Assessment of Lipophilicity Parameters of Antimicrobial and Immunosuppressive Compounds
Abstract
:1. Introduction
Characteristics of Tested Compounds with Antimicrobial and Immunosuppressive Activity
2. Results and Discussion
3. Materials and Methods
3.1. Reagents
3.2. Analytes
3.3. Chromatographic Materials
3.4. TLC Analysis
3.5. In Silico Calculation of Lipophilicity and Other Physicochemical Parameters
3.6. Cluster Analysis (CA)
3.7. Principal Component Analysis (PCA)
3.8. Sum of Ranking Differences Analysis (SRD)
4. Conclusions
- -
- the TLC method can be a good tool for determining the lipophilic properties of investigated substances and their derivatives;
- -
- the obtained lipophilicity parameters (RMW and logP values) indicated that the lowest lipophilic properties were shown by ceftazidime, an antibacterial drug, and the highest by both the tested immunosuppressive drugs; everolimus and zotarolimus;
- -
- chemometric analysis, i.e., CA and PCA, indicated similarities between the tested compounds;
- -
- among all chromatographic parameters, the greatest similarity was observed between the RMW values measured on the RP18F254 and RP18WF254 plates and, therefore, these plates can be successfully used in lipophilicity studies of the tested drugs interchangeably;
- -
- the results of the SRD analysis of all chromatographic and calculated lipophilicity parameters show that the best tools to evaluate the lipophilicity parameters of the tested compounds are the XlogP3 method and TLC using RP2F254 plates and ethanol-water as mobile phase.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Jóźwiak, K.; Szumiło, H.; Soczewiński, E. Lipophilicity, methods of determination and its role in biological effect of chemical substances. Wiad. Chem. 2001, 55, 1047–1074. [Google Scholar]
- Miller, R.R.; Madeira, M.; Wood, H.B.; Geissler, W.M.; Raab, C.E.; Martin, I.J. Integrating the impact of lipophilicity on potency and pharmacokinetic parameters enables the use of diverse chemical space during small molecule drug optimization. J. Med. Chem. 2020, 63, 12156–12170. [Google Scholar] [CrossRef] [PubMed]
- Lobo, S. Is there enough focus on lipophilicity in drug discovery? Expert Opin. Drug Discov. 2019, 15, 261–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, J.; Santos, Á.; Fernandes, C.; Pinto, M.M. Liquid chromatography on the different methods for the determination of lipophilicity: An essential analytical tool in medicinal chemistry. Chemosensors 2022, 10, 340. [Google Scholar] [CrossRef]
- Kempińska, D.; Chmiel, T.; Kot-Wasik, A.; Mróz, A.; Mazerska, Z.; Namieśnik, J. State of the art and prospects of methods for determination of lipophilicity of chemical compounds. Trends Anal. Chem. 2019, 113, 54–73. [Google Scholar] [CrossRef]
- Liang, C.; Lian, H.-Z. Recent advances in lipophilicity measurement by reversed-phase high-performance liquid chromatography. Trends Anal. Chem. 2015, 68, 28–36. [Google Scholar] [CrossRef]
- Ciura, K.; Belka, M.; Kawczak, P.; Bączek, T.; Nowakowska, J. The comparative study of micellar TLC and RP-TLC as potential tools for lipophilicity assessment based on QSRR approach. J. Pharm. Biomed. Anal. 2018, 149, 70–79. [Google Scholar] [CrossRef]
- Tsopelas, F.; Giaginis, C.; Tsantili-Kakoulidou, A. Lipophilicity and biomimetic properties to support drug discovery. Expert Opin. Drug Discov. 2017, 12, 885–896. [Google Scholar] [CrossRef]
- Janicka, M.; Mycka, A.; Sztanke, M.; Sztanke, K. Predicting pharmacokinetic properties of potential anticancer agents via their chromatographic behavior on different reversed phase materials. Int. J. Mol. Sci. 2021, 22, 4257. [Google Scholar] [CrossRef]
- Ciura, K.; Fedorowicz, J.; Andrić, F.; Žuvela, P.; Greber, K.E.; Baranowski, P.; Kawczak, P.; Nowakowska, J.; Bączek, T.; Sączewski, J. Lipophilicity determination of antifungal Isoxazolo[3,4-b]pyridin-3(1H)-ones and their N1-substituted derivatives with chromatographic and computational methods. Molecules 2019, 24, 4311. [Google Scholar] [CrossRef] [Green Version]
- Wardecki, D.; Dołowy, M.; Bober-Majnusz, K.; Jampilek, J. Comparative study of the lipophilicity of selected anti-androgenic and blood uric acid lowering compounds. Molecules 2023, 28, 166. [Google Scholar] [CrossRef] [PubMed]
- Ciura, K.; Fedorowicz, J.; Kapica, H.; Pastewska, M.; Sawicki, W.; Sączewski, J. Interaction between antifungal isoxazolo[3,4-b]pyridin 3(1H)-one derivatives and human serum proteins analyzed with biomimetic chromatography and QSAR approach. Processes 2021, 9, 512. [Google Scholar] [CrossRef]
- Pastewska, M.; Bednarczyk-Cwynar, B.; Kovačević, S.; Buławska, N.; Ulenberg, S.; Georgiev, P.; Kapica, H.; Kawczak, P.; Bączek, T.; Sawicki, W.; et al. Multivariate assessment of anticancer oleanane triterpenoids lipophilicity. J. Chromatogr. A 2021, 1656, 462552. [Google Scholar] [CrossRef] [PubMed]
- Ciura, K.; Kovačević, S.; Pastewska, M.; Kapica, H.; Kornela, M.; Sawicki, W. Prediction of the chromatographic hydrophobicity index with immobilized artificial membrane chromatography using simple molecular descriptors and artificial neural networks. J. Chromatogr. A 2021, 1660, 462666. [Google Scholar] [CrossRef] [PubMed]
- Ciura, K.; Fedorowicz, J.; Andrić, F.; Greber, K.E.; Gurgielewicz, A.; Sawicki, W.; Sączewski, J. Lipophilicity determination of quaternary(fluoro)quinolones by chromatographic and theoretical approaches. Int. J. Mol. Sci. 2019, 20, 5288. [Google Scholar] [CrossRef] [Green Version]
- Kovačević, S.; Banjac, M.K.; Milošević, N.; Ćurčić, J.; Marjanović, D.; Todorović, N.; Krmar, J.; Podunavac-Kuzmanović, S.; Banjac, N.; Ušćumlić, G. Comparative chemometric and quantitative structure-retention relationship analysis of anisotropic lipophilicity of 1-arylsuccinimide derivatives determined in high-performance thin-layer chromatography system with aprotic solvents. J. Chromatogr. A 2020, 1628, 461439. [Google Scholar] [CrossRef]
- Kadela-Tomanek, M.; Jastrzębska, M.; Chrobak, E.; Bębenek, E. Lipophilicity and ADMET analysis of quinoline-1,4-quinone hybrids. Pharmaceutics 2023, 15, 34. [Google Scholar] [CrossRef]
- Bober-Majnusz, K.; Bębenek, E.; Chrobak, E.; Kadela-Tomanek, M. Application of chemometric methods for determination of the lipophilicity of pentacyclic triterpene derivatives. Acta Pol. Pharm. 2022, 79, 615–624. [Google Scholar] [CrossRef]
- Dołowy, M.; Jampilek, J.; Bober-Majnusz, K. A Comparative study of the lipophilicity of metformin and phenformin. Molecules 2021, 26, 6613. [Google Scholar] [CrossRef]
- Dołowy, M.; Pyka, A. Evaluation of lipophilic properties of betamethasone and related compounds. Acta Pol. Pharm. 2015, 72, 671–681. [Google Scholar]
- Strzemecka, L.; Hawrył, A.; Świeboda, R.; Hawrył, M.; Jagiełło-Wójtowicz, E.; Piątkowska-Chmiel, I.; Herbet, M.; Chodkowska, A. Determination of lipophilicity of allyl thiosemicarbazide, N-1-thiocarbamylamidrazone derivatives, and their cyclic products by RP-HPLC, RP-TLC, and theoretical methods: Effects of selected compounds on the CNS of mice. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1452–1465. [Google Scholar] [CrossRef]
- Szymański, P.; Skibiński, R.; Liszka, M.; Jargieło, J.; Mikiciuk-Olasik, E.; Komsta, Ł. A TLC study of the lipophilicity of thirty-two acetylcholinesterase inhibitors—1,2,3,4-tetrahydroacridine and 2,3-dihydro-1H-cyclopenta[b]quinoline derivatives. Cent. Eur. J. Chem. 2013, 11, 927–934. [Google Scholar] [CrossRef]
- Dąbrowska, M.; Komsta, Ł.; Krzek, J.; Kokoszka, K. Lipophilicity study of eight cephalosporins by reversed-phase thin-layer chromatographic method. Biomed. Chromatogr. 2015, 29, 1759–1768. [Google Scholar] [CrossRef]
- Constantinescu, T.; Lungu, C.N.; Lung, I. Lipophilicity as a central component of drug-like properties of chalchones and flavonoid derivatives. Molecules 2019, 24, 1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karadžić, M.; Lončar, D.; Benedeković, G.; Kovačević, I.; Popsavin, V.; Kocačević, S.; Jevrić, L.; Podunavac-Kuzmanavić, S. A comparative study of chromatographic behavior and lipophilicity of selected natural styryl lactones, their derivatives and analogues. Eur. J. Pharm. Sci. 2017, 105, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Mc Bride, E.; Kretsch, A.; Garibay, L.; Brigance, K.; Frey, B.; Buss, B.; Verbeck, G. Rapid experimental and computational determination of phenethylamine drug analogue lipophilicity. Forensic Chem. 2016, 1, 58–65. [Google Scholar] [CrossRef]
- Marciniec, K.; Boryczka, S. Chromatographic and computational assessment of lipophilicity of new anticancer acetylenequinoline derivatives. J. Chromatogr. Sci. 2017, 55, 934–939. [Google Scholar] [CrossRef] [Green Version]
- Dąbrowska, M.; Starek, M.; Chłoń-Rzepa, G.; Zagórska, A.; Komsta, Ł.; Jankowska, A.; Ślusarczyk, M.; Pawłowski, M. Estimation of the lipophilicity of purine-2,6-dione-based TRPA1 antagonists and PDE4/7 inhibitors with analgesic activity. Bioorg. Med. Chem. 2021, 49, 128318. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Delafloxacin: First global approval. Drugs 2017, 77, 1481–1486. [Google Scholar] [CrossRef] [Green Version]
- Hashemian, S.M.R.; Farhadi, T.; Ganjparvar, M. Linezolid: A review of its properties, function, and use in critical care. Drug Des Devel Ther. 2018, 12, 1759–1767. [Google Scholar] [CrossRef]
- Barbachyn, M.R.; Hutchinson, D.K.; Brickner, S.J.; Cynamon, M.H.; Kilburn, J.O.; Klemens, S.P.; Glickman, S.E.; Grega, K.C.; Hendges, S.K.; Toops, D.S.; et al. Identification of a novel oxazolidinone (U-100480) with potent antimycobacterial activity. J. Med. Chem. 1996, 39, 680–685. [Google Scholar] [CrossRef]
- Tasneen, R.; Betoudji, F.; Tyagi, S.; Li, S.Y.; Williams, K.; Converse, P.J.; Dartois, V.; Yang, T.; Mendel, C.M.; Mdluli, K.E.; et al. Contribution of oxazolidinones to the efficacy of novel regimens containing bedaquiline and pretomanid in a mouse model of tuberculosis. Antimicrob. Agents Chemother. 2016, 60, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Li, J.; Armstrong, J.; Learoyd, M.; Edeki, T. Randomized pharmacokinetic and drug-drug interaction studies of ceftazidime, avibactam, and metronidazole in healthy subjects. Pharmacol. Res. Perspect. 2015, 3, 00172. [Google Scholar] [CrossRef]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en (accessed on 28 December 2022).
- Hasskarl, J. Everolimus. Recent Results Cancer Res. 2018, 211, 101–123. [Google Scholar] [CrossRef] [PubMed]
- Lechuga, L.; Franz, D.N. Everolimus as adjunctive therapy for tuberous sclerosis complex-associated partial-onset seizures. Expert Rev. Neurother. 2019, 19, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.R.; Kuo, C.Y.; Tsai, M.Y.; Lin, W.L.; Lin, T.C.; Liao, H.J.; Chen, C.H.; Wang, Y.C. Anti-cancer effects of zotarolimus combined with 5-fluorouracil treatment in HCT-116 colorectal cancer-bearing BALB/c nude mice. Molecules 2021, 26, 4683. [Google Scholar] [CrossRef]
- Chang, G.R.; Chiu, Y.S.; Wu, Y.Y.; Lin, Y.C.; Hou, P.H.; Mao, F.C. Rapamycin impairs HPD-induced beneficial effects on glucose homeostasis. Br. J. Pharmacol. 2015, 172, 3793–3804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanisz, A. Przystępny Kurs Statystyki z Zastosowaniem STATISTICA PL na Przykładach Medycyny, Vol. 3, Analizy Wielowymiarowe; Stat Soft Polska: Kraków, Poland, 2007. [Google Scholar]
- Jolliffe, J.T.; Cadima, J. Principal component analysis: A review and recent developments. Phil. Trance. R. Soc. 2016, 374, 20150202. [Google Scholar] [CrossRef] [Green Version]
- Andrić, F.; Héberger, K. Towards better understanding of lipophilicity: Assessment of in silico and chromatographic logP measures for pharmaceutically important compounds by nonparametric rankings. J. Pharm. Biomed. Anal. 2015, 115, 183–191. [Google Scholar] [CrossRef]
- Andrić, F.; Héberger, K. Chromatographic and computational assessment of lipophilicity using sum of ranking differences and generalized pair-correlation. J. Chromatogr. A 2015, 1380, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Andrić, F.; Bajusz, D.; Rácz, A.; Šegan, S.; Héberger, K. Multivariate assessment of lipophilicity scales—Computational and reversed phase thin-layer chromatographic indices. J. Pharm. Biomed. Anal. 2016, 127, 81–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Density [g/cm3] | Solubility in Water [mg/mL] | logS | Boiling Point [°C] | Melting Point [°C] | pKa (Strongest Acidic) | pKa (Strongest Basic) | Index of Refraction | Molar Refractivity [cm3] | Polar Surface Area [A°]2 | Polarizability [cm3] | Surface Tension [dyne/cm] | Molar Volume [cm3] | Storage in Powder at −20 °C [years] | Storage in Solvent at −80 °C [years] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antimicrobial agents | |||||||||||||||
Delafloxacin | 1.8 | 0.0699 | −3.8 | 698.5 | 238–241 | 5.62 | −1.3 | 1.717 | 96.7 | 120 | 38.3 | 90.5 | 245.4 | 3 | 1 |
Linezolid | 1.3 | 1.44 | −2.4 | 585.5 | 176–178 | 14.85 | −1.2 | 1.554 | 83.0 | 71 | 32.9 | 47.7 | 259.0 | 3 | 1 |
Sutezolid | 1.3 | 0.237 | −3.2 | 609.0 | 229.77 | 14.85 | −0.14 | 1.584 | 89.5 | 87 | 35.5 | 50.5 | 267.5 | - | - |
Ceftazidime | - | 0.00573 | −5.0 | - | 103–113 | 2.42 | 4.02 | - | - | 191 | 51.0 | - | - | 3 | 1 |
Immunosuppressive drugs | |||||||||||||||
Everolimus | 1.2 | 0.00163 | −5.8 | 998.7 | - | 9.96 | −2.7 | 1.548 | 257.7 | 205 | 102.2 | 51.4 | 811.2 | 3 | 1 |
Zotarolimus | 1.3 | - | - | 1016.2 | 100–105 | - | - | 1.586 | 258.1 | 219 | 102.3 | 44.8 | 769.5 | 3 | 1 |
Compound | Atom-Based Methods | Fragment Contribution Methods | Properties Dependent Methods | Atom Based Approach and Fragmental Contribution Methods | Principle of Isolating Carbons Methods | Other logP | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
AC logp | XlogP2 | XlogP3 | miLogp | AlogP | AlogPs | MlogP | logPKOWWIN | ACD/logP | logPavg (Average Value) | logPexp (Experimental Value) | |
Antimicrobial agents | |||||||||||
Delafloxacin | 1.80 | 3.01 | 2.67 | −0.70 | 2.66 | 1.67 | 2.24 | 2.26 | 0.81 | 2.34 | - |
Linezolid | 0.39 | 0.89 | 0.69 | 0.92 | 0.89 | 0.61 | 0.89 | 1.26 | 0.30 | 0.73 | 0.9 |
Sutezolid | 0.88 | 2.05 | 1.49 | 1.47 | 1.64 | 1.31 | 1.65 | 2.12 | 0.96 | 1.50 | - |
Ceftazidime | −0.35 | −1.02 | −0.21 | −5.68 | −0.31 | −1.21 | 0.67 | −1.34 | - | −0.40 | −1.60 |
Immunosuppressive drugs | |||||||||||
Everolimus | 6.87 | 4.09 | 5.87 | 4.81 | - | 5.01 | - | 4.53 | 3.35 | 5.46 | - |
Zotarolimus | 6.50 | 3.80 | 5.95 | 4.55 | 5.94 | 4.51 | 2.75 | 4.41 | 3.55 | 4.91 | - |
Mobile Phase | Chromatographic Plates | ||
---|---|---|---|
RP2F254 | RP18F254 | RP18WF254 | |
Antimicrobial agents | |||
Delafloxacin | |||
Ethanol–water | 0.9184 | 2.1359 | 1.9694 |
Propan-2-ol-water | 0.7390 | 1.7719 | 1.6940 |
Acetonitrile-water | 0.6615 | 2.3174 | 1.8351 |
Linezolid | |||
Ethanol–water | 0.9592 | 1.1926 | 1.3407 |
Propan-2-ol-water | 0.8826 | 0.7884 | 1.1239 |
Acetonitrile-water | 0.8183 | 1.5263 | 1.1927 |
Sutezolid | |||
Ethanol–water | 1.4334 | 1.8680 | 1.9661 |
Propan-2-ol-water | 1.1590 | 1.5937 | 1.4784 |
Acetonitrile-water | 1.4312 | 2.2114 | 2.0329 |
Ceftazidime | |||
Ethanol–water | −0.6643 | −2.9545 | 0.4152 |
Propan-2-ol-water | −0.3642 | 0.4691 | 0.9153 |
Acetonitrile-water | −0.0357 | 0.1462 | 0.4121 |
Immunosuppressive drugs | |||
Everolimus | |||
Ethanol–water | 2.9460 | 3.5637 | 2.8227 |
Propan-2-ol-water | 2.2145 | 2.5865 | 2.5687 |
Acetonitrile-water | 2.8557 | 2.9462 | 2.7737 |
Zotarolimus | |||
Ethanol–water | 3.3623 | 3.1105 | 2.7377 |
Propan-2-ol-water | 2.1522 | 2.4741 | 2.7821 |
Acetonitrile-water | 2.7480 | 3.1252 | 3.2300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wardecki, D.; Dołowy, M.; Bober-Majnusz, K. Assessment of Lipophilicity Parameters of Antimicrobial and Immunosuppressive Compounds. Molecules 2023, 28, 2820. https://doi.org/10.3390/molecules28062820
Wardecki D, Dołowy M, Bober-Majnusz K. Assessment of Lipophilicity Parameters of Antimicrobial and Immunosuppressive Compounds. Molecules. 2023; 28(6):2820. https://doi.org/10.3390/molecules28062820
Chicago/Turabian StyleWardecki, Dawid, Małgorzata Dołowy, and Katarzyna Bober-Majnusz. 2023. "Assessment of Lipophilicity Parameters of Antimicrobial and Immunosuppressive Compounds" Molecules 28, no. 6: 2820. https://doi.org/10.3390/molecules28062820
APA StyleWardecki, D., Dołowy, M., & Bober-Majnusz, K. (2023). Assessment of Lipophilicity Parameters of Antimicrobial and Immunosuppressive Compounds. Molecules, 28(6), 2820. https://doi.org/10.3390/molecules28062820