Chemical Profile, Antioxidant and Cytotoxic Activity of a Phenolic-Rich Fraction from the Leaves of Brassica fruticulosa subsp. fruticulosa (Brassicaceae) Growing Wild in Sicily (Italy)
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Investigations
2.1.1. Determination of Total Phenolic Content
2.1.2. Identification of Phenolic Compounds by HPLC-PDA/ESI-MS
2.2. Antioxidant Activity
2.3. Cytotoxic Activity
2.3.1. Cell Viability
2.3.2. LDH Release
2.3.3. Reactive Oxygen Species (ROS)
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material and Extraction Procedure
4.3. Phytochemical Investigations
4.3.1. Determination of Total Phenolic Content
4.3.2. Identification of Phenolic Compounds by HPLC-PDA/ESI-MS
4.4. Antioxidant Activity
4.4.1. Free Radical Scavenging Activity
4.4.2. Reducing Power
4.4.3. Ferrous Ion (Fe2+) Chelating Activity
4.5. Cytotoxic Activity
4.5.1. Cell Culture and Treatments
4.5.2. MTT Test
4.5.3. Determination of Lactic Dehydrogenase Release
4.5.4. Determination of Reactive Oxygen Species
4.5.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; et al. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2022, 27, 233. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahangir, M.; Kim, H.K.; Choi, Y.H.; Verpoorte, R. Health-affecting compounds in Brassicaceae. Compr. Rev. Food Sci. Food Saf. 2009, 8, 31–43. [Google Scholar] [CrossRef]
- Doniec, J.; Florkiewicz, A.; Socha, R.; Filipiak-Florkiewicz, A. Polyphenolic acid content in Brassica vegetables during hydrothermal treatment with salt addition. J. Food Process. Preserv. 2022, 46, e16219. [Google Scholar] [CrossRef]
- Gonçalves, E.M.; Alegria, C.; Abreu, M. Benefits of Brassica Nutraceutical Compounds on Human Health. In Brassicaceae—Characterization, Functional Genomics and Health Benefits; Lang, M., Ed.; Nova Biomedical: New York, NY, USA, 2013; pp. 19–65. [Google Scholar]
- Soengas Fernández, M.D.P.; Sotelo Pérez, T.; Velasco Pazos, P.; Cartea González, M.E. Antioxidant properties of Brassica vegetables. Funct. Plant Sci. Biotechnol. 2011, 5, 43–55. [Google Scholar]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic compounds in Brassica vegetables. Molecules 2010, 16, 251–280. [Google Scholar] [CrossRef]
- Picchi, V.; Lo Scalzo, R.; Tava, A.; Doria, F.; Argento, S.; Toscano, S.; Treccarichi, S.; Branca, F. Phytochemical characterization and in vitro antioxidant properties of four Brassica wild species from Italy. Molecules 2020, 25, 3495. [Google Scholar] [CrossRef]
- Ramirez, D.; Abellán-Victorio, A.; Beretta, V.; Camargo, A.; Moreno, D.A. Functional ingredients from Brassicaceae species: Overview and perspectives. Int. J. Mol. Sci. 2020, 21, 1998. [Google Scholar] [CrossRef] [Green Version]
- Favela-González, K.M.; Hernández-Almanza, A.Y.; De la Fuente-Salcido, N.M. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef]
- Malfa, G.A.; Acquaviva, R.; Bucchini, A.A.E.; Ragusa, S.; Raimondo, F.M.; Spadaro, V. The Sicilian wild cabbages as biological resources: Taxonomic update and a review on chemical constituents and biological activities. Flora Medit. 2020, 30, 245–260. [Google Scholar] [CrossRef]
- Sánchez-Mata, M.C.; Cabrera Loera, R.D.; Morales, P.; Fernández-Ruiz, V.; Cámara, M.; Díez Marqués, C.; Pardo-de-Santayana, M.; Tardío, J. Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds. Genet. Resour. Crop. Evol. 2012, 59, 431–443. [Google Scholar] [CrossRef]
- Cavò, E.; Taviano, M.F.; Davì, F.; Cacciola, F.; Oulad El Majdoub, Y.; Mondello, L.; Ragusa, M.; Condurso, C.; Merlino, M.; Verzera, A.; et al. Phenolic and volatile composition and antioxidant properties of the leaf extract of Brassica fruticulosa subsp. fruticulosa (Brassicaceae) growing wild in Sicily (Italy). Molecules 2022, 27, 2768. [Google Scholar] [CrossRef] [PubMed]
- Ficarra, P.; Scaccabarozzi, S. Brassica fruticulosa. In Dalla Natura Alla Tavola. Buoni da Mangiare: Erbe e Frutti Selvatici Delle Vallate dei Nebrodi; Youcanprint: Lecce, Italy, 2019; pp. 94–97. [Google Scholar]
- Zarbà, C.; Allegra, V.; Zarbà, A.S.; Zocco, G. Wild leafy plants market survey in Sicily: From local culture to food sustainability. AIMS Agric. Food 2019, 4, 534–546. [Google Scholar] [CrossRef]
- Guarrera, P.M. Le piante nelle tradizioni popolari della Sicilia. Erboristeria Domani 2009, 46, 46–55. [Google Scholar]
- Pasta, S.; La Rosa, A.; Garfì, G.; Marcenò, C.; Gristina, A.S.; Carimi, F.; Guarino, R. An updated checklist of the sicilian native edible plant: Preserving the traditional ecological knowledge of century-old agro-pastoral landscapes. Front. Plant Sci. 2020, 11, 388. [Google Scholar] [CrossRef] [PubMed]
- Romano, D.; Tribulato, A.; Toscano, S.; Scuderi, D. Ethnobotanical uses of Brassicaceae in Sicily. Acta Hortic 2013, 1005, 197–204. [Google Scholar] [CrossRef]
- Lentini, F.; Venza, F. Wild food plants of popular use in Sicily. J. Ethnobiol. Ethnomed. 2007, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Sun, J.; Zhenlei, X.; Long-ze, L.; Gene, E.L.; Qin, W.; James, M.H.; Pei, C. Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMSn. J. Agric. Food Chem. 2013, 61, 10960–10970. [Google Scholar] [CrossRef] [Green Version]
- Oulad El Majdoub, Y.; Alibrando, F.; Cacciola, F.; Arena, K.; Pagnotta, E.; Matteo, R.; Micalizzi, G.; Dugo, L.; Dugo, P.; Mondello, L. Chemical characterization of three accessions of Brassica juncea L. extracts from different plant tissues. Molecules 2020, 25, 5421. [Google Scholar] [CrossRef]
- Miceli, N.; Cavò, E.; Ragusa, M.; Cacciola, F.; Mondello, L.; Dugo, L.; Acquaviva, R.; Malfa, G.A.; Marino, A.; D’Arrigo, M.; et al. Brassica incana Ten. (Brassicaceae): Phenolic constituents, antioxidant and cytotoxic properties of the leaf and flowering top extracts. Molecules 2020, 25, 1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phenol Explorer. Available online: http://phenol-explorer.eu/ (accessed on 27 May 2022).
- Morales, G.; Paredes, A. Antioxidant activities of Lampaya medicinalis extracts and their main chemical constituents. BMC Compl. Altern. Med. 2014, 14, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malfa, G.A.; Tomasello, B.; Acquaviva, R.; Genovese, C.; La Mantia, A.; Cammarata, F.P.; Ragusa, M.; Renis, M.; Di Giacomo, C. Betula etnensis Raf. (Betulaceae) extract induced HO-1 expression and ferroptosis cell death in human colon cancer cells. Int. J. Mol. Sci. 2019, 20, 2723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayoka, T.O.; Ezema, B.O.; Eze, C.N.; Nnadi, C.O. Antioxidants for the prevention and treatment of non-communicable diseases. J. Explor. Res. Pharmacol. 2022, 7, 178–188. [Google Scholar] [CrossRef]
- Craft, D.; Kerrihard, A.L.; Amarowicz, R.; Pegg, R.B. Phenol-based antioxidants and the in vitro methods used for their assessment. Compr. Rev. Food Sci. Food Saf. 2012, 11, 148–173. [Google Scholar] [CrossRef]
- Mladěnka, P.; Macáková, K.; Filipský, T.; Zatloukalová, L.; Jahodář, L.; Bovicelli, P.; Silvestri, I.P.; Hrdina, R.; Saso, L. In vitro analysis of iron chelating activity of flavonoids. J. Inorg. Biochem. 2011, 105, 693–701. [Google Scholar] [CrossRef]
- Han, H.; Baik, B.-K. Antioxidant activity and phenolic content of lentils (Lens culinaris), chickpeas (Cicer arietinum L.), peas (Pisum sativum L.) and soybeans (Glycine max), and their quantitative changes during processing. Int. J. Food Sci. Technol. 2008, 43, 1971–1978. [Google Scholar] [CrossRef]
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative stress and antioxidants—A critical review on in vitro antioxidant assays. Antioxidants 2022, 11, 2388. [Google Scholar] [CrossRef]
- Salehi, B.; Quispe, C.; Butnariu, M.; Sarac, I.; Marmouzi, I.; Kamle, M.; Tripathi, V.; Kumar, P.; Bouyahya, A.; Capanoglu, E.; et al. Phytotherapy and food applications from Brassica genus. Phytother. Res. 2021, 35, 3590–3609. [Google Scholar] [CrossRef]
- Avato, P.; Argentieri, M.P. Brassicaceae: A rich source of health improving phytochemicals. Phytochem. Rev. 2015, 14, 1019–1033. [Google Scholar] [CrossRef]
- Spissu, Y.; Gil, K.A.; Dore, A.; Sanna, G.; Palmieri, G.; Sanna, A.; Cossu, M.; Belhadj, F.; Gharbi, B.; Pinna, M.B.; et al. Anti- and pro-oxidant activity of polyphenols extracts of syrah and chardonnay grapevine pomaces on melanoma cancer cells. Antioxidants 2023, 12, 80. [Google Scholar] [CrossRef]
- D’Archivio, M.; Santangelo, C.; Scazzocchio, B.; Vari, R.; Filesi, C.; Masella, R.; Giovannini, C. Modulatory effects of polyphenols on apoptosis induction: Relevance for cancer prevention. Int. J. Mol. Sci. 2008, 9, 213–228. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhan, J.; Wang, Y.; Wang, D. The relationship between plant-based diet and risk of digestive system cancers: A meta-analysis based on 3,059,009 subjects. Front. Public Health. 2022, 10, 892153. [Google Scholar] [CrossRef] [PubMed]
- Lü, J.M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef] [PubMed]
- León-González, A.J.; Auger, C.; Schini-Kerth, V.B. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem. Pharmacol. 2015, 98, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Res. 2021, 31, 107–125. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Bjork, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruit of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Arena, K.; Trovato, E.; Cacciola, F.; Spagnuolo, L.; Pannucci, E.; Guarnaccia, P.; Santi, L.; Dugo, P.; Mondello, L.; Dugo, L. Phytochemical Characterization of Rhus coriaria L. Extracts by Headspace Solid-Phase Micro Extraction Gas Chromatography, Comprehensive Two-Dimensional Liquid Chromatography, and Antioxidant Activity Evaluation. Molecules 2022, 27, 1727. [Google Scholar] [CrossRef]
- Asraoui, F.; Kounnoun, A.; Cacciola, F.; El Mansouri, F.; Kabach, I.; Oulad El Majdoub, Y.; Alibrando, F.; Arena, K.; Trovato, E.; Mondello, L.; et al. Phytochemical Profile, Antioxidant Capacity, α-Amylase and α-Glucosidase Inhibitory Potential of Wild Moroccan Inula viscosa (L.) Aiton Leaves. Molecules 2021, 26, 3134. [Google Scholar] [CrossRef]
- El Cadi, H.; El Bouzidi, H.; Selama, G.; Ramdan, B.; Oulad El Majdoub, Y.; Alibrando, F.; Arena, K.; Palma Lovillo, M.; Brigui, J.; Mondello, L.; et al. Elucidation of Antioxidant Compounds in Moroccan Chamaerops humilis L. Fruits by GC–MS and HPLC–MS Techniques. Molecules 2021, 26, 2710. [Google Scholar] [CrossRef]
- Ohnishi, M.; Morishita, H.; Iwahashi, H.; Shitzuo, T.; Yoshiaki, S.; Kimura, M.; Kido, R. Inhibitory effects of chlorogenic acid on linoleic acid peroxidation and haemolysis. Phytochemistry 1994, 36, 579–583. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Kumar, T.S.; Shanmugam, S.; Palvannan, T.; Kumar, V.M.B. Evaluation of antioxidant properties of Elaeocarpus ganitrus Roxb. leaves. Iran. J. Pharm. Res. 2008, 7, 211–215. [Google Scholar]
- Malfa, G.A.; De Leo, M.; Tundis, R.; Braca, A.; Loizzo, M.R.; Di Giacomo, C.; Raimondo, F.M.; Bucchini, A.E.A.; Acquaviva, R. Biological Investigation and Chemical Study of Brassica villosa subsp. drepanensis (Brassicaeae) Leaves. Molecules 2022, 27, 8447. [Google Scholar] [CrossRef] [PubMed]
- Acquaviva, R.; Tomasello, B.; Di Giacomo, C.; Santangelo, R.; La Mantia, A.; Naletova, I.; Sarpietro, M.G.; Castelli, F.; Malfa, G.A. Protocatechuic Acid, a simple plant secondary metabolite, induced apoptosis by promoting oxidative stress through HO-1 downregulation and p21 upregulation in colon cancer cells. Biomolecules 2021, 11, 1485. [Google Scholar] [CrossRef] [PubMed]
- Tomasello, B.; Malfa, G.A.; La Mantia, A.; Miceli, N.; Sferrazzo, G.; Taviano, M.F.; Di Giacomo, C.; Renis, M.; Acquaviva, R. Anti-adipogenic and anti-oxidant effects of a standardised extract of Moro blood oranges (Citrus sinensis (L.) Osbeck) during adipocyte differentiation of 3T3-L1 preadipocytes. Nat. Prod. Res. 2021, 35, 2660–2667. [Google Scholar] [CrossRef]
N. | tR (min) | UVmax (nm) | [M-H]− | Fragments | Compound | Bff-EAF (µg/g) | Refs. |
---|---|---|---|---|---|---|---|
1 | 29.12 | 314 | 325 | - | Unknown | Nq | - |
2 | 33.03 | 328 | 355 | 193 | Feruloyl-glucose | Nq | [21] |
3 | 35.10 | 328 | 385 | 223 | Sinapic acid-glucose | Nq | [21] |
4 | 44.24 | 322 | 625 | 301 | Quercetin-O-dihexoside | 8.77 ± 0.29 | [13,21,22] |
5 | 44.84 | 327 | 753 | 341 | 1,2-Disinapoyl-gentiobiose | Nq | [13,20,23] |
6 | 44.98 | 332 | 753 | 341 | 1,2-Disinapoyl-gentiobiose isomer | Nq | [13,21,22] |
7 | 46.42 | 323 | 723 | 223, 193 | Disinapoyl-feruloyl-triglucoside | Nq | [13,21,22] |
8 | 47.65 | 321 | 723 | 223, 193 | Disinapoyl-feruloyl-triglucoside isomer | Nq | [13,21,22] |
9 | 48.02 | 332 | 787 | 301, 353 | Quercetin 3-O-sophoroside-7-O-glucoside | 28.00 ± 2.44 | [13,21,22] |
10 | 49.55 | 323 | 693 | 387 | 1,2-Diferuloylgentiobiose | Nq | [13,21,22] |
11 | 49.59 | 329 | 423 | - | Unknown | Nq | - |
12 | 50.64 | 327 | 801 | 443 | Unknown | Nq | - |
13 | 51.59 | 327 | 609 | 285 | Kaempferol-3-O-diglucoside | 12.24 ± 2.02 | [13,21,22] |
14 | 53.14 | 333 | 963 | 801 | Kaempferol-3-O-hydroxyferuloylsophoroside-7-O-glucoside | 22.47 ± 1.21 | [13,21,22] |
15 | 54.22 | 266, 331 | 771 | 285 | Kaempferol-3-triglucoside | 68.95 ± 1.79 | [13,21,22] |
16 | 54.76 | 317 | 771 | 285, 353 | Kaempferol-3-O-sophoroside-7-O-glucoside | 12.76 ± 0.48 | [13,21,22] |
17 | 55.25 | 329 | 977 | 815, 353 | Kaempferol-3-O-sinapoylsophoroside-7-O-glucoside | 18.59 ± 2.06 | [13,21,22] |
18 | 55.69 | 350 | 463 | 301 | Quercetin 3-O-glucoside | 11.77 ± 0.27 | [13,21,22] |
19 | 59.10 | 267, 328 | 785 | 285 | Kaempferol-feruloyldihexoside | 50.52 ± 0.53 | [13,21,22] |
20 | 60.69 | 266, 327 | 857 | - | Unknown | Nq | - |
21 | 61.07 | 267, 317 | 755 | - | Unknown | Nq | - |
22 | 62.02 | 345 | 447 | 285 | Kaempferol-3-O-glucoside | 23.06 ± 0.17 | [22] |
23 | 63.7 | 346 | 477 | 285 | Isorhamnetin-O-glucoside | 24.66 ± 1.05 | [22] |
24 | 65.31 | 327 | 871 | - | Unknown | Nq | - |
25 | 74.02 | 327 | 959 | 341 | Trisinapoylgentiobiose | Nq | [21] |
26 | 79.39 | 326 | 869 | 527 | 1,2,2′-Triferuloylgentiobiose | Nq | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davì, F.; Taviano, M.F.; Acquaviva, R.; Malfa, G.A.; Cavò, E.; Arena, P.; Ragusa, S.; Cacciola, F.; El Majdoub, Y.O.; Mondello, L.; et al. Chemical Profile, Antioxidant and Cytotoxic Activity of a Phenolic-Rich Fraction from the Leaves of Brassica fruticulosa subsp. fruticulosa (Brassicaceae) Growing Wild in Sicily (Italy). Molecules 2023, 28, 2281. https://doi.org/10.3390/molecules28052281
Davì F, Taviano MF, Acquaviva R, Malfa GA, Cavò E, Arena P, Ragusa S, Cacciola F, El Majdoub YO, Mondello L, et al. Chemical Profile, Antioxidant and Cytotoxic Activity of a Phenolic-Rich Fraction from the Leaves of Brassica fruticulosa subsp. fruticulosa (Brassicaceae) Growing Wild in Sicily (Italy). Molecules. 2023; 28(5):2281. https://doi.org/10.3390/molecules28052281
Chicago/Turabian StyleDavì, Federica, Maria Fernanda Taviano, Rosaria Acquaviva, Giuseppe Antonio Malfa, Emilia Cavò, Paola Arena, Salvatore Ragusa, Francesco Cacciola, Yassine Oulad El Majdoub, Luigi Mondello, and et al. 2023. "Chemical Profile, Antioxidant and Cytotoxic Activity of a Phenolic-Rich Fraction from the Leaves of Brassica fruticulosa subsp. fruticulosa (Brassicaceae) Growing Wild in Sicily (Italy)" Molecules 28, no. 5: 2281. https://doi.org/10.3390/molecules28052281
APA StyleDavì, F., Taviano, M. F., Acquaviva, R., Malfa, G. A., Cavò, E., Arena, P., Ragusa, S., Cacciola, F., El Majdoub, Y. O., Mondello, L., & Miceli, N. (2023). Chemical Profile, Antioxidant and Cytotoxic Activity of a Phenolic-Rich Fraction from the Leaves of Brassica fruticulosa subsp. fruticulosa (Brassicaceae) Growing Wild in Sicily (Italy). Molecules, 28(5), 2281. https://doi.org/10.3390/molecules28052281