A Novel Fluorescent Aptasensor for Arsenic(III) Detection Based on a Triple-Helix Molecular Switch
Abstract
:Highlights
- An ultra-sensitive fluorescence aptasensor employing a triple helix molecular switch was developed for the rapid detection of As(III).
- The proposed biosensor showed high sensitivity, and excellent selectivity in arsenic detection, with a detection limit of 69.95 nM and a wide linear range from 0.1 to 2.5 μM.
- The THMS sensing strategy developed herein can be extensively applied in food safety and environmental monitoring.
Abstract
1. Introduction
2. Results and Discussions
2.1. Experimental Principle
2.2. Feasibility of the Sensing Strategy
2.3. Optimization of Experimental Conditions
2.4. Detection Performance of the Biosensor
2.5. Selectivity Analysis
2.6. Real Samples Analysis
3. Materials and Methods
3.1. Reagents and Materials
3.2. Apparatus
3.3. Detection of As (III) and Characterization
3.4. Sample Preparation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, K.; Zhang, H.; Wang, Z.; Cao, H.; Zhang, K.; Li, X.; Yang, Z. Nanomaterial-based aptamer sensors for arsenic detection. Biosens. Bioelectron. 2020, 148, 111785. [Google Scholar] [CrossRef]
- Saadati, A.; Farshchi, F.; Hasanzadeh, M.; Liu, Y.; Seidi, F. Colorimetric and naked-eye detection of arsenic(iii) using a paper-based microfluidic device decorated with silver nanoparticles. RSC Adv. 2022, 12, 21836–21850. [Google Scholar] [CrossRef]
- Hirano, S. Biotransformation of arsenic and toxicological implication of arsenic metabolites. Arch. Toxicol. 2020, 94, 2587–2601. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Costa, B.E.; Coelho, N.M.M. Selective determination of As(III) and total inorganic arsenic in rice sample using in-situ μ-sorbent formation solid phase extraction and FI-HG AAS. J. Food Compos. Anal. 2021, 95, 103686. [Google Scholar] [CrossRef]
- Yuan, M.; Song, Z.; Fei, J.; Wang, X.; Xu, F.; Cao, H.; Yu, J. Aptasensor for lead(II) based on the use of a quartz crystal microbalance modified with gold nanoparticles. Microchim. Acta 2017, 184, 1397–1403. [Google Scholar] [CrossRef]
- Nawrocka, A.; Durkalec, M.; Michalski, M.; Posyniak, A. Simple and reliable determination of total arsenic and its species in seafood by ICP-MS and HPLC-ICP-MS. Food Chem. 2022, 379, 132045. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Zhang, Q.; Song, Z.; Ye, T.; Yu, J.; Cao, H.; Xu, F. Piezoelectric arsenite aptasensor based on the use of a self-assembled mercaptoethylamine monolayer and gold nanoparticles. Microchim. Acta 2019, 186, 268. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Jang, C.-H. Label-free liquid crystal-based detection of As(III) ions using ssDNA as a recognition probe. Microchem. J. 2020, 156, 104834. [Google Scholar] [CrossRef]
- Zhou, Y.; Mahapatra, C.; Chen, H.; Peng, X.; Ramakrishna, S.; Nanda, H.S. Recent developments in fluorescent aptasensors for detection of antibiotics. Curr. Opin. Biomed. Eng. 2020, 13, 16–24. [Google Scholar] [CrossRef]
- Minagawa, H.; Onodera, K.; Fujita, H.; Sakamoto, T.; Akitomi, J.; Kaneko, N.; Shiratori, I.; Kuwahara, M.; Horii, K.; Waga, I. Selection, Characterization and Application of Artificial DNA Aptamer Containing Appended Bases with Sub-nanomolar Affinity for a Salivary Biomarker. Sci. Rep. 2017, 7, 42716. [Google Scholar] [CrossRef] [Green Version]
- Zong, C.; Liu, J. The Arsenic-Binding Aptamer Cannot Bind Arsenic: Critical Evaluation of Aptamer Selection and Binding. Anal. Chem. 2019, 91, 10887–10893. [Google Scholar] [CrossRef]
- Yi, J.; Xiao, W.; Li, G.; Wu, P.; He, Y.; Chen, C.; He, Y.; Ding, P.; Kai, T. The research of aptamer biosensor technologies for detection of microorganism. Appl. Microbiol. Biotechnol. 2020, 104, 9877–9890. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, Y.; Yang, C.; Lu, L.; Nie, Y.; Tian, X. Portable smartphone-integrated paper sensors for fluorescence detection of As(III) in groundwater. R. Soc. Open Sci. 2020, 7, 201500. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Ruan, Z.; Lin, J.; Kong, W. Development of label-free fluorescent biosensor for the detection of kanamycin based on aptamer capped metal-organic framework. Environ. Res. 2022, 206, 112617. [Google Scholar] [CrossRef] [PubMed]
- Sundaresan, S.M.; Fothergill, S.M.; Tabish, T.A.; Ryan, M.; Xie, F. Aptamer biosensing based on metal enhanced fluorescence platform: A promising diagnostic tool. Appl. Phys. Rev. 2021, 8, 041311. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, Q. A Sensitive Aptamer Fluorescence Anisotropy Sensor for Cd(2+) Using Affinity-Enhanced Aptamers with Phosphorothioate Modification. Biosensors 2022, 12, 887. [Google Scholar] [CrossRef]
- Neidle, S. Beyond the double helix: DNA structural diversity and the PDB. J. Biol. Chem. 2021, 296, 100553. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, N.; Zhang, Z.; Xu, D.; Ma, S.; Wang, X.; Zhou, T.; Zhang, G.; Wang, F. Construction of Aptamer-Based Molecular Beacons with Varied Blocked Structures and Targeted Detection of Thrombin. Langmuir 2021, 37, 8738–8745. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, L.; Ning, G.; Wu, Y.; Wu, S.; Mao, S.; Liu, G.Q. An electrochemical strategy for tetracycline detection coupled triple helix aptamer probe with catalyzed hairpin assembly signal amplification. Biosens. Bioelectron. 2019, 143, 111613. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Li, F. Instrument-free visual detection of tetracycline on an autocatalytic DNA machine using a caged G-quadruplex as the signal reporter. Chem. Commun. 2017, 53, 8743–8746. [Google Scholar] [CrossRef]
- Sun, H.; Qian, L.; Kong, J.; Zhang, X. Ultra-sensitive nucleic acid detection based on target cycling of triple helix molecular switch and ATRP double signal amplification. Sens. Actuators B Chem. 2021, 337, 129791. [Google Scholar] [CrossRef]
- Tu, C.; Dai, Y.; Zhang, Y.; Wang, W.; Wu, L. A simple fluorescent strategy based on triple-helix molecular switch for sensitive detection of chloramphenicol. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 224, 117415. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, L.; Hong, Y.; Dou, B.; Wang, P. DNA Triple Helix Complex-Functionalized Electrochemical Sensor for Sensitive Detection of MicroRNA in Human Serum. J. Electrochem. Soc. 2021, 168, 057503. [Google Scholar] [CrossRef]
- Sayoh, I.; Rusling, D.A.; Brown, T.; Fox, K.R. DNA Structural Changes Induced by Intermolecular Triple Helix Formation. ACS Omega 2020, 5, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, Y.; Liang, J.; Zhu, W.; Xu, J.; Su, R.; Yuan, L.; Sun, C. Aptamer contained triple-helix molecular switch for rapid fluorescent sensing of acetamiprid. Talanta 2016, 160, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Xiong, E.; Li, Z.; Zhang, X.; Zhou, J.; Yan, X.; Liu, Y.; Chen, J. Triple-Helix Molecular Switch Electrochemical Ratiometric Biosensor for Ultrasensitive Detection of Nucleic Acids. Anal. Chem. 2017, 89, 8830–8835. [Google Scholar] [CrossRef]
- Divsar, F.; Habibzadeh, K.; Shariati, S.; Shahriarinour, M. Aptamer conjugated silver nanoparticles for the colorimetric detection of arsenic ions using response surface methodology. Anal. Methods 2015, 7, 4568–4576. [Google Scholar] [CrossRef]
- Irvine, G.W.; Tan, S.N.; Stillman, M.J. A Simple Metallothionein-Based Biosensor for Enhanced Detection of Arsenic and Mercury. Biosensors 2017, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, K.; Singh, P.; Kumari, B.; Singhal, R.K. Synthesis of new benzothiazole Schiff base as selective and sensitive colorimetric sensor for arsenic on-site detection at ppb level. Anal. Methods 2017, 9, 1779–1785. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, F.; Zhan, S.; Liu, L.; Luo, Y.; Zhou, P. Regulation of hemin peroxidase catalytic activity by arsenic-binding aptamers for the colorimetric detection of arsenic(iii). RSC Adv. 2013, 3, 25614–25619. [Google Scholar] [CrossRef]
- Moussawi, R.N.; Patra, D. Modification of nanostructured ZnO surfaces with curcumin: Fluorescence-based sensing for arsenic and improving arsenic removal by ZnO. RSC Adv. 2016, 6, 17256–17268. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Um, H.; Bang, S.; Lee, S.; Oh, S.; Han, J.; Kim, K.; Min, J.; Kim, Y. Arsenic Removal from Vietnamese Groundwater Using the Arsenic-Binding DNA Aptamer. Environ. Sci. Eng. 2009, 43, 9335–9340. [Google Scholar] [CrossRef] [PubMed]
Material | Method | LOD (nM) | Reference |
---|---|---|---|
Apt-AgNPs | Colorimetric | 80.08 | [27] |
SPCE/paper disc | Electrochemical | 173.51 | [28] |
Probe (L) | Colorimetric | 96.10 | [29] |
Ars-3 aptamer | Colorimetric | 80.08 | [30] |
Zn(cur)O | Fluorescence detection | 1334.72 | [31] |
Fluorescent Aptasensor | Fluorescence detection | 69.95 | This work |
Samples | Added (µM) | Found (µM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
The water of the Huangpu River | 0 | - | - | - |
0.2 | 0.19 ± 0.016 | 95 | 7.9 | |
1.2 | 1.28 ± 0.080 | 107 | 6.7 | |
2.2 | 2.48 ± 0.165 | 113 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, M.; Yang, Y.; Chau, N.T.Q.; Zhang, Q.; Wu, X.; Chen, J.; Wu, Z.; Zhong, H.; Li, Y.; Xu, F. A Novel Fluorescent Aptasensor for Arsenic(III) Detection Based on a Triple-Helix Molecular Switch. Molecules 2023, 28, 2341. https://doi.org/10.3390/molecules28052341
Yuan M, Yang Y, Chau NTQ, Zhang Q, Wu X, Chen J, Wu Z, Zhong H, Li Y, Xu F. A Novel Fluorescent Aptasensor for Arsenic(III) Detection Based on a Triple-Helix Molecular Switch. Molecules. 2023; 28(5):2341. https://doi.org/10.3390/molecules28052341
Chicago/Turabian StyleYuan, Min, Ye Yang, Nguyen Thi Quynh Chau, Qinqin Zhang, Xiuxiu Wu, Jiaye Chen, Zhiwei Wu, Heng Zhong, Yuanyuan Li, and Fei Xu. 2023. "A Novel Fluorescent Aptasensor for Arsenic(III) Detection Based on a Triple-Helix Molecular Switch" Molecules 28, no. 5: 2341. https://doi.org/10.3390/molecules28052341
APA StyleYuan, M., Yang, Y., Chau, N. T. Q., Zhang, Q., Wu, X., Chen, J., Wu, Z., Zhong, H., Li, Y., & Xu, F. (2023). A Novel Fluorescent Aptasensor for Arsenic(III) Detection Based on a Triple-Helix Molecular Switch. Molecules, 28(5), 2341. https://doi.org/10.3390/molecules28052341