Transformation of CO2 with Glycerol to Glycerol Carbonate over ETS-10 Zeolite-Based Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Catalytic Activity
2.3. Catalyst Stability
3. Experimental Methods
3.1. Materials
3.2. Preparation of ETS-10 Zeolite-Based Catalysts
3.3. Catalyst Characterization
3.4. Catalytic Activity Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bezi, H.; Mance, D.; Bala, D. Panel Evidence from EU Countries on CO2 Emission Indicators during the Fourth Industrial Revolution. Sustainability 2022, 14, 12554. [Google Scholar] [CrossRef]
- Shahbaz, M.; Balsalobre, D.; Shahzad, S.J.H. The Influencing Factors of CO2 Emissions and the Role of Biomass Energy Consumption: Statistical Experience from G-7 Countries. Environ. Model. Assess. 2019, 24, 143–161. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C. Absorption principle and techno-economic analysis of CO2 absorption technologies: A review. IOP Conf. Ser. Earth Environ. Sci. 2021, 657, 12045. [Google Scholar] [CrossRef]
- Chai, S.; Ngu, L.H.; Bing, S.H. Review of carbon capture absorbents for CO2 utilization. Greenh. Gases Sci. Technol. 2022, 12, 394–427. [Google Scholar] [CrossRef]
- Biswal, T.; Shadangi, K.P.; Sarangi, P.K.; Srivastava, R.K. Conversion of carbon dioxide to methanol: A comprehensive review. Chemosphere 2022, 298, 134299. [Google Scholar] [CrossRef]
- Sun, S.; Sun, H.; Williams, P.T.; Wu, C. Recent advances in integrated CO2 capture and utilization: A review. R. Soc. Chem. 2021, 5, 4546–4559. [Google Scholar]
- Wang, Y. Sustainable value-added C3 chemicals from glycerol transformations:A mini review for heterogeneous catalytic processes. Chin. J. Chem. Eng. 2019, 27, 1536–1542. [Google Scholar] [CrossRef]
- Khademi, M.H.; Lotfi-Varnoosfaderani, M. Use of biomass-derived glycerol as an alternative to fossil fuels for aniline production: Energy saving and environmental aspects. Fuel 2022, 310, 122359. [Google Scholar] [CrossRef]
- Nomanbhay, S.; Mei, Y.O.; Chew, K.W.; Show, P.L.; Chen, W.H. Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review. Energies 2020, 13, 1483. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.H.; Beltramini, J.N.; Fan, Y.X.; Lu, G.Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev. 2008, 37, 527–549. [Google Scholar] [CrossRef]
- Sonnati, M.O.; Amigoni, S.; Taffin de Givenchy, E.P.; Darmanin, T.; Choulet, O.; Guittard, F. Glycerol carbonate as a versatile building block for tomorrow: Synthesis, reactivity, properties and applications. Green Chem. 2013, 15, 283–306. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Nocito, F.; Pastore, C. A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: The role of the catalyst, solvent and reaction conditions. J. Mol. Catal. A Chem. 2006, 257, 149–153. [Google Scholar] [CrossRef]
- Li, J.; Wang, T. Chemical equilibrium of glycerol carbonate synthesis from glycerol. J. Chem. Thermodyn. 2011, 43, 731–736. [Google Scholar] [CrossRef]
- Huang, S.; Ma, J.; Li, J.; Ning, Z.; Wei, W.; Sun, Y. Efficient propylene carbonate synthesis from propylene glycol and carbon dioxide via organic bases. Catal. Commun. 2008, 9, 276–280. [Google Scholar] [CrossRef]
- George, J.; Patel, Y.; Pillai, S.M.; Munshi, P. Methanol assisted selective formation of 1,2-glycerol carbonate from glycerol and carbon dioxide using n-Bu2SnO as a catalyst. J. Mol. Catal. A Chem. 2009, 304, 1–7. [Google Scholar] [CrossRef]
- Hu, J.; Li, J.; Gu, Y.; Guan, Z.; Mo, W.; Ni, Y.; Li, T.; Li, G. Oxidative carbonylation of glycerol to glycerol carbonate catalyzed by PdCl2(phen)/KI. Appl. Catal. A Gen. 2010, 386, 188–193. [Google Scholar] [CrossRef]
- Li, H.; Gao, D.; Gao, P.; Wang, F.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y. The synthesis of glycerol carbonate from glycerol and CO2 over La2O2CO3–ZnO catalysts. Catal. Sci. Technol. 2013, 3, 2801–2809. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Liu, H.; He, D. Transformation of CO2 and glycerol to glycerol carbonate over CeO2-ZrO2 solid solution—Effect of Zr doping. Biomass Bioenergy 2018, 118, 74–83. [Google Scholar] [CrossRef]
- Ozorio, L.P.; Pianzolli, R.; da Cruz Machado, L.; Miranda, J.L.; Turci, C.C.; Guerra, A.C.; Mota, C.J. Metal-impregnated zeolite Y as efficient catalyst for the direct carbonation of glycerol with CO2. Appl. Catal. A Gen. 2015, 504, 187–191. [Google Scholar] [CrossRef]
- Hu, C.; Chang, C.W.; Yoshida, M.; Wang, K.H. Lanthanum nanocluster/ZIF-8 for boosting catalytic CO2/glycerol conversion using MgCO3 as a dehydrating agent. J. Mater. Chem. A 2021, 9, 7048–7058. [Google Scholar] [CrossRef]
- Pan, S.; Zheng, L.; Nie, R.; Xia, S.; Chen, P.; Hou, Z. Transesterification of Glycerol with Dimethyl Carbonate to Glycerol Carbonate over Na–based Zeolites. Chin. J. Catal. 2012, 33, 1772–1777. [Google Scholar] [CrossRef]
- Marakatti, V.S.; Halgeri, A.B. Metal ion-exchanged zeolites as highly active solid acid catalysts for the green synthesis of glycerol carbonate from glycerol. RSC Adv. 2015, 5, 14286–14293. [Google Scholar] [CrossRef]
- Algoufi, Y.T.; Hameed, B.H. Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over K-zeolite derived from coal fly ash. Fuel Process. Technol. 2014, 126, 5–11. [Google Scholar] [CrossRef]
- Xiang, M.; Zhang, F.; Tong, L.; Wang, H.; Deng, Y. Development of the hierarchical ETS-10 zeolite catalyst for improving the aqueous-phase biomass hydrodeoxygenation activity. J. Mater. Sci. 2020, 55, 10505–10521. [Google Scholar] [CrossRef]
- Avila, A.M.; Perez, L.E.; Rajendran, A. Conceptual design of adsorptive recovery of ethane from residue gas stream using Na-ETS-10. Sep. Purif. Technol. 2020, 251, 117302. [Google Scholar] [CrossRef]
- Park, S.W.; Yun, Y.H.; Kim, S.D.; Yang, S.T.; Ahn, W.S.; Kim, G. CO2 retention ability on alkali cation exchanged titanium silicate, ETS-10. J. Porous Mater. 2010, 17, 589–595. [Google Scholar] [CrossRef]
- Xiang, M.; Gao, Z.; Ji, X.; Li, D.; Deng, Y.; Ding, Y.; Yu, C.; Zhang, W.; Zhang, Z.; Wu, Z. Boosting CO2 hydrogenation to methane over Ni-based ETS-10 zeolite catalyst. Front. Chem. 2022, 10, 1041843. [Google Scholar] [CrossRef]
- Xiang, M.; Wu, D. Transition metal-promoted hierarchical ETS-10 solid base for glycerol transesterification. RSC Adv. 2018, 8, 33473–33486. [Google Scholar] [CrossRef] [Green Version]
- Shough, A.M.; Doren, D.J.; Ogunnaike, B. Transition Metal Substitution in ETS10: DFT Calculations and a Simple Model for Electronic Structure Prediction. Chem. Mater. 2009, 21, 1232–1241. [Google Scholar] [CrossRef]
- Wang, X.; Jacobson, A.J. Crystal structure of the microporous titanosilicate ETS-10 refined from single crystal X-ray diffraction data. Chem. Commun. 1999, 11, 973–974. [Google Scholar] [CrossRef]
- Polychronopoulou, K.; Dabbawala, A.A.; Sajjad, M.; Singh, N.; Anjum, D.H.; Baker, M.A.; Charisiou, N.D.; Goula, M.A. Hydrogen production via steam reforming of glycerol over Ce-La-Cu-O ternary oxide catalyst: An experimental and DFT study. Appl. Surf. Sci. 2022, 586, 152798. [Google Scholar] [CrossRef]
- GalioLu, S.; Zahmak Ran, M.; Kalay, Y.E.; Zkar, S.; Akata, B. Effect of silver encapsulation on the local structure of titanosilicate ETS-10. Microporous Mesoporous Mater. 2012, 159, 1–8. [Google Scholar] [CrossRef]
- Li, G.; Yu, X.; Yin, F. Production of hydrogen by ammonia decomposition over supported Co3O4 catalysts. Catal. Today 2022, 402, 45–51. [Google Scholar] [CrossRef]
- Shimura, K.; Miyazawa, T.; Hanaoka, T. Fischer–tropsch synthesis over alumina supported cobalt catalyst: Effect of promoter addition. Appl. Catal. A Gen. 2015, 494, 1–11. [Google Scholar] [CrossRef]
- Qin, H.; Wang, H.; Xia, Q.; Zheng, C.; Zhang, X.; Wu, Y.; Peng, L.; Yang, F.; Zhao, S. Efficient CO catalytic oxidation by the combination of cobalt and excellent carrier Ta2O5. Fuel 2023, 333, 126179. [Google Scholar] [CrossRef]
- Barreca, D.; Massignan, C.; Daolio, S.; Fabrizio, M.; Piccirillo, C.; Armelao, L.; Tondello, E. Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt(II) Precursor by Chemical Vapor Deposition. Chem. Mater. 2001, 13, 588–593. [Google Scholar] [CrossRef]
- Castner, D.G.; Watson, P.R.; Chan, I.Y. X-ray absorption spectroscopy, x-ray photoelectron spectroscopy, and analytical electron microscopy studies of cobalt catalysts. J. Phys. Chem. 1989, 93, 3188–3194. [Google Scholar] [CrossRef]
- Matsubara, H.; Yamamoto, K.; Tsuji, E.; Okumura, K.; Nakamura, K.; Suganuma, S.; Katada, N. Position and Lewis acidic property of active cobalt species on MFI zeolite for catalytic methylation of benzene with methane. Microporous Mesoporous Mater. 2021, 310, 110649. [Google Scholar] [CrossRef]
- Fao, G.D.; Catherine, H.N.; Huang, C.-H.; Lee, Y.L.; Jiang, J.C.; Hu, C. Unraveling the effects of P and S doping over g-C3N4 in strengthening Lewis basicity for CO2/glycerol conversion: A theoretical and experimental study. Carbon 2023, 201, 129–140. [Google Scholar] [CrossRef]
- Hu, C.; Yoshida, M.; Chen, H.-C.; Tsunekawa, S.; Lin, Y.-F.; Huang, J.-H. Production of glycerol carbonate from carboxylation of glycerol with CO2 using ZIF-67 as a catalyst. Chem. Eng. Sci. 2021, 235, 116451. [Google Scholar] [CrossRef]
- Januário, E.; Nogueira, A.; Pastore, H. ETS-10 Modified with CuxO nanoparticles and their application for the conversion of CO2 and water into Oxygenates. J. Braz. Chem. Soc. 2018, 29, 1527–1537. [Google Scholar] [CrossRef]
- Li, H.; Xin, C.; Jiao, X.; Zhao, N.; Xiao, F.; Li, L.; Wei, W.; Sun, Y. Direct carbonylation of glycerol with CO2 to glycerol carbonate over Zn/Al/La/X (X=F, Cl, Br) catalysts: The influence of the interlayer anion. J. Mol. Catal. A Chem. 2015, 402, 71–78. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhang, J.; He, D. Glycerol carbonylation with CO2 to glycerol carbonate over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters. Appl. Catal. A Gen. 2016, 513, 9–18. [Google Scholar] [CrossRef]
- Leungcharoenwattana, T.; Jitkarnka, S. Bio-based chemical production from glycerol conversion with ethanol co-feeding over Zr-promoted MgAl-layered double oxide catalysts: Impact of zirconium location. J. Clean. Prod. 2020, 273, 123201. [Google Scholar] [CrossRef]
- Tiwari, A.; Agarwal, S.; Shrivastava, K.; Ichikawa, T.; Jain, A.; Singh, R. XPS Investigation on Improving Hydrogen Sorption Kinetics of the KSiH3 System by Using Zr-Based Catalysts. Materials 2022, 15, 7454. [Google Scholar] [CrossRef]
- Lu, Y.; Xie, X.; Fang, W. Insight into the Property Modification of Zr ncorporated Alumina Binary Mixed Oxides by XRD, TEM, XPS, TPD and IR. ChemistrySelect 2020, 5, 7928–7933. [Google Scholar] [CrossRef]
- Lu, Y.; Fan, D.; Chen, Z.; Xiao, W.; Yang, X. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci. Bull. 2019, 65, 460–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio-Marcos, F.; Calvino-Casilda, V.; Bañares, M.; Fernandez, J. Novel hierarchical Co3O4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol. J. Catal. 2010, 275, 288–293. [Google Scholar] [CrossRef]
- Zhang, J.; He, D. Surface properties of Cu/La2O3 and its catalytic performance in the synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide. J. Colloid Interface Sci. 2014, 419, 31–38. [Google Scholar] [CrossRef]
- Huang, X.; Guo, Y.; Zou, Y.; Jiang, J. Electrochemical oxidation of glycerol to hydroxypyruvic acid on cobalt (oxy) hydroxide by high-valent cobalt redox centers. Appl. Catal. B Environ. 2022, 309, 121247. [Google Scholar] [CrossRef]
- Li, H.; Jiao, X.; Li, L.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y.; Zhang, B. Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M= Li, Mg and Zr) hydrotalcites. Catal. Sci. Technol. 2015, 5, 989–1005. [Google Scholar] [CrossRef]
- Su, X.; Lin, W.; Cheng, H.; Zhang, C.; Wang, Y.; Yu, X.; Wu, Z.; Zhao, F. Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate. Green Chem. 2017, 19, 1775–1781. [Google Scholar] [CrossRef]
Samples | C a | SBET b | Metal Contents c | CO2 Adsorption | ||||
---|---|---|---|---|---|---|---|---|
Temperature of Peak d | Desorbed CO2 Amounts e | |||||||
ETS-10 | 98.7 | 324.4 | - | 78.2 | 178.3 | 620.0 | 0.37 | |
Co/ETS-10 | 93.6 | 302.3 | 4.3 | 79.1 | 179.7 | 476.3 | 0.44 | |
Zr/ETS-10 | 93.7 | 299.4 | 4.1 | 75.0 | 166.9 | 514.4 | 605.6 | 0.61 |
Zn/ETS-10 | 90.2 | 283.4 | 4.4 | 74.9 | 166.4 | 551.1 | 0.50 | |
Ce/ETS-10 | 94.3 | 309.7 | 4.2 | 78.7 | 168.4 | 557.0 | 0.68 | |
Fe/ETS-10 | 93.2 | 307.9 | 4.1 | 78.4 | 166.4 | 565.9 | 0.74 | |
Cu/ETS-10 | 95.1 | 310.6 | 4.4 | 78.2 | 172.0 | 532.8 | 0.74 | |
Ni/ETS-10 | 92.3 | 309.4 | 4.3 | 88.0 | 170.7 | 533.8 | 1.41 |
Catalyst | CGL (%) | SGC (%) | YGC (%) |
---|---|---|---|
ETS-10 | 33.6 | 13.9 | 4.7 |
Cu-ETS-10 | 35.6 | 23.9 | 8.5 |
Fe-ETS-10 | 33.4 | 25.9 | 8.7 |
Ni-ETS-10 | 29.6 | 14.1 | 4.3 |
Zr-ETS-10 | 33.6 | 14.1 | 4.7 |
Ce-ETS-10 | 32.7 | 29.9 | 9.8 |
Zn-ETS-10 | 32.7 | 35.6 | 11.7 |
Co-ETS-10 | 35.0 | 36.3 | 12.7 |
Catalyst | Reaction Conditions | CGL (%) | SGC (%) | YGC (%) | Ref |
---|---|---|---|---|---|
Co3O4 | Dehydrating agent: 5 mL CH3CN, 4.6 g glycerol, 0.1 g catalyst, 4.5 MPa of CO2, 12 h, 170 °C | 20.6 | 37.9 | 7.8 | [48] |
Cu/La2O3 | Dehydrating agent: 10 mL CH3CN, 4.6 g glycerol, 0.08 g catalyst, 7.0 MPa of CO2, 3 h, 150 °C | 8.9 | 29.3 | 2.6 | [49] |
Cu/Mg-Al-Zr | 11.5 | 20.9 | 2.4 | ||
Cu/MgO | 8.6 | 26.1 | 2.2 | ||
Co(OAc)2 | Dehydrating agent: 65 mL CH3CN, 36.8 g glycerol, 0.921 g catalyst, 2.0 MPa of CO2, 2 h, 160 °C | 29.0 | 12.4 | 3.6 | [50] |
Zn(OAc)2 | 38.9 | 6.9 | 2.7 | ||
Mn(OAc)2 | 31.4 | 11.1 | 3.5 | ||
Co(NO3)2 | Dehydrating agent: 5 mL CH3CN, 4.6 g glycerol, 0.1 g catalyst, 5.5 MPa of CO2, 12 h, 160 °C | 71.4 | 10.1 | 7.2 | [17] |
ZnO | 24.8 | 18.1 | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Xiang, M.; He, M.; Zhou, W.; Chen, J.; Lu, J.; Wu, Z.; Su, Y. Transformation of CO2 with Glycerol to Glycerol Carbonate over ETS-10 Zeolite-Based Catalyst. Molecules 2023, 28, 2272. https://doi.org/10.3390/molecules28052272
Gao Z, Xiang M, He M, Zhou W, Chen J, Lu J, Wu Z, Su Y. Transformation of CO2 with Glycerol to Glycerol Carbonate over ETS-10 Zeolite-Based Catalyst. Molecules. 2023; 28(5):2272. https://doi.org/10.3390/molecules28052272
Chicago/Turabian StyleGao, Zhangxi, Mei Xiang, Mingyang He, Weiyou Zhou, Jiayao Chen, Jiamin Lu, Zeying Wu, and Yaqiong Su. 2023. "Transformation of CO2 with Glycerol to Glycerol Carbonate over ETS-10 Zeolite-Based Catalyst" Molecules 28, no. 5: 2272. https://doi.org/10.3390/molecules28052272
APA StyleGao, Z., Xiang, M., He, M., Zhou, W., Chen, J., Lu, J., Wu, Z., & Su, Y. (2023). Transformation of CO2 with Glycerol to Glycerol Carbonate over ETS-10 Zeolite-Based Catalyst. Molecules, 28(5), 2272. https://doi.org/10.3390/molecules28052272