One-Step Synthesis of a Non-Precious-Metal Tris (Fe/N/F)-Doped Carbon Catalyst for Oxygen Reduction Reactions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of 21P2-Fe1-850 Electrocatalyst
3.3. Physical Characteristization
3.4. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, N.; Zhou, T.P.; Chen, M.L.; Feng, H.; Yuan, R.L.; Zhong, C.A.; Yan, W.S.; Tian, Y.C.; Wu, X.J.; Chu, W.S.; et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118. [Google Scholar] [CrossRef]
- Zheng, X.J.; Cao, X.C.; Sun, Z.H.; Zeng, K.; Yan, J.; Strasser, P.; Chen, X.; Sun, S.H.; Yang, R.Z. Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Appl. Catal. B-Environ. 2020, 272, 118967. [Google Scholar] [CrossRef]
- Wu, G.; Li, X.; Zhang, Z.; Dong, P.; Xu, M.L.; Peng, H.L.; Zeng, X.Y.; Zhang, Y.J.; Liao, S.J. Design of ultralong-life Li-CO2 batteries with IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes. J. Mater. Chem. A 2020, 8, 3763–3770. [Google Scholar] [CrossRef]
- Rao, P.; Deng, Y.J.; Fan, W.J.; Luo, J.M.; Deng, P.L.; Li, J.; Shen, Y.J.; Tian, X.L. Movable type printing method to synthesize high-entropy single-atom catalysts. Nat. Commun. 2022, 13, 5071. [Google Scholar] [CrossRef] [PubMed]
- You, C.H.; Gao, X.H.; Wang, Q.Q.; Li, X.B.; Tan, S.Y.; Xu, P.Y.; Cai, D.Q.; Weng, Y.L.; Wang, C.T.; Tian, X.L.; et al. Rechargeable Zinc\-Air Battery with Ultrahigh Power Density Based on Uniform N, Co Codoped Carbon Nanospheres. ACS Appl. Mater. Interfaces 2019, 11, 44153–44160. [Google Scholar] [CrossRef] [PubMed]
- Seselj, N.; Engelbrekt, C.; Zhang, J.D. Graphene-supported platinum catalysts for fuel cells. Sci. Bull. 2015, 60, 864–876. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.J.; Shui, J.L.; Du, L.; Shao, Y.Y.; Liu, J.; Dai, L.M.; Hu, Z. Carbon-Based Metal-Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. Adv. Mater. 2019, 31, 1804799. [Google Scholar] [CrossRef]
- Zhou, M.M.; Wang, Q.; Huang, X.B.; Huang, Y.M.; Chen, Y. A nitrogen-doped mesoporous carbon nanomaterial derived from Co(HNCN)(2) toward oxygen reduction reaction. Catal. Commun. 2019, 125, 66–69. [Google Scholar] [CrossRef]
- Debe, M.K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51. [Google Scholar] [CrossRef]
- Lu, X.Y.; Ge, L.P.; Yang, P.X.; Levin, O.; Kondratiev, V.; Qu, Z.S.; Liu, L.L.; Zhang, J.Q.; An, M.Z. N-doped carbon nanosheets with ultra-high specific surface area for boosting oxygen reduction reaction in Zn-air batteries. Appl. Surf. Sci. 2021, 562, 150114. [Google Scholar] [CrossRef]
- An, L.; Chi, B.; Deng, Y.J.; Chen, C.; Deng, X.H.; Zeng, R.J.; Zheng, Y.Y.; Dang, D.; Yang, X.; Tian, X.L. Engineering g-C3N4 composited Fe-UIO-66 to in situ generate robust single-atom Fe sites for high-performance PEMFC and Zn-air battery. J. Mater. Chem. A 2022, 11, 118–129. [Google Scholar] [CrossRef]
- Mondal, A.; Chouke, P.B.; Sonkusre, V.; Lambat, T.; Abdala, A.A.; Mondal, S.; Chaudhary, R.G. Ni-doped ZnO nanocrystalline material for electrocatalytic oxygen reduction reaction. In Proceedings of the 11th National Conference on Solid State Chemistry and Allied Areas (NCSCA), Nagpur, India, 20–21 December 2019; Elsevier: Nagpur, India, 2020; pp. 715–719. [Google Scholar]
- Watanabe, M.; Tryk, D.A.; Wakisaka, M.; Yano, H.; Uchida, H. Overview of recent developments in oxygen reduction electrocatalysis. Electrochim. Acta 2012, 84, 187–201. [Google Scholar] [CrossRef]
- Calle-Vallejo, F.; Koper, M.T.M.; Bandarenka, A.S. Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. Chem. Soc. Rev. 2013, 42, 5210–5230. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Yang, H.T.; Yao, L.; Peng, H.L.; Huang, P.R.; Lin, X.C.; Liu, L.H.; Zhang, H.Z.; Cai, P.; Wen, X.; et al. Design of Fe and Cu bimetallic integration on N and F co-doped porous carbon material for oxygen reduction reaction. Int. J. Hydrogen Energy 2022, 47, 7751–7760. [Google Scholar] [CrossRef]
- Tran, T.N.; Lee, H.Y.; Park, J.D.; Kang, T.H.; Lee, B.J.; Yu, J.S. Synergistic CoN-Decorated Pt Catalyst on Two-Dimensional Porous Co-N-Doped Carbon Nanosheet for Enhanced Oxygen Reduction Activity and Durability. ACS Appl. Energ. Mater. 2020, 3, 6310–6322. [Google Scholar] [CrossRef]
- Kakati, N.; Maiti, J.; Lee, S.H.; Jee, S.H.; Viswanathan, B.; Yoon, Y.S. Anode Catalysts for Direct Methanol Fuel Cells in Acidic Media: Do We Have Any Alternative for Pt or Pt-Ru? Chem. Rev. 2014, 114, 12397–12429. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43, 2439–2450. [Google Scholar] [CrossRef]
- Wu, Q.M.; Deng, D.K.; He, Y.L.; Zhou, Z.C.; Sang, S.B.; Zhou, Z.H. Fe/N-doped mesoporous carbons derived from soybeans: A highly efficient and low-cost non-precious metal catalyst for ORR. J. Cent. South Univ. 2020, 27, 344–355. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, J.X.; Jia, J.C.; Hu, X.; Yang, H.J.; Jia, M.L.; Wen, Z.H. The fluorine-doped and defects engineered carbon nanosheets as advanced electrocatalysts for oxygen electroreduction. Appl. Catal. B-Environ. 2021, 284, 119721. [Google Scholar] [CrossRef]
- Tian, X.L.; Zhao, X.; Su, Y.Q.; Wang, L.J.; Wang, H.M.; Dang, D.; Chi, B.; Liu, H.F.; Hensen, E.J.M.; Lou, X.W.; et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856. [Google Scholar] [CrossRef]
- Yan, Q.; Sun, R.M.; Wang, L.P.; Feng, J.J.; Zhang, L.; Wang, A.J. Cobalt nanoparticles/nitrogen, sulfur-codoped ultrathin carbon nanotubes derived from metal organic frameworks as high-efficiency electrocatalyst for robust rechargeable zinc-air battery. J. Colloid Interface Sci. 2021, 603, 559–571. [Google Scholar] [CrossRef]
- Deng, Z.; Yi, Q.; Zhang, Y.; Nie, H.; Li, G.; Yu, L.; Zhou, X. Carbon Paper-Supported NiCo/C–N Catalysts Synthesized by Directly Pyrolyzing NiCo-Doped Polyaniline for Oxygen Reduction Reaction. Nano 2018, 13, 52–62. [Google Scholar] [CrossRef]
- Yang, X.H.; Feng, Z.; Guo, Z.Y. Theoretical Investigation on the Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reactions Performances of Two-Dimensional Metal-Organic Frameworks Fe-3(C2X)(12) (X = NH, O, S). Molecules 2022, 27, 1528. [Google Scholar] [CrossRef] [PubMed]
- Cherif, M.; Dodelet, J.P.; Zhang, G.X.; Glibin, V.P.; Sun, S.H.; Vidal, F. Non-PGM Electrocatalysts for PEM Fuel Cells: A DFT Study on the Effects of Fluorination of FeNx-Doped and N-Doped Carbon Catalysts. Molecules 2021, 26, 7370. [Google Scholar] [CrossRef]
- Le, M.Y.; Hu, B.J.; Wu, M.Y.; Guo, H.Z.; Wang, L. Construction of Co,N-Coordinated Carbon Dots for Efficient Oxygen Reduction Reaction. Molecules 2022, 27, 5021. [Google Scholar] [CrossRef] [PubMed]
- Akula, S.; Peera, S.G.; Sahu, A.K. Uncovering N, S, F Tri-Doped Heteroatoms on Porous Carbon as a Metal-Free Oxygen Reduction Reaction Catalyst for Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2019, 166, F897–F905. [Google Scholar] [CrossRef]
- Gong, T.L.; Qi, R.Y.; Liu, X.D.; Li, H.; Zhang, Y.M. N, F-Codoped Microporous Carbon Nanofibers as Efficient Metal-Free Electrocatalysts for ORR. Nano-Micro Lett. 2019, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.S.; Guo, C.Z.; Sun, L.T.; Zhou, R.; Liu, Y.; Sun, W.; Xiang, S.J.; Li, Y.R.; Si, Y.J.; Luo, Z.L. High active-site availability on Fe-N-C oxygen reduction electrocatalysts derived from iron(II) complexes of phenanthroline with a K2C2O4 promoter. J. Alloys Compd. 2019, 809, 151822. [Google Scholar] [CrossRef]
- Sun, M.; Wu, X.B.; Liu, C.B.; Xie, Z.Y.; Deng, X.T.; Zhang, W.; Huang, Q.Z.; Huang, B. The in situ grown of activated Fe-N-C nanofibers derived from polypyrrole on carbon paper and its electro-catalytic activity for oxygen reduction reaction. J. Solid State Electrochem. 2018, 22, 1217–1226. [Google Scholar] [CrossRef]
- Guo, C.Z.; Liao, W.L.; Chen, C.G. Design of a non-precious metal electrocatalyst for alkaline electrolyte oxygen reduction by using soybean biomass as the nitrogen source of electrocatalytically active center structures. J. Power Sources 2014, 269, 841–847. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.G.; Li, W.; Wu, R.; Ibraheem, S.; Li, J.; Ding, W.; Li, L.; Wei, Z.D. A eutectic salt-assisted semi-closed pyrolysis route to fabricate high-density active-site hierarchically porous Fe/N/C catalysts for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 15504–15509. [Google Scholar] [CrossRef]
- Guo, C.Z.; Liao, W.L.; Li, Z.B.; Chen, C.G. Exploration of the catalytically active site structures of animal biomass-modified on cheap carbon nanospheres for oxygen reduction reaction with high activity, stability and methanol-tolerant performance in alkaline medium. Carbon 2015, 85, 279–288. [Google Scholar] [CrossRef]
- Artyushkova, K.; Serov, A.; Rojas-Carbonell, S.; Atanassov, P. Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal-Nitrogen-Carbon Electrocatalysts. J. Phys. Chem. C 2015, 119, 25917–25928. [Google Scholar] [CrossRef]
- Peng, H.L.; Duan, D.C.; Tan, X.Y.; Hu, F.; Ma, J.J.; Zhang, K.X.; Xu, F.; Li, B.; Sun, L.X. A One-Pot Method to Synthesize a Co-Based Graphene-Like Structure Doped Carbon Material for the Oxygen Reduction Reaction. ChemElectroChem 2020, 7, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.L.; Mo, Z.Y.; Liao, S.J.; Liang, H.G.; Yang, L.J.; Luo, F.; Song, H.Y.; Zhong, Y.L.; Zhang, B.Q. High Performance Fe-and N-Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction. Sci Rep 2013, 3, 1765. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.X.; Wang, Y.Z.; Li, W.; Hou, Y.L. Noble metal-free catalysts for oxygen reduction reaction. Sci. China-Chem. 2017, 60, 1494–1507. [Google Scholar] [CrossRef]
- Li, C.; Zhao, D.H.; Long, H.L.; Li, M. Recent advances in carbonized non-noble metal-organic frameworks for electrochemical catalyst of oxygen reduction reaction. Rare Met. 2021, 40, 2657–2689. [Google Scholar] [CrossRef]
- Peng, H.L.; Liu, F.F.; Qiao, X.C.; Xiong, Z.; Li, X.H.; Shu, T.; Liao, S.J. Nitrogen and Fluorine co-doped carbon catalyst with high oxygen reduction performance, prepared by pyrolyzing a mixture of melamine and PTFE. Electrochim. Acta 2015, 182, 963–970. [Google Scholar] [CrossRef]
- Li, J.J.; Zhang, Y.M.; Zhang, X.H.; Huang, J.Z.; Han, J.C.; Zhang, Z.H.; Han, X.J.; Xu, P.; Song, B. S, N Dual-Doped Graphene-like Carbon Nanosheets as Efficient Oxygen Reduction Reaction Electrocatalysts. ACS Appl. Mater. Interfaces 2017, 9, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J.; Yang, P.X.; Wang, N.Y.; Chen, S.Y.; Cheng, Y.; Liu, M.X.; Jiang, C.J. Cobalt nanoparticles with narrow size distribution anchored to flower-like carbon microspheres for enhanced oxygen reduction catalysis. Ionics 2022, 28, 831–838. [Google Scholar] [CrossRef]
- Diao, Y.X.; Liu, H.M.; Yao, Z.X.; Liu, Y.S.; Hu, G.X.; Zhang, Q.F.; Li, Z. Tri-(Fe/F/N)-doped porous carbons as electrocatalysts for the oxygen reduction reaction in both alkaline and acidic media. Nanoscale 2020, 12, 18826–18833. [Google Scholar] [CrossRef]
- Duan, D.C.; Su, W.; Tan, X.Y.; Hu, F.; Wang, Y.Y.; Huang, W.Y.; Peng, H.L.; Xu, F.; Zou, Y.J.; Sun, L.X. Porous Carbon Electrode Derived from Waste Wine Industry for Supercapacitors. Int. J. Electrochem. Sci. 2019, 14, 10198–10212. [Google Scholar] [CrossRef]
- Hu, Y.Z.; Zhang, J.J.; Shen, T.; Li, Z.R.; Chen, K.; Lu, Y.; Zhang, J.; Wang, D.L. Efficient Electrochemical Production of H2O2 on Hollow N-Doped Carbon Nanospheres with Abundant Micropores. ACS Appl. Mater. Interfaces 2021, 13, 29551–29557. [Google Scholar] [CrossRef]
- Liu, J.T.; Wei, L.L.; Chu, C.S.; Shen, J.Q. Tofu gel-derived nitrogen and trace iron co-doped porous carbon as highly efficient air-cathode electrocatalyst for microbial fuel cells. J. Power Sources 2022, 527, 230960. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Yan, L.; Hou, J.H. Nanosheets with High-Performance Electrochemical Oxygen Reduction Reaction Revived from Green Walnut Peel. Molecules 2022, 27, 328. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Chen, C.; Zou, L.L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z.Q.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 2019, 12, 1651–1657. [Google Scholar] [CrossRef]
Sample | 2-Methylimidazole (%) | PTFE (%) | FeCl3 (%) | Heat Treatment (°C)/(h) |
---|---|---|---|---|
21P1 | 50 | 50 | 0 | 900/1 |
21P1.5 | 40 | 60 | 0 | 900/1 |
21P2 | 33.33 | 66.67 | 0 | 900/1 |
21P2.5 | 28.57 | 71.43 | 0 | 900/1 |
21P3 | 25 | 75 | 0 | 900/1 |
21P2-700 | 33.33 | 66.67 | 0 | 700/1 |
21P2-800 | 33.33 | 66.67 | 0 | 800/1 |
21P2-850 | 33.33 | 66.67 | 0 | 850/1 |
21P2-900 | 33.33 | 66.67 | 0 | 900/1 |
21P2-950 | 33.33 | 66.67 | 0 | 950/1 |
21P2-Fe0.25-850 | 33.32 | 66.63 | 0.05 | 850/1 |
21P2-Fe0.5-850 | 33.3 | 66.6 | 0.10 | 850/1 |
21P2-Fe1-850 | 33.27 | 66.54 | 0.19 | 850/1 |
21P2-Fe2-850 | 33.21 | 66.41 | 0.38 | 850/1 |
21P2-Fe3-850 | 33.14 | 66.29 | 0.57 | 850/1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Wu, H.; Yao, L.; Liu, S.; Yang, L.; Lu, J.; Peng, H.; Lin, X.; Cai, P.; Zhang, H.; et al. One-Step Synthesis of a Non-Precious-Metal Tris (Fe/N/F)-Doped Carbon Catalyst for Oxygen Reduction Reactions. Molecules 2023, 28, 2392. https://doi.org/10.3390/molecules28052392
Yang H, Wu H, Yao L, Liu S, Yang L, Lu J, Peng H, Lin X, Cai P, Zhang H, et al. One-Step Synthesis of a Non-Precious-Metal Tris (Fe/N/F)-Doped Carbon Catalyst for Oxygen Reduction Reactions. Molecules. 2023; 28(5):2392. https://doi.org/10.3390/molecules28052392
Chicago/Turabian StyleYang, Huitian, Hao Wu, Lei Yao, Siyan Liu, Lu Yang, Jieling Lu, Hongliang Peng, Xiangcheng Lin, Ping Cai, Huanzhi Zhang, and et al. 2023. "One-Step Synthesis of a Non-Precious-Metal Tris (Fe/N/F)-Doped Carbon Catalyst for Oxygen Reduction Reactions" Molecules 28, no. 5: 2392. https://doi.org/10.3390/molecules28052392
APA StyleYang, H., Wu, H., Yao, L., Liu, S., Yang, L., Lu, J., Peng, H., Lin, X., Cai, P., Zhang, H., Xu, F., Zhang, K., & Sun, L. (2023). One-Step Synthesis of a Non-Precious-Metal Tris (Fe/N/F)-Doped Carbon Catalyst for Oxygen Reduction Reactions. Molecules, 28(5), 2392. https://doi.org/10.3390/molecules28052392