Synthesis of Phosphorus(V)-Substituted Six-Membered N-Heterocycles: Recent Progress and Challenges
Abstract
:1. Introduction
2. Pyridines
2.1. Cyclizations Based on the Michael Reaction
2.2. Carbenoid-Mediated Reactions
2.3. Formal [2+2+2]-Cycloaddition
2.4. Phosphorylation of Pyridines
2.4.1. Radical Phosphorylation of Pyridines
2.4.2. Nucleophilic Phosphorylation of Pyridines
2.4.3. Transition-Metal-Catalyzed Phosphorylation of Pyridines
3. Pyridazines
3.1. Isomerization Reactions
3.2. Intramolecular Cyclizations
3.3. Phosphorylation of Pyridazines
4. Pyrimidines
4.1. Cyclizations Using Guanidine and Amidines
4.2. Phosphorylation of Pyrimidines
4.2.1. Michaelis–Arbuzov Reaction in Synthesis of Phosphorus-Substituted Pyrimidines
4.2.2. Radical Phosphorylation of Pyrimidines
4.2.3. Transition-Metal-Catalyzed Phosphorylation of Pyrimidines
5. Pyrazines
5.1. Dimerization Reactions
5.2. Formal [4+2]-Cycloaddition
5.3. Phosphorylation of Pyrazines
5.3.1. Michaelis–Arbuzov Reaction in the Synthesis of Phosphorus-Substituted Pyrazines
5.3.2. Radical Phosphorylation of Pyrazines
5.3.3. Transition-Metal-Catalyzed Phosphorylation of Pyrazines
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Duffy, M.P.; Delaunay, W.; Bouit, P.-A.; Hissler, M. π-Conjugated phospholes and their incorporation into devices: Components with a great deal of potential. Chem. Soc. Rev. 2016, 45, 5296–5310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.; Zhang, X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem. Rev. 2003, 103, 3029–3070. [Google Scholar] [CrossRef] [PubMed]
- Surry, D.S.; Buchwald, S.L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed. 2008, 47, 6338–6361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayne, J.; Stephan, D. Phosphorus Lewis acids: Emerging reactivity and applications in catalysis. Chem. Soc. Rev. 2016, 45, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Nixon, T.D.; Gamble, A.J.; Thatcher, R.J.; Whitwood, A.C.; Lynam, J.M. Synthesis and coordination chemistry of pyrimidine-substituted phosphine ligands. Inorg. Chim. Acta 2012, 380, 252–260. [Google Scholar] [CrossRef]
- Cross, J.M.; Gallagher, N.; Gill, J.H.; Jain, M.; McNeillis, A.W.; Rockley, K.L.; Tscherny, F.H.; Wirszycz, N.J.; Yufit, D.S.; Walton, J.W. Pyridylphosphinate metal complexes: Synthesis, structural characterisation and biological activity. Dalton Trans. 2016, 45, 12807–12813. [Google Scholar] [CrossRef] [Green Version]
- Artem’ev, A.V.; Eremina, J.A.; Lider, E.V.; Antonova, O.V.; Vorontsova, E.V.; Bagryanskaya, I.Y. Luminescent Ag (I) scorpionates based on tris(2-pyridyl)phosphine oxide: Synthesis and cytotoxic activity evaluation. Polyhedron 2017, 138, 218–224. [Google Scholar] [CrossRef]
- Shudo, N.; Mizoguchi, T.; Kiyosue, T.; Arita, M.; Yoshimura, A.; Seto, K.; Sakoda, R.; Akiyama, S.-I. Two pyridine analogues with more effective ability to reverse multidrug resistance and with lower calcium channel blocking activity than their dihydropyridine counterparts. Cancer Res. 1990, 50, 3055–3061. [Google Scholar]
- Pfefferkorn, J.A.; Guzman-Perez, A.; Litchfield, J.; Aiello, R.; Treadway, J.L.; Pettersen, J.; Minich, M.L.; Filipski, K.J.; Jones, C.S.; Tu, M. Discovery of (S)-6-(3-cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl)propanamido) nicotinic acid as a hepatoselective glucokinase activator clinical candidate for treating type 2 diabetes mellitus. J. Med. Chem. 2012, 55, 1318–1333. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.J.; Porter, R.A.; Warrington, B.H.; Lahouratate, P. Phenol and Pyridinol Derivatives as Lusitropic Agents. Patent WO1993019754A1, 23 March 1993. [Google Scholar]
- Ali, T.E.; Assiri, M.A.; El-Shaaer, H.M.; Abed-Kariem, S.M.; Abdel-Monem, W.R.; El-Edfawy, S.M.; Hassanin, N.M.; Shati, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I. Synthesis and biological activities of some new phosphorus compounds containing pyranopyrazole moiety. Heterocycles 2021, 102, 1119–1137. [Google Scholar] [CrossRef]
- de Assis, T.M.; Gajo, G.C.; de Assis, L.C.; Garcia, L.S.; Silva, D.R.; Ramalho, T.C.; da Cunha, E.F.F. QSAR models guided by molecular dynamics applied to human glucokinase activators. Chem. Biol. Drug Des. 2016, 87, 455–466. [Google Scholar] [CrossRef]
- Dziuganowska, Z.A.; Slepokura, K.; Volle, J.-N.; Virieux, D.; Pirat, J.-L.; Kafarski, P. Structural analogues of Selfotel. J. Org. Chem. 2016, 81, 4947–4954. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, A.; Lukacova, V.; Comez, D.; Kroll, D.M.; Raha, S.; Balaz, S. A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. J. Med. Chem. 2005, 48, 5437–5447. [Google Scholar] [CrossRef] [Green Version]
- Venkata Ramana, K.; Venkata Subbaiah, K.; Lokanatha, V.; Naga Raju, C. Synthesis and antimicrobial activity evaluation of new dialkyl heteroarylphosphonates. Der. Pharm. Chem. 2011, 3, 181–188. [Google Scholar]
- Gardner, G.; Steffens, J.J.; Grayson, B.T.; Kleier, D.A. 2-Methylcinnolinium herbicides: Effect of 2-methylcinnolinium-4-(O-methylphosphonate) on photosynthetic electron transport. J. Agric. Food Chem. 1992, 40, 318–321. [Google Scholar] [CrossRef]
- DeFrees, S.A.; Sawick, D.P.; Cunningham, B.; Heinstein, P.F.; Morré, D.J.; Cassady, J.M. Structure-activity relationships of pyrimidines as dihydroorotate dehydrogenase inhibitors. Biochem. Pharmacol. 1988, 37, 3807–3816. [Google Scholar] [CrossRef] [PubMed]
- Stansfield, I.; Avolio, S.; Colarusso, S.; Gennari, N.; Narjes, F.; Pacini, B.; Ponzi, S.; Harper, S. Active site inhibitors of HCV NS5B polymerase. The development and pharmacophore of 2-thienyl-5, 6-dihydroxypyrimidine-4-carboxylic acid. Bioorganic Med. Chem. Lett. 2004, 14, 5085–5088. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-w.; Zhou, L.; Coats, S.J.; McBrayer, T.R.; Tharnish, P.M.; Bondada, L.; Detorio, M.; Amichai, S.A.; Johns, M.D.; Whitaker, T. Synthesis of purine modified 2′-C-methyl nucleosides as potential anti-HCV agents. Bioorganic Med. Chem. Lett. 2011, 21, 6788–6792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, M.; Johnson, M.D.; Thomas, C.; Kiel, D.; Lakis, J.N.; Kercher, T.; Aytes, S.; Kostrowicki, J.; Bhumralkar, D.; Truesdale, L. Small molecule ago-allosteric modulators of the human glucagon-like peptide-1 (hGLP-1) receptor. Bioorganic Med. Chem. Lett. 2007, 17, 5472–5478. [Google Scholar] [CrossRef]
- Kumar, A.V.; Mohan, K. Insights into binding of potential antitumor quinoxaline analogues against cyclin dependent kinase 2 using docking studies. J. Chem. Biol. Phys. Sci. 2012, 2, 2419. [Google Scholar]
- Kozlov, M.; Komkov, A.; Losev, T.; Tyurin, A.; Dmitrenok, A.; Zavarzin, I.; Volkova, Y. Flexible synthesis of phosphoryl-substituted imidazolines, tetrahydropyrimidines, and thioamides by sulfur-mediated processes. J. Org. Chem. 2019, 84, 11533–11541. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, M.; Kozlov, A.; Komkov, A.; Lyssenko, K.; Zavarzin, I.; Volkova, Y. Synthesis of phosphoryl thioamides via three-component reaction of phosphinic chlorides with amines and sulfur. Adv. Synth. Catal. 2019, 361, 2904–2915. [Google Scholar] [CrossRef]
- Van der Jeught, S.; Stevens, C.V. Direct phosphonylation of aromatic azaheterocycles. Chem. Rev. 2009, 109, 2672–2702. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, X.Y.; Zou, Y.X. Recent advances in the construction of phosphorus-substituted heterocycles, 2009–2019. Adv. Synth. Catal. 2020, 362, 1724–1818. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, H.-Z.; Fu, Q.; Yu, D.-G. Advances in radical phosphorylation from 2016 to 2021. Chem. Synth. 2021, 1, 9. [Google Scholar] [CrossRef]
- Budnikova, Y.H.; Sinyashin, O.G.D. Phosphorylation of C–H bonds of aromatic compounds using metals and metal complexes. Russ. Chem. Rev. 2015, 84, 917–951. [Google Scholar] [CrossRef]
- Luo, K.; Yang, W.C.; Wu, L. Photoredox catalysis in organophosphorus chemistry. Asian J. Org. Chem. 2017, 6, 350–367. [Google Scholar] [CrossRef]
- Budnikova, Y.H.; Gryaznova, T.V.; Grinenko, V.V.; Dudkina, Y.B.; Khrizanforov, M.N. Eco-efficient electrocatalytic C–P bond formation. Pure Appl. Chem. 2017, 89, 311–330. [Google Scholar] [CrossRef]
- Pan, X.-Q.; Zou, J.-P.; Yi, W.-B.; Zhang, W. Recent advances in sulfur-and phosphorous-centered radical reactions for the formation of S–C and P–C bonds. Tetrahedron 2015, 40, 7481–7529. [Google Scholar] [CrossRef]
- Haji, M. Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates. Beilstein J. Org. Chem. 2016, 12, 1269–1301. [Google Scholar] [CrossRef]
- Gao, Y.; Tang, G.; Zhao, Y. Recent progress toward organophosphorus compounds based on phosphorus-centered radical difunctionalizations. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 589–596. [Google Scholar] [CrossRef]
- Demmer, C.S.; Krogsgaard-Larsen, N.; Bunch, L. Review on modern advances of chemical methods for the introduction of a phosphonic acid group. Chem. Rev. 2011, 111, 7981–8006. [Google Scholar] [CrossRef] [PubMed]
- Volkova, Y.; Kozlov, M.; Zavarzin, I. Synthetic Routes to P(O)-Substituted Five-Membered Aromatic Heterocycles (2010–2021). Targets Heterocycl. Syst. Chem. Prop. 2022, 26, 18–45. [Google Scholar]
- Egorova, A.V.; Svintsitskaya, N.I.; Dogadina, A.V. Synthesis of phosphorylated indoles. Russ. J. Gen. Chem. 2018, 88, 2276–2289. [Google Scholar] [CrossRef]
- Chen, L.; Zou, Y.X. Recent progress in the synthesis of phosphorus-containing indole derivatives. Org. Biomol. Chem. 2018, 16, 7544–7556. [Google Scholar] [CrossRef]
- Baiju, T.; Namboothiri, I.N. Synthesis of functionalized pyrazoles via 1,3-dipolar cycloaddition of α-diazo-β-ketophosphonates, sufones and esters with electron-deficient alkenes. Chem. Rec. 2017, 17, 939–955. [Google Scholar] [CrossRef]
- Goulioukina, N.S.; Makukhin, N.N.; Beletskaya, I.P. Synthetic routes to 3(5)-phosphonylated pyrazoles. Russ. Chem. Rev. 2016, 85, 667–683. [Google Scholar] [CrossRef]
- Gazizov, A.S.; Smolobochkin, A.V.; Turmanov, R.A.; Pudovik, M.A.; Burilov, A.R.; Sinyashin, O.G. Synthesis of phosphaproline derivatives: A short overview. Synthesis 2019, 51, 3397–3409. [Google Scholar] [CrossRef]
- Nikishkin, N.I.; Huskens, J.; Assenmacher, J.; Wilden, A.; Modolo, G.; Verboom, W. Palladium-catalyzed cross-coupling of various phosphorus pronucleophiles with chloropyrazines: Synthesis of novel Am(III)-selective extractants. Org. Biomol. Chem. 2012, 10, 5443–5451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, L.; Diao, J.; Chen, P.; Pujari, V.; Yao, Y.; Cheng, G.; Crick, D.C.; Prasad, B.V.; Song, Y. Inhibition of 1-deoxy-D-xylulose-5-phosphate reductoisomerase by lipophilic phosphonates: SAR, QSAR, and crystallographic studies. J. Med. Chem. 2011, 54, 4721–4734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, H.; Zoń, J.; Law, J.; Clearfield, A. Structural variations of SnII pyridylphosphonates influenced by an uncommon Sn–N interaction. J. Solid State Chem. 2010, 183, 1165–1173. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Wei, C.; Wang, Y.; Xie, G.; Li, Y.; Li, M. Rapidly sequence-controlled electrosynthesis of organometallic polymers. Nat. Commun. 2020, 11, 2530. [Google Scholar] [CrossRef] [PubMed]
- Barycki, J.; Gancarz, R.; Milewska, M.; Tyka, R.; Sawka-Dobrowolska, W. 1-Phthalazinephosphonic acid-An unexpected product of the reaction between diisopropylphosphite and o-phthalazine. Phosphorus Sulfur Silicon Relat. Elem. 1998, 143, 167–178. [Google Scholar] [CrossRef]
- Belabassi, Y.; Alzghari, S.; Montchamp, J.-L. Revisiting the Hirao cross-coupling: Improved synthesis of aryl and heteroaryl phosphonates. J. Organomet. Chem. 2008, 693, 3171–3178. [Google Scholar] [CrossRef] [Green Version]
- Plazek, S.; Sasyk, Z. Uber einige phosphoe-pyridinverbinddungen. Chemishes Zent. 1935, 106, 2177. [Google Scholar]
- Collins, D.J.; Hetherington, J.W.; Swan, J.M. Organophosphorus compounds. XIV. A new synthesis of 3-pyridylphosphonic acid. Aust. J. Chem. 1974, 27, 1355–1360. [Google Scholar] [CrossRef]
- Wu, J.; Chen, H.; Zhou, Z.-Y.; Yeung, C.H.; Chan, A.S.C. Synthesis and structural characterization of a highly effective chiral dipyridylphosphine ligand and its application in the Ru-catalyzed asymmetric hydrogenation of β-ketoesters. Synlett 2001, 2001, 1050–1054. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Chen, H.; Kwok, W.H.; Lam, K.H.; Zhou, Z.Y.; Yeung, C.H.; Chan, A.S.C. A new chiral dipyridylphosphine ligand Xyl-P-Phos and its application in the Ru-catalyzed asymmetric hydrogenation of β-ketoesters. Tetrahedron Lett. 2002, 43, 1539–1543. [Google Scholar] [CrossRef]
- Bennett, R.; Burger, A.; Volk, W. Communications—3-Pyridylphosphonic acid. J. Org. Chem. 1958, 23, 940. [Google Scholar] [CrossRef]
- Redmore, D. Phosphorus derivatives of nitrogen heterocycles. 2. Pyridinephosphonic acid derivatives. J. Org. Chem. 1970, 35, 4114–4117. [Google Scholar] [CrossRef]
- Eliseenkov, V.N.; Bureva, N.V.; Ivanov, B.E. Some transformations in a number of (2-pyridyl)phosphonates. Chem. Heterocycl. Compd. 1974, 10, 1182–1184. [Google Scholar] [CrossRef]
- Predvoditelev, D.A.; Chukbar, T.G.; Nifant’ev, E. Some new derivatives of pyridyl- and quinolylphosphonic acids. Chem. Heterocycl. Compd. 1975, 11, 330–333. [Google Scholar] [CrossRef]
- Bulot, J.J.; Aboujaoude, E.E.; Collignon, N.; Savignac, P. Preparation d’aminophenyl-, nitrophenyl-, pyridyl-, et quinolylphosphonates sous photostimulation ou assistance metallique; acces aux acides aminophosphoniques correspondants. Phosphorus Sulfur Relat. Elem. 2006, 21, 197–204. [Google Scholar] [CrossRef]
- Boduszek, B. Pyridine-2-phospho-carboxylic acids: Synthesis and properties. J. Prakt. Chem. Chem. Ztg. 1992, 334, 444–446. [Google Scholar] [CrossRef]
- Boduszek, B.; Wieczorek, J.S. A new method for the preparation of pyridine-4-phosphonic acids. Synthesis 1979, 1979, 452–453. [Google Scholar] [CrossRef]
- Markovskii, L.N.; Furin, G.G.; Shermolovich, Y.G.; Yakobson, G.G. Phosphorylation of polyfluoroaromatic compounds. Bull. Acad. Sci. USSR Div. Chem. Sci. 1981, 30, 646–648. [Google Scholar] [CrossRef]
- Boenigk, W.; Fischer, U.; Hägele, G. Über die michaelis-arbuzov-reaktion perhalogenierter pyridine. II1. Phosphorus Sulfur Relat. Elem. 2007, 16, 263–266. [Google Scholar] [CrossRef]
- Penicaud, V.; Odobel, F.; Bujoli, B. Facile and efficient syntheses of 2,2′-bipyridine-based bis(phosphonic) acids. Tetrahedron Lett. 1998, 39, 3689–3692. [Google Scholar] [CrossRef]
- Adam, M.S.S.; Kühl, O.; Kindermann, M.K.; Heinicke, J.W.; Jones, P.G. 3-Amino- and 3-acylamido-2-phosphonopyridines: Synthesis by Pd-catalyzed P–C coupling, structure and conversion to pyrido[b]-anellated P=C–N heterocycles. Tetrahedron 2008, 64, 7960–7967. [Google Scholar] [CrossRef]
- Palacios, F.; Gil, M.J.; de Marigorta, E.M.; Rodríguez, M. Synthesis and reactivity of imines derived from bisphosphonates and 3-phosphorylated 2-aza-1,3-dienes. Tetrahedron 2000, 56, 6319–6330. [Google Scholar] [CrossRef]
- Palacios, F.; Aparicio, D.; López, Y.; de los Santos, J.M.; Ezpeleta, J.M. Preparation and reactions of 3-phosphinyl-1-aza-1,3-butadienes. Synthesis of phosphorylated pyridine and pyrazole derivatives. Tetrahedron 2006, 62, 1095–1101. [Google Scholar] [CrossRef]
- Allais, C.; Liéby-Muller, F.; Rodriguez, J.; Constantieux, T. Metal-free michael-addition-initiated three-component reaction for the regioselective synthesis of highly functionalized pyridines: Scope, mechanistic investigations and applications. Eur. J. Org. Chem. 2013, 2013, 4131–4145. [Google Scholar] [CrossRef]
- Allais, C.; Constantieux, T.; Rodriguez, J. Use of beta,gamma-unsaturated alpha-ketocarbonyls for a totally regioselective oxidative multicomponent synthesis of polyfunctionalized pyridines. Chemistry 2009, 15, 12945–12948. [Google Scholar] [CrossRef] [PubMed]
- Allais, C.; Liéby-Muller, F.; Constantieux, T.; Rodriguez, J. Dual heterogeneous catalysis for a regioselective three-component synthesis of bi- and tri(hetero)arylpyridines. Adv. Synth. Catal. 2012, 354, 2537–2544. [Google Scholar] [CrossRef]
- Hanashalshahaby, E.H.; Unaleroglu, C. Mannich bases as enone precursors for water-mediated efficient synthesis of 2,3,6-trisubstituted pyridines and 5,6,7,8-tetrahydroquinolines. ACS Comb. Sci. 2015, 17, 374–380. [Google Scholar] [CrossRef]
- Abdou, W.M.; Shaddy, A.A.; Kamel, A.A. Structure-based design and synthesis of acyclic and substituted heterocyclic phosphonates linearly linked to thiazolobenzimidazoles as potent hydrophilic antineoplastic agents. Chem. Pap. 2017, 71, 1961–1973. [Google Scholar] [CrossRef]
- Liao, L.; Zhang, H.; Zhao, X. Selenium-π-acid catalyzed oxidative functionalization of alkynes: Facile access to ynones and multisubstituted oxazoles. ACS Catal. 2018, 8, 6745–6750. [Google Scholar] [CrossRef]
- Qi, X.; Dai, L.; Park, C.M. Carbenoid-mediated N-O bond insertion and its application in the synthesis of pyridines. Chem. Commun. 2012, 48, 11244–12246. [Google Scholar] [CrossRef]
- Loy, N.S.; Singh, A.; Xu, X.; Park, C.M. Synthesis of pyridines by carbenoid-mediated ring opening of 2H-azirines. Angew. Chem. Int. Ed. 2013, 52, 2212–2216. [Google Scholar] [CrossRef]
- Kashima, K.; Ishii, M.; Tanaka, K. Synthesis of pyridylphosphonates by rhodium-catalyzed [2+2+2] cycloaddition of 1,6- and 1,7-diynes with diethyl phosphorocyanidate. Eur. J. Org. Chem. 2015, 2015, 1092–1099. [Google Scholar] [CrossRef]
- Kashima, K.; Teraoka, K.; Uekusa, H.; Shibata, Y.; Tanaka, K. Rhodium-catalyzed atroposelective [2+2+2] cycloaddition of ortho-substituted phenyl diynes with nitriles: Effect of ortho substituents on regio- and enantioselectivity. Org. Lett. 2016, 18, 2170–2173. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; To, W.P.; Zhang, Z.Y.; Yue, C.D.; Meng, S.; Chen, J.; Liu, Y.; Yu, G.A.; Che, C.M. Visible-light-promoted transition-metal-free phosphinylation of heteroaryl halides in the presence of potassium tert-butoxide. Org. Lett. 2018, 20, 7816–7820. [Google Scholar] [CrossRef]
- Zeng, H.; Dou, Q.; Li, C.-J. Photoinduced transition-metal-free cross-coupling of aryl halides with H-phosphonates. Org. Lett. 2019, 21, 1301–1305. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, W. Visible-light driven C-P bond formation with recyclable carbon nitride photocatalyst. ChemCatChem 2022, 14, e202200449. [Google Scholar] [CrossRef]
- Cowper, N.G.; Chernowsky, C.P.; Williams, O.P.; Wickens, Z.K. Potent reductants via electron-primed photoredox catalysis: Unlocking aryl chlorides for radical coupling. J. Am. Chem. Soc. 2020, 142, 2093–2099. [Google Scholar] [CrossRef]
- Zhu, D.-L.; Jiang, S.; Wu, Q.; Wang, H.; Chai, L.-L.; Li, H.-Y.; Li, H.-X. Visible-light-induced nickel-catalyzed P(O)–C(sp2) coupling using thioxanthen-9-one as a photoredox catalysis. Org. Lett. 2020, 23, 160–165. [Google Scholar] [CrossRef]
- Qiu, D.; Lian, C.; Mao, J.; Ding, Y.; Liu, Z.; Wei, L.; Fagnoni, M.; Protti, S. Visible Light-Driven, Photocatalyst-free Arbuzov-like reaction via arylazo sulfones. Adv. Synth. Catal. 2019, 361, 5239–5244. [Google Scholar] [CrossRef]
- Kim, I.; Kang, G.; Lee, K.; Park, B.; Kang, D.; Jung, H.; He, Y.T.; Baik, M.H.; Hong, S. Site-selective functionalization of pyridinium derivatives via visible-light-driven photocatalysis with quinolinone. J. Am. Chem. Soc. 2019, 141, 9239–9248. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.B.; Bian, Y.J.; Mao, X.R.; Huang, Z.Z. Coupling reactions of heteroarenes with phosphites under silver catalysis. J. Org. Chem. 2012, 77, 7706–7710. [Google Scholar] [CrossRef]
- Kittikool, T.; Phakdeeyothin, K.; Chantarojsiri, T.; Yotphan, S. Manganese-promoted regioselective direct C3-phosphinoylation of 2-pyridones. Eur. J. Org. Chem. 2021, 2021, 3071–3078. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, C.; Shen, Z.; Dai, B.; Chen, J. Efficient potassium hydroxide promoted P-arylation of aryl halides with diphenylphosphine. J. Organomet. Chem. 2021, 949, 121932. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Volkov, P.A.; Khrapova, K.O.; Telezhkin, A.A.; Ivanova, N.I.; Albanov, A.I.; Gusarova, N.K.; Chupakhin, O.N. Metal-free site selective cross-coupling of pyridines with secondary phosphine chalcogenides using acylacetylenes as oxidants. Chem. Commun. 2018, 54, 3371–3374. [Google Scholar] [CrossRef]
- Volkov, P.A.; Gusarova, N.K.; Khrapova, K.O.; Telezhkin, A.A.; Albanov, A.I.; Vasilevskiy, S.F.; Trofimov, B.A. A mechanistic insight into the chemoselectivity of the reaction between 3-phenyl-2-propynenitrile, secondary phosphine oxides and pyridinoids. Mendeleev Commun. 2021, 31, 670–672. [Google Scholar] [CrossRef]
- Volkov, P.A.; Telezhkin, A.A.; Khrapova, K.O.; Ivanova, N.I.; Albanov, A.I.; Gusarova, N.K.; Trofimov, B.A. Metal-free S HN cross-coupling of pyridines with phosphine chalcogenides: Polarization/deprotonation/oxidation effects of electron-deficient acetylenes. New J. Chem. 2021, 45, 6206–6219. [Google Scholar] [CrossRef]
- Oka, N.; Ito, K.; Tomita, F.; Ando, K. Synthesis of 2-pyridylphosphinate and thiophosphinate derivatives by nucleophilic aromatic substitution of N-methoxypyridinium tosylates. Chem. Lett. 2012, 41, 1630–1632. [Google Scholar] [CrossRef]
- Wang, H.; Cui, X.; Pei, Y.; Zhang, Q.; Bai, J.; Wei, D.; Wu, Y. Direct regioselective phosphonation of heteroaryl N-oxides with H-phosphonates under metal and external oxidant free conditions. Chem. Commun. 2014, 50, 14409–14411. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; Kim, H.-S.; Yang, H.-W.; Yoo, B.-W.; Yoon, C.M. Synthesis of diethyl pyridin-2-ylphosphonates and quinolin-2-ylphosphonates by deoxygenative phosphorylation of the corresponding N-oxides. Bull. Korean Chem. Soc. 2014, 35, 2155–2158. [Google Scholar] [CrossRef] [Green Version]
- Li, S.G.; Yuan, M.; Topic, F.; Han, Z.S.; Senanayake, C.H.; Tsantrizos, Y.S. Asymmetric library synthesis of P-chiral t-butyl-substituted secondary and tertiary phosphine oxides. J. Org. Chem. 2019, 84, 7291–7302. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.S.; Wu, H.; Xu, Y.; Zhang, Y.; Qu, B.; Li, Z.; Caldwell, D.R.; Fandrick, K.R.; Zhang, L.; Roschangar, F.; et al. General and stereoselective method for the synthesis of sterically congested and structurally diverse P-stereogenic secondary phosphine oxides. Org. Lett. 2017, 19, 1796–1799. [Google Scholar] [CrossRef]
- Stambirskyi, M.V.; Kostiuk, T.; Sirobaba, S.I.; Rudnichenko, A.; Titikaiev, D.L.; Dmytriv, Y.V.; Kuznietsova, H.; Pishel, I.; Borysko, P.; Mykhailiuk, P.K. Phosphine oxides (− POMe2) for medicinal chemistry: Synthesis, properties, and applications. J. Org. Chem. 2021, 86, 12783–12801. [Google Scholar] [CrossRef]
- Zakirova, G.G.; Mladentsev, D.Y.; Borisova, N.E. Synthesis of chelating tertiary phosphine oxides via palladium-catalysed C–P bond formation. Tetrahedron Lett. 2017, 58, 3415–3417. [Google Scholar] [CrossRef]
- Henyecz, R.; Oroszy, R.; Keglevich, G. Microwave-assisted Hirao reaction of heteroaryl bromides and >P(O)H reagents using Pd(OAc)2 as the catalyst precursor in the absence of added P-ligands. Curr. Org. Chem. 2019, 23, 1151–1157. [Google Scholar] [CrossRef]
- McErlain, H.; Riley, L.M.; Sutherland, A. Palladium-catalyzed C–P bond-forming reactions of aryl nonaflates accelerated by iodide. J. Org. Chem. 2021, 86, 17036–17049. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, T.-T.; Zhang, Z.-H.; Tong, H.-X.; Yi, X.-Y. Photorelease of nitric oxide in water-soluble diruthenium nitrosyl complexes with phosphonate substituted pyridylpyrrole. Inorg. Chim. Acta 2022, 534, 120826. [Google Scholar] [CrossRef]
- Adam, M.S.S.; Kindermann, M.K.; Köckerling, M.; Heinicke, J.W. Phosphonylation of 2-amino- and 2-amido-3-bromopyridines and 2-amino-3-chloroquinoxalines with triethyl phosphite. Eur. J. Org. Chem. 2009, 2009, 4655–4665. [Google Scholar] [CrossRef]
- Geng, Z.; Zhang, Y.; Zheng, L.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Pd-catalyzed C–P coupling of heteroaryl boronic acid with H-phosphonate diester. Tetrahedron Lett. 2016, 57, 3063–3066. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J.; Guan, C.; Zhao, Y.; Ding, C. Nickel- and palladium-catalyzed cross-coupling of aryl fluorosulfonates and phosphites: Synthesis of aryl phosphonates. Eur. J. Org. Chem. 2021, 2021, 810–813. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Wu, G.J.; Han, F.S. Ni-catalyzed construction of C-P bonds from electron-deficient phenols via the in situ aryl C-O activation by PyBroP. Chem. Commun. 2012, 48, 5868–5870. [Google Scholar] [CrossRef]
- Isshiki, R.; Muto, K.; Yamaguchi, J. Decarbonylative C-P bond formation using aromatic esters and organophosphorus compounds. Org. Lett. 2018, 20, 1150–1153. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Z.-X. Ni-Catalyzed C–P coupling of aryl, benzyl, or allyl ammonium salts with P(O)H compounds. J. Org. Chem. 2019, 84, 1500–1509. [Google Scholar] [CrossRef]
- Li, C.-J. Nickel-catalyzed phosphorylation of tosylates. Russ. J. Gen. Chem. 2020, 90, 725–730. [Google Scholar] [CrossRef]
- Li, C.J. Aryltrimethylammonium tetrafluoroborates in nickel-catalyzed C–P bond-forming reactions. Russ. J. Org. Chem. 2021, 57, 954–960. [Google Scholar] [CrossRef]
- Regitz, M.; Heydt, A.; Weber, B. (Diazomethyl)cyclopropene—Synthese, isomerisierung und carbenreaktionen. Angew. Chem. 1979, 91, 566–568. [Google Scholar] [CrossRef]
- Heydt, A.; Heydt, H.; Weber, B.; Regitz, M. Untersuchungen an diazoverbindungen und aziden, XLII. (Diazomethyl)cyclopropene durch elektrophile diazoalkan-substitution. Chem. Ber. 1982, 115, 2965–2980. [Google Scholar] [CrossRef]
- Eisenbarth, P.; Regitz, M. Untersuchungen an diazoverbindungen und aziden, XLIII1). 1,2-Dewarpyridazine—Vorstufen zur erzeugung von azacyclobutadienen? Chem. Ber. 1984, 117, 445–454. [Google Scholar] [CrossRef]
- Heydt, H.; Eisenbarth, P.; Feith, K.; Regitz, M. Diaminopyridazine aus diaminocyclopropenyliumsalzen und (diazomethyl)- verbindungen. J. Heterocycl. Chem. 1986, 23, 385–391. [Google Scholar] [CrossRef]
- Banert, K.; Kohler, F.; Melzer, A.; Scharf, I.; Rheinwald, G.; Ruffer, T.; Lang, H.; Herges, R.; Hess, K.; Ghavtadze, N.; et al. Experimental and theoretical characterization of the aromatization, epimerization, and fragmentation reactions of bi-2H-azirin-2-yls prepared from 1,4-diazidobuta-1,3-dienes. Chemistry 2011, 17, 10071–10080. [Google Scholar] [CrossRef]
- Collomb, D.; Deshayes, C.; Doutheau, A. Synthesis of functionalized phenolic derivatives via the benzannulation of dienylketenes formed by a thermal wolff rearrangement of α-diazo-β-keto compounds. Tetrahedron 1996, 52, 6665–6684. [Google Scholar] [CrossRef]
- Touil, S.; Zantour, H. Action des hydrazines sur les γ,ß′-dicarbonylphosphonates et phosphineoxides: Synthese de 4-phosphopyridazines et pyridazin-3-ones. Phosphorus Sulfur Silicon Relat. Elem. 1998, 134, 493–502. [Google Scholar] [CrossRef]
- Mrowca, J.J. Phosphine Oxide-Substituted Pyrimidines. U.S. Patent 19790049481, 18 November 1980. [Google Scholar]
- Kosolapoff, G.M.; Roy, C.H. Synthesis of some pyrimidylphosphonates. J. Org. Chem. 1961, 26, 1895–1898. [Google Scholar] [CrossRef]
- Haas, A.; Lieb, M. Darstellung und eigenschaften trifluormethylmercapto-substituierter pyrimidine. J. Heterocycl. Chem. 1986, 23, 1079–1084. [Google Scholar] [CrossRef]
- Günther, O.; Hartke, K. Heterocyclische o-amino-phosphonester. Arch. Der Pharm. 1975, 308, 693–700. [Google Scholar] [CrossRef]
- Aboujaoude, E.E.; Collignon, N.; Savignac, P. Dialkyl formyl-1 methylphosphonates α-fonctionnels—II1. Tetrahedron 1985, 41, 427–433. [Google Scholar] [CrossRef]
- Aboujaoude, E.E.; Collignon, N.; Savignac, P. Synthèse d’hétérocycles α-phosphoniques. nouveaux développements. Phosphorous Sulfur Relat. Elem. 1987, 31, 231–243. [Google Scholar] [CrossRef]
- Neidlein, R.; Eichinger, T. [(1,3-Dioxolan-2-yliden)methyl]phosphonate und -phosphinate als (einfache) Synthone in der Heterocyclensynthese. Helv. Chim. Acta 1992, 75, 124–136. [Google Scholar] [CrossRef]
- Lu, R.; Yang, H. A novel approach to phosphonyl-substituted heterocyclic system(I). Tetrahedron Lett. 1997, 38, 5201–5204. [Google Scholar] [CrossRef]
- Penz, G.; Zbiral, E. 3-Oxo-2-tosyloxy-1-alkenylphosphonsauredialkylester als synthone zum aufbau von hetarylphosphonsauredialkylestern. Mon. Fur Chem. Chem. Mon. 1985, 116, 1041–1049. [Google Scholar] [CrossRef]
- Maruyama, T.; Taira, Z.; Horikawa, M.; Sato, Y.; Honjo, M. Synthesis of uracil-5- and adenine-8-phosphonic acids. Tetrahedron Lett. 1983, 24, 2571–2574. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, H.; Guo, Q.; Chen, Q.; Xu, Z.; Wang, R. C-H bonds phosphorylation of ketene dithioacetals. Org. Lett. 2015, 17, 1978–1981. [Google Scholar] [CrossRef]
- Essid, I.; Lahbib, K.; Kaminsky, W.; Ben Nasr, C.; Touil, S. 5-Phosphonato-3,4-dihydropyrimidin-2(1H)-ones: Zinc triflate-catalyzed one-pot multi-component synthesis, X-ray crystal structure and anti-inflammatory activity. J. Mol. Struct. 2017, 1142, 130–138. [Google Scholar] [CrossRef]
- Essid, I.; Touil, S. β-Ketophosphonates as substrates in the Biginelli multicomponent reaction: An efficient and straightforward synthesis of phosphorylated dihydropyrimidinones. Arkivoc 2013, 4, 98–106. [Google Scholar] [CrossRef]
- Timoshenko, V.M.; Markitanov, Y.N.; Shermolovich, Y.G. Preparation of pyrimidine derivatives through three-component reactions of dialkyl(2-oxo-3,3,3-trifluoropropyl)phosphonates. Chem. Heterocycl. Compd. 2011, 47, 977–982. [Google Scholar] [CrossRef]
- Jansa, P.; Hradil, O.; Baszczyňski, O.; Dračínský, M.; Klepetářová, B.; Holý, A.; Balzarini, J.; Janeba, Z. An efficient microwave-assisted synthesis and biological properties of polysubstituted pyrimidinyl- and 1,3,5-triazinylphosphonic acids. Tetrahedron 2012, 68, 865–871. [Google Scholar] [CrossRef] [Green Version]
- Kunda, U.M.R.; Mudumala, V.N.R.; Reddy Gangireddy, C.S.; Nemallapudi, B.R.; Sandip, K.N.; Cirandur, S.R. Amberlyst-15 catalyzed synthesis of alkyl/aryl/heterocyclic phosphonates. Chin. Chem. Lett. 2011, 22, 895–898. [Google Scholar] [CrossRef]
- Mohan Naidu, K.R.; Dadapeer, E.; Reddy, C.B.; Rao, A.J.; Reddy, C.S.; Raju, C.N. Polyethylene glycol–promoted dialkyl, aryl/heteroaryl phosphonates. Synth. Commun. 2011, 41, 3462–3468. [Google Scholar] [CrossRef]
- Golla, M.; Syed, R.; Katla, V.R.; Devineni, S.R.; Kondapalli, N.; Chamarthi, N.R. LaCl3·7H2O: An efficient catalyst for the synthesis of phosphinates (Michaelis–Arbuzov reaction) under neat conditions and their potential antimicrobial activity. J. Chem. Sci. 2014, 126, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Varalakshmi, M.; Srinivasulu, D.; Kotakadi, V.S. Nano-BF3*SiO2 catalyst-promoted Michaelis-Arbuzov reaction: Solvent-free synthesis and antimicrobial evaluation. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 1518–1524. [Google Scholar] [CrossRef]
- Ghosh, I.; Shaikh, R.S.; Konig, B. Sensitization-initiated electron transfer for photoredox catalysis. Angew. Chem. Int. Ed. 2017, 56, 8544–8549. [Google Scholar] [CrossRef] [Green Version]
- Erbland, G.; Ruch, J.; Goddard, J.-P. Photochemical functionalization of diazines: Metal-free vinylation and phosphonylation. Tetrahedron 2016, 72, 7826–7831. [Google Scholar] [CrossRef]
- Zhang, W.; Zou, J.-P.; Sun, W.-B.; Ji, Y.-F.; Pan, X.-Q.; Zhou, S.-F.; Asekun, O. Mn(OAc)3-mediated selective free radical phosphonylation of pyridinones and pyrimidinones. Synthesis 2013, 45, 1529–1533. [Google Scholar]
- Deal, E.L.; Petit, C.; Montchamp, J.L. Palladium-catalyzed cross-coupling of H-phosphinate esters with chloroarenes. Org. Lett. 2011, 13, 3270–3273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Sun, M.; Ma, Y.N.; Tian, Q.P.; Yang, S.D. Nickel-catalyzed C-P cross-coupling of diphenylphosphine oxide with aryl chlorides. Org. Biomol. Chem. 2012, 10, 9627–9633. [Google Scholar] [CrossRef]
- Montel, S.; Midrier, C.; Volle, J.-N.; Braun, R.; Haaf, K.; Willms, L.; Pirat, J.-L.; Virieux, D. Functionalized phosphanyl-phosphonic acids as unusual complexing units as analogues of fosmidomycin. Eur. J. Org. Chem. 2012, 2012, 3237–3248. [Google Scholar] [CrossRef]
- Zakirova, G.; Mladentsev, D.; Borisova, N. Palladium-catalyzed C–P cross-coupling between (het)aryl halides and secondary phosphine oxides. Synthesis 2019, 51, 2379–2386. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, N.; Wang, S.; Wang, S.; Ning, S.; Shi, L.; Cui, L.; Zhang, Z.; Xiang, J. Nickel-catalyzed electrochemical phosphorylation of aryl bromides. Org. Lett. 2019, 21, 6835–6838. [Google Scholar] [CrossRef]
- Palacios, F.; Ochoa de Retana, A.M.; Gil, J.I.; Lopez de Munain, R. Synthesis of pyrazine-phosphonates and -phosphine oxides from 2H-azirines or oximes. Org. Lett. 2002, 4, 2405–2408. [Google Scholar] [CrossRef]
- Palacios, F.; de Retana, A.M.a.O.; de Marigorta, E.M.n.; Rodriguez, M.; Pagalday, J. Aza-Wittig reaction of N-phosphorylalkyl phosphazenes with carbonyl compounds and phenylisocyanate. Synthesis of 4-amino-3-phosphoryl-2-azadienes and pyrazine-phosphonates. Tetrahedron 2003, 59, 2617–2623. [Google Scholar] [CrossRef]
- Aparicio, D.; Attanasi, O.A.; Filippone, P.; Ignacio, R.; Lillini, S.; Mantellini, F.; Palacios, F.; de Los Santos, J.M. Straightforward access to pyrazines, piperazinones, and quinoxalines by reactions of 1,2-diaza-1,3-butadienes with 1,2-diamines under solution, solvent-free, or solid-phase conditions. J. Org. Chem. 2006, 71, 5897–5905. [Google Scholar] [CrossRef]
- Seggio, A.; Chevallier, F.; Vaultier, M.; Mongin, F. Lithium-mediated zincation of pyrazine, pyridazine, pyrimidine, and quinoxaline. J. Org. Chem. 2007, 72, 6602–6605. [Google Scholar] [CrossRef]
- Berger, O.; Montchamp, J.L. Manganese-catalyzed and mediated synthesis of arylphosphinates and related compounds. J. Org. Chem. 2019, 84, 9239–9256. [Google Scholar] [CrossRef] [PubMed]
- Nikishkin, N.I.; Huskens, J.; Ansari, S.A.; Mohapatra, P.K.; Verboom, W. Pyrazine-functionalized calix[4]arenes: Synthesis by palladium-catalyzed cross-coupling with phosphorus pronucleophiles and metal ion extraction properties. New J. Chem. 2013, 37, 391–402. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Wu, G.J.; Li, Y.; Gao, L.X.; Han, F.S. [NiCl2(dppp)]-catalyzed cross-coupling of aryl halides with dialkyl phosphite, diphenylphosphine oxide, and diphenylphosphine. Chemistry 2012, 18, 9622–9627. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkova, Y.; Zavarzin, I. Synthesis of Phosphorus(V)-Substituted Six-Membered N-Heterocycles: Recent Progress and Challenges. Molecules 2023, 28, 2472. https://doi.org/10.3390/molecules28062472
Volkova Y, Zavarzin I. Synthesis of Phosphorus(V)-Substituted Six-Membered N-Heterocycles: Recent Progress and Challenges. Molecules. 2023; 28(6):2472. https://doi.org/10.3390/molecules28062472
Chicago/Turabian StyleVolkova, Yulia, and Igor Zavarzin. 2023. "Synthesis of Phosphorus(V)-Substituted Six-Membered N-Heterocycles: Recent Progress and Challenges" Molecules 28, no. 6: 2472. https://doi.org/10.3390/molecules28062472
APA StyleVolkova, Y., & Zavarzin, I. (2023). Synthesis of Phosphorus(V)-Substituted Six-Membered N-Heterocycles: Recent Progress and Challenges. Molecules, 28(6), 2472. https://doi.org/10.3390/molecules28062472