.; Biswas, B. A benzimidazole scaffold as a promising inhibitor against SARS-CoV-2. J. Biomol. Struct. Dyn. 2022, 41, 1798–1810. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Gutiérrez, A.; Curiel-Quesada, E.; Correa-Basurto, J.; Martínez-Muñoz, A.; Reyes-Arellano, A. N-Heterocycles Scaffolds as Quorum Sensing Inhibitors. Design, Synthesis, Biological and Docking Studies. Int. J. Mol. Sci. 2020, 21, 9512. [Google Scholar] [CrossRef]
- Ramadan, S.K.; Ibrahim, N.A.; El-Kaed, S.A.; El-Helw, E.A.E. New potential fungicides pyrazole-based heterocycles derived from 2-cyano-3-(1,3-diphenyl-1H-pyrazol-4-yl) acryloyl isothiocyanate. J. Sulfur Chem. 2021, 42, 529–546. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, S.; Jain, S.L.; Sain, B. Thiourea dioxide promoted efficient organocatalytic one-pot synthesis of a library of novel heterocyclic compounds. Org. Biomol. Chem. 2011, 9, 6943–6948. [Google Scholar] [CrossRef] [PubMed]
- Merel, S.; Benzing, S.; Gleiser, C.; Di Napoli-Davis, G.; Zwiener, C. Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water. Environ. Pollut. 2018, 239, 512–521. [Google Scholar] [CrossRef]
- Han, P.; Rios-Miguel, A.B.; Tang, X.; Yu, Y.; Zhou, L.-J.; Hou, L.; Liu, M.; Sun, D.; Jetten, M.S.M.; Welte, C.U.; et al. Benzimidazole fungicide biotransformation by comammox Nitrospira bacteria: Transformation pathways and associated proteomic responses. J. Hazard. Mater. 2023, 445, 130558. [Google Scholar] [CrossRef] [PubMed]
- Chu, B.; Liu, F.; Li, L.; Ding, C.; Chen, K.; Sun, Q.; Shen, Z.; Tan, Y.; Tan, C.; Jiang, Y. A benzimidazole derivative exhibiting antitumor activity blocks EGFR and HER2 activity and upregulates DR5 in breast cancer cells. Cell Death Dis. 2015, 6, e1686. [Google Scholar] [CrossRef] [Green Version]
- Son, D.S.; Lee, E.S.; Adunyah, S.E. The Antitumor Potentials of Benzimidazole Anthelmintics as Repurposing Drugs. Immune Netw. 2020, 20, e29. [Google Scholar] [CrossRef]
- Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: An emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem. 2014, 76, 494–505. [Google Scholar] [CrossRef]
- Ersan, S.; Nacak, S.; Noyanalpan, N.; Yeşilada, E. Studies on analgesic and anti-inflammatory activities of 1-dialkylaminomethyl-2-(p-substituted phenyl)-5-substituted benzimidazole derivatives. Arzneimittelforschung 1997, 47, 834–836. [Google Scholar] [PubMed]
- Ujváry, I.; Christie, R.; Evans-Brown, M.; Gallegos, A.; Jorge, R.; de Morais, J.; Sedefov, R. DARK Classics in Chemical Neuroscience: Etonitazene and Related Benzimidazoles. ACS Chem. Neurosci. 2021, 12, 1072–1092. [Google Scholar] [CrossRef] [PubMed]
- Satija, G.; Sharma, B.; Madan, A.; Iqubal, A.; Shaquiquzzaman, M.; Akhter, M.; Parvez, S.; Khan, M.A.; Alam, M.M. Benzimidazole based derivatives as anticancer agents: Structure activity relationship analysis for various targets. J. Heterocycl. Chem. 2022, 59, 22–66. [Google Scholar] [CrossRef]
- Almalki, A.S.A.; Nazreen, S.; Elbehairi, S.E.I.; Asad, M.; Shati, A.A.; Alfaifi, M.Y.; Alhadhrami, A.; Elhenawy, A.A.; Alorabi, A.Q.; Asiri, A.M.; et al. Design, synthesis, anticancer activity and molecular docking studies of new benzimidazole derivatives bearing 1,3,4-oxadiazole moieties as potential thymidylate synthase inhibitors. New J. Chem. 2022, 46, 14967–14978. [Google Scholar] [CrossRef]
- Hosamani, K.M.; Hiremath, V.B.; Keri, R.S.; Harisha, R.S.; Halligudi, S.B. Synthesis of novel 2-alkyl substituted oleobenzimidazole derivatives using ethylene glycol as solvent. Can. J. Chem. 2008, 86, 1030–1033. [Google Scholar] [CrossRef]
- Hanan, E.J.; Chan, B.K.; Estrada, A.A.; Shore, D.G.; Lyssikatos, J.P. Mild and General One-Pot Reduction and Cyclization of Aromatic and Heteroaromatic 2-Nitroamines to Bicyclic 2H-Imidazoles. Synlett 2010, 2010, 2759–2764. [Google Scholar] [CrossRef]
- Nale, D.B.; Bhanage, B.M. N-Substituted Formamides as C1-Sources for the Synthesis of Benzimidazole and Benzothiazole Derivatives by Using Zinc Catalysts. Synlett 2015, 26, 2835–2842. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, F.; Kuang, D.; Deng, G.; Yang, Y.; Yu, J.; Liang, Y. K2S as Sulfur Source and DMSO as Carbon Source for the Synthesis of 2-Unsubstituted Benzothiazoles. Org. Lett. 2020, 22, 3789–3793. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, D.; Sadhu, P.; Punniyamurthy, T. Copper(I)-Catalyzed Regioselective Amination of N-Aryl Imines Using TMSN3 and TBHP: A Route to Substituted Benzimidazoles. J. Org. Chem. 2015, 80, 1644–1650. [Google Scholar] [CrossRef]
- Dadwal, S.; Kumar, M.; Bhalla, V. “Metal-Free” Nanoassemblies of AIEE-ICT-Active Pyrazine Derivative: Efficient Photoredox System for the Synthesis of Benzimidazoles. J. Org. Chem. 2020, 85, 13906–13919. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Mondal, A.; Srimani, D. Selective Synthesis of 2-Substituted and 1,2-Disubstituted Benzimidazoles Directly from Aromatic Diamines and Alcohols Catalyzed by Molecularly Defined Nonphosphine Manganese(I) Complex. J. Org. Chem. 2018, 83, 9553–9560. [Google Scholar] [CrossRef]
- Caron, S.; Jones, B.P.; Wei, L. Preparation of Substituted Benzimidazoles and Imidazopyridines Using 2,2,2-Trichloroethyl Imidates. Synthesis 2012, 44, 3049–3054. [Google Scholar] [CrossRef]
- Fischer, K.; Marquardt, K.; Schlüter, K.; Gebert, K.; Borschel, E.-M.; Heimann, S.; Kromm, E.; Giesen, V.; Schneider, R.; Lee Wayland, R., Jr. Textile Auxiliaries. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2011; p. 138. [Google Scholar]
- Obtemper, S.I.; Zlobin, V.K. Application of Formamidinesulfinic acid for Separate Spectrophotometric Determination of para Nitrophenol, ortho Nitrophenol and meta Nitrophenol in their Mutual Presence. Zh. Anal. Khim. 1974, 29, 609–611. [Google Scholar]
- Obtemper, S.I.; Zlobin, V.K. Use of Thiourea Dioxide in Organic-Analysis-Determination of Nitric-Acid Esters, Nitroso and Azo-Compounds. Vestn. MGU. Khimia 1974, 15, 247–249. [Google Scholar]
- Koniecki, W.B.; Linch, A.L. Determination of Aromatic Nitro Compounds. Anal. Chem. 1958, 30, 1134–1137. [Google Scholar] [CrossRef]
- de Barry Barnett, E. VII—The action of hydrogen dioxide on thiocarbamides. J. Chem. Soc. Trans. 1910, 97, 63–65. [Google Scholar] [CrossRef]
- De Filippo, D.; Ponticelli, G.; Trogu, E.F.; Lai, A. Spectrochemical study of aminoiminomethanesulphinic acid and related NN′-substituted derivatives. J. Chem. Soc. Perkin Trans. II 1972, 11, 1500–1502. [Google Scholar] [CrossRef]
- Havel, J.J.; Kluttz, R.Q. A Synthesis of Formamidinesulfinic Acids and Formamidines. Synth. Comm. 1974, 4, 389–393. [Google Scholar] [CrossRef]
- Dictionary. In Gardner’s Commercially Important Chemicals; Wiley-Interscience: Hoboken, NJ, USA, 2005; pp. 2–682.
- Pu, S.; Liang, Q.; Luo, X.; Luo, J. Convenient Two-step One-pot Synthesis of Benzimidazoles Using 2-nitroanilines and Thiourea Dioxide. J. Chem. Res. 2014, 38, 118–120. [Google Scholar] [CrossRef]
- Hamad, M.O.; Kiptoo, P.K.; Stinchcomb, A.L.; Crooks, P.A. Synthesis and hydrolytic behavior of two novel tripartate codrugs of naltrexone and 6β-naltrexol with hydroxybupropion as potential alcohol abuse and smoking cessation agents. Bioorg. Med. Chem. 2006, 14, 7051–7061. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Gupta, S.; Sureshbabu, P.; Sabiah, S.; Kandasamy, J. A metal free reduction of aryl-N-nitrosamines to the corresponding hydrazines using a sustainable reductant thiourea dioxide. Green Chem. 2016, 18, 6215–6221. [Google Scholar] [CrossRef]
- Chatterjie, N.; Umans, J.G.; Inturrisi, C.E. Reduction of 6-ketones of the morphine series with formamidinesulfinic acid. Stereoselectivity opposite to that of hydride reductions. J. Org. Chem. 1976, 41, 3624–3625. [Google Scholar] [CrossRef] [PubMed]
- Svarovsky, S.A.; Simoyi, R.H.; Makarov, S.V. Reactive oxygen species in aerobic decomposition of thiourea dioxides. J. Chem. Soc. Dalton Trans. 2000, 511–514. [Google Scholar] [CrossRef]
- He, F.-S.; Yang, M.; Ye, S.; Wu, J. Sulfonylation from sodium dithionite or thiourea dioxide. Chin. Chem. Lett. 2021, 32, 461–464. [Google Scholar] [CrossRef]
- Verma, S.; Singh, R.; Tripathi, D.; Gupta, P.; Bahuguna, G.M.; Jain, S.L. Thiourea dioxide with TBHP: A fruitful and greener recipe for the catalytic oxidation of alcohols. RSC Adv. 2013, 3, 4184–4188. [Google Scholar] [CrossRef]
- Zhou, L.H.; Jin, Y.J.; Ma, L.F.; Huang, W.H.; Wu, Y. Highly Efficient and Catalyst-Free Synthesis of Benzimidazoles in Aqueous Media. Russ. J. Org. Chem. 2021, 57, 825–830. [Google Scholar] [CrossRef]
- Kahl, T.; Schröder, K.-W.; Lawrence, F.R.; Marshall, W.J.; Höke, H.; Jäckh, R. Aniline. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000; p. 465. [Google Scholar]
- Available online: https://archive.vn/20020219104231/http://www.the-innovation-group.com/ChemProfiles/Aniline.htm (accessed on 30 January 2023).
- Formenti, D.; Ferretti, F.; Scharnagl, F.K.; Beller, M. Reduction of Nitro Compounds Using 3d-Non-Noble Metal Catalysts. Chem. Rev. 2019, 119, 2611–2680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bu, J.; Wang, J.; Sun, C.; Zhao, D.; Sheng, G.; Xie, X.; Sun, M.; Yu, L. Highly Efficient Hydrogenation of Nitrobenzene to Aniline over Pt/CeO2 Catalysts: The Shape Effect of the Support and Key Role of Additional Ce3+ Sites. ACS Catal. 2020, 10, 10350–10363. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.; Prashad, M.; Repič, O.; Blacklock, T.J. A Practical and Chemoselective Reduction of Nitroarenes to Anilines Using Activated Iron. Adv. Synth. Catal. 2005, 347, 217–219. [Google Scholar] [CrossRef]
- Anjali, K.; Ahmed, M.; Christopher, J.; Sakthivel, A. Rhodium-calix[4]pyrrole and rhodium-tetraphenyl porphyrin: Preparation, surface grafting and their catalytic application in nitro-benzene reduction. Dalton Trans. 2018, 47, 12353–12361. [Google Scholar] [CrossRef]
- Srilakshmi, C.; Saraf, R.; Prashanth, V.; Rao, G.M.; Shivakumara, C. Structure and Catalytic Activity of Cr-Doped BaTiO3 Nanocatalysts Synthesized by Conventional Oxalate and Microwave Assisted Hydrothermal Methods. Inorg. Chem. 2016, 55, 4795–4805. [Google Scholar] [CrossRef]
- Mondal, P.; Purkait, M.K. Green synthesized iron nanoparticle-embedded pH-responsive PVDF-co-HFP membranes: Optimization study for NPs preparation and nitrobenzene reduction. Sep. Sci. Technol. 2017, 52, 2338–2355. [Google Scholar] [CrossRef]
- Leng, F.; Gerber, I.C.; Lecante, P.; Moldovan, S.; Girleanu, M.; Axet, M.R.; Serp, P. Controlled and Chemoselective Hydrogenation of Nitrobenzene over Ru@C60 Catalysts. ACS Catal. 2016, 6, 6018–6024. [Google Scholar] [CrossRef]
- Xiong, W.; Zhou, S.; Zhao, Z.; Hao, F.; Cai, Z.; Liu, P.; Zhang, H.; Luo, H. Highly uniform Ni particles with phosphorus and adjacent defects catalyze 1,5-dinitronaphthalene hydrogenation with excellent catalytic performance. Front. Chem. Sci. Eng. 2021, 15, 998–1007. [Google Scholar] [CrossRef]
- Gong, W.; Lin, Y.; Chen, C.; Al-Mamun, M.; Lu, H.-S.; Wang, G.; Zhang, H.; Zhao, H. Nitrogen-Doped Carbon Nanotube Confined Co–Nx Sites for Selective Hydrogenation of Biomass-Derived Compounds. Adv. Mater. 2019, 31, 1808341. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Chen, Y.; Zhao, Z.; Deng, H.; Zhou, D.; Wei, C.; Nie, R.; Xia, Q. Highly selective one-step hydrogenation of nitrobenzene to cyclohexylamine over the supported 10% Ni/carbon catalysts doped with 3‰ Rh. RSC Adv. 2016, 6, 15354–15361. [Google Scholar] [CrossRef]
- Diao, S.; Qian, W.; Luo, G.; Wei, F.; Wang, Y. Gaseous catalytic hydrogenation of nitrobenzene to aniline in a two-stage fluidized bed reactor. Appl. Catal. A Gen. 2005, 286, 30–35. [Google Scholar] [CrossRef]
- Krishnan, S.; Patel, P.N.; Balasubramanian, K.K.; Chadha, A. Yeast supported gold nanoparticles: An efficient catalyst for the synthesis of commercially important aryl amines. New J. Chem. 2021, 45, 1915–1923. [Google Scholar] [CrossRef]
- Daems, N.; Wouters, J.; Van Goethem, C.; Baert, K.; Poleunis, C.; Delcorte, A.; Hubin, A.; Vankelecom, I.F.J.; Pescarmona, P.P. Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metals. Appl. Catal. B Environ. 2018, 226, 509–522. [Google Scholar] [CrossRef]
- Niknam, T.; Bornapour, M.; Gheisari, A.; Bahmani-Firouzi, B. Impact of heat, power and hydrogen generation on optimal placement and operation of fuel cell power plants. Int. J. Hydrogen Energy 2013, 38, 1111–1127. [Google Scholar] [CrossRef]
- Sheng, X.; Wouters, B.; Breugelmans, T.; Hubin, A.; Vankelecom, I.F.J.; Pescarmona, P.P. Cu/CuxO and Pt nanoparticles supported on multi-walled carbon nanotubes as electrocatalysts for the reduction of nitrobenzene. Appl. Catal. B Environ. 2014, 147, 330–339. [Google Scholar] [CrossRef]
- Sheng, X.; Wouters, B.; Breugelmans, T.; Hubin, A.; Vankelecom, I.F.J.; Pescarmona, P.P. Pure and Alloyed Copper-Based Nanoparticles Supported on Activated Carbon: Synthesis and Electrocatalytic Application in the Reduction of Nitrobenzene. ChemElectroChem 2014, 1, 1198–1210. [Google Scholar] [CrossRef]
- Zhang, T.; Xie, Z.; Jiang, L.; Zhao, W.; Cao, S.; Wang, B.; Si, R.; Zhang, R.; Liu, Y.; Zhao, Z. Selective transfer hydrogenation coupling of nitroaromatics to azoxy/azo compounds by electron-enriched single Ni-N4 sites on mesoporous N-doped carbon. Chem. Eng. J. 2022, 443, 136416. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Yang, B.; Ma, L.; Wang, N.; Wei, X. Facile Synthesis of a Novel Heterogeneous Rh/COF Catalyst and Its Application in Tandem Selective Transfer Hydrogenation and Monomethylation of Nitro Compounds with Methanol. Ind. Eng. Chem. Res. 2022, 61, 1066–1077. [Google Scholar] [CrossRef]
- Moran, M.J.; Martina, K.; Baricco, F.; Tagliapietra, S.; Manzoli, M.; Cravotto, G. Tuneable Copper Catalysed Transfer Hydrogenation of Nitrobenzenes to Aniline or Azo Derivatives. Adv. Synth. Catal. 2020, 362, 2689–2700. [Google Scholar] [CrossRef]
- Xu, D.; Liu, R.; Li, J.; Zhao, H.; Ma, J.; Dong, Z. Atomically dispersed Co-N4 sites anchored on N-doped carbon for aqueous phase transfer hydrogenation between nitroarenes and saturated N-heterocycles. Appl. Catal. B Environ. 2021, 299, 120681. [Google Scholar] [CrossRef]
- Dai, X.; Cui, X.; Yuan, H.; Deng, Y.; Shi, F. Cooperative transformation of nitroarenes and biomass-based alcohols catalyzed by CuNiAlOx. RSC Adv. 2015, 5, 7970–7975. [Google Scholar] [CrossRef]
- Liu, H.; Khuan Chuah, G.; Jaenicke, S. Alumina-entrapped Ag catalyzed nitro compounds coupled with alcohols using borrowing hydrogen methodology. Phys. Chem. Chem. Phys. 2015, 17, 15012–15018. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.P.; Shi, F. Controllable synthesis of azoxybenzenes and anilines with alcohol as the reducing agent promoted by KOH. Synth. Commun. 2019, 49, 688–696. [Google Scholar] [CrossRef]
- Bigelow, H.E.; Robinson, D.B. AZOBENZENE. Org. Synth. 1942, 22, 28. [Google Scholar] [CrossRef]
- Srilakshmi, C.; Vijay Kumar, H.; Praveena, K.; Shivakumara, C.; Muralidhar Nayak, M. A highly efficient iron doped BaTiO3 nanocatalyst for the catalytic reduction of nitrobenzene to azoxybenzene. RSC Adv. 2014, 4, 18881–18884. [Google Scholar] [CrossRef]
- Mateti, S.; Mathesh, M.; Liu, Z.; Tao, T.; Ramireddy, T.; Glushenkov, A.M.; Yang, W.; Chen, Y.I. Mechanochemistry: A force in disguise and conditional effects towards chemical reactions. Chem. Comm. 2021, 57, 1080–1092. [Google Scholar] [CrossRef]
- Cuccu, F.; De Luca, L.; Delogu, F.; Colacino, E.; Solin, N.; Mocci, R.; Porcheddu, A. Mechanochemistry: New Tools to Navigate the Uncharted Territory of “Impossible” Reactions. ChemSusChem 2022, 15, e202200362. [Google Scholar] [CrossRef]
- Achar, T.K.; Bose, A.; Mal, P. Mechanochemical synthesis of small organic molecules. Beilstein J. Org. Chem. 2017, 13, 1907–1931. [Google Scholar] [CrossRef] [Green Version]
- Bose, A.; Mal, P. Mechanochemistry of supramolecules. Beilstein J. Org. Chem. 2019, 15, 881–900. [Google Scholar] [CrossRef] [Green Version]
- Shearouse, W.C.; Korte, C.M.; Mack, J. A two-step ball milling method synthesizes and purifies α,β-unsaturated esters. Green Chem. 2011, 13, 598–601. [Google Scholar] [CrossRef]
- Do, J.-L.; Mottillo, C.; Tan, D.; Štrukil, V.; Friščić, T. Mechanochemical Ruthenium-Catalyzed Olefin Metathesis. J. Am. Chem. Soc. 2015, 137, 2476–2479. [Google Scholar] [CrossRef] [PubMed]
- Hermann, G.N.; Bolm, C. Mechanochemical Rhodium(III)-Catalyzed C–H Bond Amidation of Arenes with Dioxazolones under Solventless Conditions in a Ball Mill. ACS Catal. 2017, 7, 4592–4596. [Google Scholar] [CrossRef]
- Nakagawa, K.; Mineo, S.; Kawamura, S.; Minami, K. Reduction of Organic Compounds with Thiourea Dioxide. II Reduction of Aromatic Nitro Compounds and Synthesis of Hydrazo Compounds. Yakugaku Zasshi 1977, 97, 1253–1256. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-L.; Chen, T.-Y. Reduction of Organic Compounds with Thiourea Dioxide II. The Reduction of Organic Nitrogen Compounds. J. Chin. Chem. Soc. 1975, 22, 91–94. [Google Scholar] [CrossRef]
- Do, J.-L.; Friščić, T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci. 2017, 3, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Friščić, T.; Childs, S.L.; Rizvi, S.A.A.; Jones, W. The role of solvent in mechanochemical and sonochemical cocrystal formation: A solubility-based approach for predicting cocrystallisation outcome. CrystEngComm 2009, 11, 418–426. [Google Scholar] [CrossRef]
- Tan, D.; García, F. Main group mechanochemistry: From curiosity to established protocols. Chem. Soc. Rev. 2019, 48, 2274–2292. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.L.; Cao, Q.; Browne, D.L. Mechanochemistry as an emerging tool for molecular synthesis: What can it offer? Chem. Sci. 2018, 9, 3080–3094. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.L.; Brand, M.C.; Browne, D.L. Switching chemoselectivity: Using mechanochemistry to alter reaction kinetics. Ang. Chem. 2018, 130, 16336–16340. [Google Scholar] [CrossRef]
- Lewis, D.; Mama, J.; Hawkes, J. An Investigation into the Structure and Chemical Properties of Formamidine Sulfinic Acid. Appl. Spectrosc. 2014, 68, 1327–1332. [Google Scholar] [CrossRef]
- Zhou, D.-C.; Lu, Y.-T.; Mai, Y.-W.; Zhang, C.; Xia, J.; Yao, P.-F.; Wang, H.-G.; Huang, S.-L.; Huang, Z.-S. Design, synthesis and biological evaluation of novel perimidine o-quinone derivatives as non-intercalative topoisomerase II catalytic inhibitors. Bioorg. Chem. 2019, 91, 103131. [Google Scholar] [CrossRef] [PubMed]
- Dymińska, L. Imidazopyridines as a source of biological activity and their pharmacological potentials—Infrared and Raman spectroscopic evidence of their content in pharmaceuticals and plant materials. Bioorg. Med. Chem. 2015, 23, 6087–6099. [Google Scholar] [CrossRef]
- Scribner, A.; Dennis, R.; Hong, J.; Lee, S.; McIntyre, D.; Perrey, D.; Feng, D.; Fisher, M.; Wyvratt, M.; Leavitt, P.; et al. Synthesis and biological activity of imidazopyridine anticoccidial agents: Part I. Eur. J. Med. Chem. 2007, 42, 1334–1357. [Google Scholar] [CrossRef]
- Makarov, S.V.; Sal’nikov, D.S.; Pogorelova, A.S. Acid-base properties and stability of sulfoxylic acid in aqueous solutions. Russ. J. Inorg. Chem. 2010, 55, 301–304. [Google Scholar] [CrossRef]
- Büeseken, J. Étude sur les Oxydes de Thiourée, I. Sur le dioxyde de thiourée. Recl. Trav. Chim. Pays-Bas 1936, 55, 1040–1043. [Google Scholar] [CrossRef]
- Sullivan, R.A.L.; Hargreaves, A. The crystal and molecular structure of thiourea dioxide. Acta Crystallogr. 1962, 15, 675–682. [Google Scholar] [CrossRef]
- Kis, Z.; Makarov, S.V.; Silaghi-Dumitrescu, R. Computational investigations on the electronic structure and reactivity of thiourea dioxide: Sulfoxylate formation, tautomerism and dioxygen liberation. J. Sulfur Chem. 2010, 31, 27–39. [Google Scholar] [CrossRef]
- Grady, B.J.; Dittmer, D.C. Reaction of perfluoroaryl halides with reduced species of sulfur dioxide (HSO2−, SO22−, S2O42−). J. Fluor. Chem. 1990, 50, 151–172. [Google Scholar] [CrossRef]
- Krug, P. Thiourea Dioxide (Formamidinesulphinic Acid) A New Reducing Agent for Textile Printing. J. Soc. Dye. 1953, 69, 606–611. [Google Scholar] [CrossRef]
- Makarov, S.V.; Horváth, A.K.; Silaghi-Dumitrescu, R.; Gao, Q. Recent Developments in the Chemistry of Thiourea Oxides. Chem. Eur. J. 2014, 20, 14164–14176. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, H.F.; Mattern, J.A.; Fernelius, W.C. Sulfites and Pyrosulfites of the Alkali Metals. Inorg. Synth. 1946, 2, 162–167. [Google Scholar] [CrossRef]
- Miller, A.E.; Bischoff, J.J.; Pae, K. Chemistry of aminoiminomethanesulfinic and-sulfonic acids related to the toxicity of thioureas. Chem. Res. Toxicol. 1988, 1, 169–174. [Google Scholar] [CrossRef]
- Surasani, S.R.; Maity, S. Deciphering Intermediates and Additives Effect on the Reduction of Nitrobenzene by SmI2. ChemistrySelect 2017, 2, 598–603. [Google Scholar] [CrossRef]
- Böeseken, J. Etude sur les Oxydes de Thiouree. IV. Recl. Trav. Chim. Pays-Bas 1948, 67, 603–621. [Google Scholar] [CrossRef]
- Knopp, C. Zur verwendung von aminoiminomethanesulfinsaure ais antioxidans. Sci. Pharm. 1983, 51, 283–290. [Google Scholar]
- Brown, D. A new synthesis of formamidine. J. Appl. Chem. 1952, 2, 202–203. [Google Scholar] [CrossRef]
- Dunitz, J.D. The structure of sodium dithionite and the nature of the dithionite ion. Acta Crystallogr. 1956, 9, 579–586. [Google Scholar] [CrossRef]
- Hartwig, U.; Pritzkow, H.; Rall, K.; Sundermeyer, W. Bis (trifluoromethyl) sulfene (CF3)2C SO2, Isolated as Adduct. Angew. Chem. Int. Ed. Engl. 1989, 28, 221–223. [Google Scholar] [CrossRef]
- Weber, H.P.; Craven, B.M. Structure and charge density of the 1: 1 complex of thiourea with parabanic acid at 298 K. Acta Crystallogr. B Struct. Sci. 1987, 43, 202–209. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, N.L.; Pai, C.T. Charge density study of thiourea S, S-dioxide. Inorg. Chem. 1990, 29, 3256–3259. [Google Scholar] [CrossRef]
- Singh, P.K.; Silakari, O. Benzimidazole: Journey from Single Targeting to Multitargeting Molecule. In Key Heterocycle Cores for Designing Multitargeting Molecules; Elsevier: Amsterdam, The Netherlands, 2018; pp. 31–52. [Google Scholar]
- Wang, S.; Gao, Q.; Wang, J. Thermodynamic analysis of decomposition of thiourea and thiourea oxides. J. Phys. Chem. B 2005, 109, 17281–17289. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Dong, X.; Qiu, Y.; Chen, D.; Wu, X.; Jiang, S. A new ligand for copper-catalyzed amination of aryl halides to primary(hetero)aryl amines. Tetrahedron Lett. 2020, 61, 151683. [Google Scholar] [CrossRef]
- Panja, S.; Kundu, D.; Ahammed, S.; Ranu, B.C. Highly chemoselective reduction of azides to amines by Fe(0) nanoparticles in water at room temperature. Tetrahedron Lett. 2017, 58, 3457–3460. [Google Scholar] [CrossRef]
- Liao, B.-S.; Liu, S.-T. Diamination of Phenylene Dihalides Catalyzed by a Dicopper Complex. J. Org. Chem. 2012, 77, 6653–6656. [Google Scholar] [CrossRef]
- Mo, C.; Zhang, Z.; Guise, C.P.; Li, X.; Luo, J.; Tu, Z.; Xu, Y.; Patterson, A.V.; Smaill, J.B.; Ren, X.; et al. 2-Aminopyrimidine Derivatives as New Selective Fibroblast Growth Factor Receptor 4 (FGFR4) Inhibitors. ACS Med. Chem. Lett. 2017, 8, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Sorribes, I.; Liu, L.; Corma, A. Nanolayered Co–Mo–S Catalysts for the Chemoselective Hydrogenation of Nitroarenes. ACS Catal. 2017, 7, 2698–2708. [Google Scholar] [CrossRef]
- Romero, A.H.; Cerecetto, H.A. Common, Facile and Eco-Friendly Method for the Reduction of Nitroarenes, Selective Reduction of Poly-Nitroarenes and Deoxygenation of N-Oxide Containing Heteroarenes Using Elemental Sulfur. Eur. J. Org. Chem. 2020, 2020, 1853–1865. [Google Scholar] [CrossRef]
- Zhang, Y.-C.; Shen, Q.; Zhu, M.-W.; Wang, J.; Du, Y.; Wu, J.; Li, J.-X. Modified Quinoxaline-Fused Oleanolic Acid Derivatives as Inhibitors of Osteoclastogenesis and Potential Agent in Anti-Osteoporosis. ChemistrySelect 2020, 5, 1526–1533. [Google Scholar] [CrossRef]
- Ji, A.; Ren, W.; Ai, H.-w. A highly efficient oxidative condensation reaction for selective protein conjugation. Chem. Comm. 2014, 50, 7469–7472. [Google Scholar] [CrossRef]
- Chaudhary, P.; Gupta, S.; Muniyappan, N.; Sabiah, S.; Kandasamy, J. Regioselective Nitration of N-Alkyl Anilines using tert-Butyl Nitrite under Mild Condition. J. Org. Chem. 2019, 84, 104–119. [Google Scholar] [CrossRef]
- Penieres-Carrillo, J.-G.; Ríos-Guerra, H.; Pérez-Flores, J.; Rodríguez-Molina, B.; Torres-Reyes, Á.; Barrera-Téllez, F.; González-Carrillo, J.; Moreno-González, L.; Martínez-Zaldívar, A.; Nolasco-Fidencio, J.-J.; et al. Reevaluating the synthesis of 2,5-disubstituted-1H-benzimidazole derivatives by different green activation techniques and their biological activity as antifungal and antimicrobial inhibitor. J. Heterocycl. Chem. 2020, 57, 436–455. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Q.; Xia, C.; Sun, W. CO2 as a C1 Source: B(C6F5)3-Catalyzed Cyclization of o-Phenylene-diamines To Construct Benzimidazoles in the Presence of Hydrosilane. Org. Lett. 2016, 18, 6316–6319. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Zhang, H.; Zhao, Y.; Chen, S.; Xu, J.; Huang, C.; Liu, Z. Cyclization of o-phenylenediamines by CO2 in the presence of H2 for the synthesis of benzimidazoles. Green Chem. 2013, 15, 95–99. [Google Scholar] [CrossRef]
- Graham, T.H. Deprotection of N-benzylbenzimidazoles and N-benzylimidazoles with triethylsilane and Pd/C. Tetrahedron Lett. 2015, 56, 2688–2690. [Google Scholar] [CrossRef]
- Zhu, K.; Hao, J.-H.; Zhang, C.-P.; Zhang, J.; Feng, Y.; Qin, H.-L. Diversified facile synthesis of benzimidazoles, quinazolin-4(3H)-ones and 1,4-benzodiazepine-2,5-diones via palladium-catalyzed transfer hydrogenation/condensation cascade of nitro arenes under microwave irradiation. RSC Adv. 2015, 5, 11132–11135. [Google Scholar] [CrossRef]
- Xu, L.-L.; Zhu, J.-F.; Xu, X.-L.; Zhu, J.; Li, L.; Xi, M.-Y.; Jiang, Z.-Y.; Zhang, M.-Y.; Liu, F.; Lu, M.-c.; et al. Discovery and Modification of in Vivo Active Nrf2 Activators with 1,2,4-Oxadiazole Core: Hits Identification and Structure–Activity Relationship Study. J. Med. Chem. 2015, 58, 5419–5436. [Google Scholar] [CrossRef]
- Aziz, J.; Baladi, T.; Piguel, S. Direct Alkynylation of 3H-Imidazo[4,5-b]pyridines Using gem-Dibromoalkenes as Alkynes Source. J. Org. Chem. 2016, 81, 4122–4133. [Google Scholar] [CrossRef]
- Gahlon, H.L.; Schweizer, W.B.; Sturla, S.J. Tolerance of Base Pair Size and Shape in Postlesion DNA Synthesis. J. Am. Chem. Soc. 2013, 135, 6384–6387. [Google Scholar] [CrossRef]
- Common Solvents Properties. Available online: https://macro.lsu.edu/howto/solvents/Dichloromethane.htm (accessed on 30 January 2023).
Entry | TDO eq. | Base eq. | Reaction Time (h) | Additives b | Yields a |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | / | 0% |
2 | 3 | 6 | 1 | / | 2% |
3 | 6 | 6 | 1 | / | 21% |
4 | 6 | 6 | 2 | / | 5% |
5 | 10 | 10 | 2 | / | 29% |
6 c | 6 | 6 | 2 | / | 0% |
7 | 3 | 6 | 1.5 | Decane | 2% |
8 | 3 | 6 | 1.5 | Toluene | 4% |
9 | 3 | 6 | 1.5 | i PrOH | 3% |
10 | 3 | 6 | 1.5 | Acetone | 5% |
11 d | 3 | 6 | 1.5 | MeOH | Complex Mixture |
12 | 3 | 6 | 1.5 | H2O | 89% |
13 e | 3 | 6 | 1.5 | H2O | 0% |
14 | 3 | 6 | 2 | H2O | 97% |
15 f | 3 | 6 | 1.5 | H2O | 20% |
16 g | 3 | 6 | 1.5 | H2O | 1% |
17 h | 3 | 3 | 2 | H2O | <5% |
Entry | TDO eq. | Base eq. | Reaction Time (h) | Additives b | Yields a |
---|---|---|---|---|---|
1 | 3 | 6 | 1.5 | / | 37% |
2 c | 3 | 6 | 2 | / | 45% |
3 d | 3 | 6 | 2 | / | 54% |
4 e | 3 | 6 | 2 | / | Complex mixture |
5 f | 3 | 6 | 2 | MeOH | 0% |
6 | 3 | 6 | 2 | H2O | 98% |
7 g | 3 | 3 | 2 | H2O | 1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basoccu, F.; Cuccu, F.; Caboni, P.; De Luca, L.; Porcheddu, A. Mechanochemistry Frees Thiourea Dioxide (TDO) from the ‘Veils’ of Solvent, Exposing All Its Reactivity. Molecules 2023, 28, 2239. https://doi.org/10.3390/molecules28052239
Basoccu F, Cuccu F, Caboni P, De Luca L, Porcheddu A. Mechanochemistry Frees Thiourea Dioxide (TDO) from the ‘Veils’ of Solvent, Exposing All Its Reactivity. Molecules. 2023; 28(5):2239. https://doi.org/10.3390/molecules28052239
Chicago/Turabian StyleBasoccu, Francesco, Federico Cuccu, Pietro Caboni, Lidia De Luca, and Andrea Porcheddu. 2023. "Mechanochemistry Frees Thiourea Dioxide (TDO) from the ‘Veils’ of Solvent, Exposing All Its Reactivity" Molecules 28, no. 5: 2239. https://doi.org/10.3390/molecules28052239
APA StyleBasoccu, F., Cuccu, F., Caboni, P., De Luca, L., & Porcheddu, A. (2023). Mechanochemistry Frees Thiourea Dioxide (TDO) from the ‘Veils’ of Solvent, Exposing All Its Reactivity. Molecules, 28(5), 2239. https://doi.org/10.3390/molecules28052239