Development and Validation of a Rapid LC-MS/MS Method for Quantifying Alvocidib: In Silico and In Vitro Metabolic Stability Estimation in Human Liver Microsomes
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Silico AVC Metabolic Stability
2.2. LC-MS/MS Method Development
2.3. Bioanalytical Method Validation
2.3.1. Specificity
2.3.2. Sensitivity and Linearity
2.3.3. Precision and Accuracy
2.3.4. Matrix Effects of HLMs and AVC Extraction Recovery
2.4. Metabolic Stability
3. Chemicals, Instruments and Methods
3.1. Chemicals
3.2. In Silico Software for AVC Metabolic Lability Assessment
3.3. Instrumentation and Conditions
3.4. AVC Working Solutions
3.5. AVC Calibration Levels
3.6. Bioanalytical Method Validation
3.6.1. Specificity
3.6.2. Sensitivity and Linearity
3.6.3. Precision and Accuracy
3.6.4. Matrix Effect and Extraction Recovery
3.7. AVC Metabolic Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Yamamoto, J.F.; Goodman, M.T. Patterns of leukemia incidence in the United States by subtype and demographic characteristics, 1997–2002. Cancer Causes Control 2008, 19, 379–390. [Google Scholar] [CrossRef]
- Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klepin, H.D.; Balducci, L. Acute myelogenous leukemia in older adults. Oncologist 2009, 14, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Baer, M.R.; Gojo, I. Novel agents for the treatment of acute myeloid leukemia in the older patient. J. Natl. Compr. Cancer Netw. 2011, 9, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.T.J.; Gilabert-Oriol, R.; Bally, M.B.; Leung, A.W.Y. Recent Treatment Advances and the Role of Nanotechnology, Combination Products, and Immunotherapy in Changing the Therapeutic Landscape of Acute Myeloid Leukemia. Pharm. Res. 2019, 36, 125. [Google Scholar] [CrossRef] [Green Version]
- Juárez-Salcedo, L.M.; Desai, V.; Dalia, S. Venetoclax: Evidence to date and clinical potential. Drugs Context 2019, 8, 212574. [Google Scholar] [CrossRef]
- Thein, M.S.; Ershler, W.B.; Jemal, A.; Yates, J.W.; Baer, M.R. Outcome of older patients with acute myeloid leukemia: An analysis of SEER data over 3 decades. Cancer 2013, 119, 2720–2727. [Google Scholar] [CrossRef] [PubMed]
- Bose, P.; Grant, S. Orphan drug designation for pracinostat, volasertib and alvocidib in AML. Leuk. Res. 2014, 38, 862–865. [Google Scholar] [CrossRef]
- Sedlacek, H.; Czech, J.; Naik, R.; Kaur, G.; Worland, P.; Losiewicz, M.; Parker, B.; Carlson, B.; Smith, A.; Senderowicz, A.; et al. Flavopiridol (L86 8275; NSC 649890), a new kinase inhibitor for tumor therapy. Int. J. Oncol. 1996, 9, 1143–1168. [Google Scholar] [CrossRef]
- Montagnoli, A.; Valsasina, B.; Croci, V.; Menichincheri, M.; Rainoldi, S.; Marchesi, V.; Tibolla, M.; Tenca, P.; Brotherton, D.; Albanese, C.; et al. A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity. Nat. Chem. Biol. 2008, 4, 357–365. [Google Scholar] [CrossRef]
- Sedlacek, H.H. Mechanisms of action of flavopiridol. Crit. Rev. Oncol. Hematol. 2001, 38, 139–170. [Google Scholar] [CrossRef]
- Zhang, X.H.; Hsiang, J.; Rosen, S.T. Flavopiridol (Alvocidib), a Cyclin-dependent Kinases (CDKs) Inhibitor, Found Synergy Effects with Niclosamide in Cutaneous T-cell Lymphoma. J. Clin. Haematol. 2021, 2, 48–61. [Google Scholar]
- Liu, Q.; Farley, K.L.; Johnson, A.J.; Muthusamy, N.; Hofmeister, C.C.; Blum, K.A.; Schaaf, L.J.; Grever, M.R.; Byrd, J.C.; Dalton, J.T.; et al. Development and validation of a highly sensitive liquid chromatography/mass spectrometry method for simultaneous quantification of lenalidomide and flavopiridol in human plasma. Drug Monit. 2008, 30, 620–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelps, M.A.; Rozewski, D.M.; Johnston, J.S.; Farley, K.L.; Albanese, K.A.; Byrd, J.C.; Lin, T.S.; Grever, M.R.; Dalton, J.T. Development and validation of a sensitive liquid chromatography/mass spectrometry method for quantitation of flavopiridol in plasma enables accurate estimation of pharmacokinetic parameters with a clinically active dosing schedule. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 868, 110–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stinson, S.F.; Hill, K.; Siford, T.J.; Phillips, L.R.; Daw, T.W. Determination of flavopiridol (L86 8275; NSC 649890) in human plasma by reversed-phase liquid chromatography with electrochemical detection. Cancer Chemother. Pharm. 1998, 42, 261–265. [Google Scholar] [CrossRef]
- Zhai, S.; Sausville, E.; Figg, W.D. A high-performance liquid chromatography method using ultraviolet detection for the quantitation of flavopiridol from human plasma. Biomed. Chromatogr. 2002, 16, 379–382. [Google Scholar] [CrossRef]
- Amer, S.M.; Kadi, A.A.; Darwish, H.W.; Attwa, M.W. Liquid chromatography tandem mass spectrometry method for the quantification of vandetanib in human plasma and rat liver microsomes matrices: Metabolic stability investigation. Chem. Cent. J. 2017, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Rowland, M.; Benet, L.Z.; Graham, G.G. Clearance concepts in pharmacokinetics. J. Pharmacokinet. Biopharm. 1973, 1, 123–136. [Google Scholar] [CrossRef]
- Wilkinson, G.R.; Shand, D.G. A physiological approach to hepatic drug clearance. Clin. Pharmacol. Ther. 1975, 18, 377–390. [Google Scholar] [CrossRef]
- Houston, J.B. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem. Pharmacol. 1994, 47, 1469–1479. [Google Scholar] [CrossRef]
- Obach, R.S.; Baxter, J.G.; Liston, T.E.; Silber, B.M.; Jones, B.C.; Macintyre, F.; Rance, D.J.; Wastall, P. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J. Pharmacol. Exp. Ther. 1997, 283, 46–58. [Google Scholar]
- Baranczewski, P.; Stańczak, A.; Sundberg, K.; Svensson, R.; Wallin, A.; Jansson, J.; Garberg, P.; Postlind, H. Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development. Pharm. Rep. 2006, 58, 453–472. [Google Scholar]
- Tyzack, J.D.; Kirchmair, J. Computational methods and tools to predict cytochrome P450 metabolism for drug discovery. Chem. Biol. Drug Des. 2019, 93, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Kadi, A.A.; Amer, S.M.; Darwish, H.W.; Attwa, M.W. LC-MS/MS reveals the formation of aldehydes and iminium reactive intermediates in foretinib metabolism: Phase I metabolic profiling. RSC Adv. 2017, 7, 36279–36287. [Google Scholar] [CrossRef] [Green Version]
- Attwa, M.W.; Darwish, H.W.; Alhazmi, H.A.; Kadi, A.A. Investigation of metabolic degradation of new ALK inhibitor: Entrectinib by LC-MS/MS. Clin. Chim. Acta 2018, 485, 298–304. [Google Scholar] [CrossRef]
- Tan, L.; Kirchmair, J. Software for metabolism prediction. Drug Metab. Predict. 2014, 27–52. [Google Scholar] [CrossRef]
- Hunt, P.A.; Segall, M.D.; Tyzack, J.D. WhichP450: A multi-class categorical model to predict the major metabolising CYP450 isoform for a compound. J. Comput. Aided Mol. Des. 2018, 32, 537–546. [Google Scholar] [CrossRef]
- G Shin, Y.; Le, H.; Khojasteh, C.; ECA Hop, C. Comparison of metabolic soft spot predictions of CYP3A4, CYP2C9 and CYP2D6 substrates using MetaSite and StarDrop. Comb. Chem. High Throughput Screen. 2011, 14, 811–823. [Google Scholar] [CrossRef]
- Meesters, R.; Voswinkel, S. Bioanalytical method development and validation: From the USFDA 2001 to the USFDA 2018 guidance for industry. J. Appl. Bioanal. 2018, 4, 67–73. [Google Scholar] [CrossRef]
- Abdelhameed, A.S.; Attwa, M.W.; Al-Shaklia, N.S.; Kadi, A.A. A highly sensitive LC-MS/MS method to determine novel Bruton’s tyrosine kinase inhibitor spebrutinib: Application to metabolic stability evaluation. R. Soc. Open Sci. 2019, 6, 190434. [Google Scholar] [CrossRef] [Green Version]
- Abdelhameed, A.S.; Kadi, A.A.; Attwa, M.W.; AlRabiah, H. Validated LC-MS/MS assay for quantification of the newly approved tyrosine kinase inhibitor, dacomitinib, and application to investigating its metabolic stability. PLoS ONE 2019, 14, e0214598. [Google Scholar] [CrossRef] [Green Version]
- AlRabiah, H.; Kadi, A.A.; Attwa, M.W.; Mostafa, G.A.E. Development and validation of an HPLC-MS/MS method for the determination of filgotinib, a selective Janus kinase 1 inhibitor: Application to a metabolic stability study. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2020, 1154, 122195. [Google Scholar] [CrossRef]
- Leahy, D.E. Integrating invitro ADMET data through generic physiologically based pharmacokinetic models. Expert Opin. Drug Metab. Toxicol. 2006, 2, 619–628. [Google Scholar] [CrossRef]
- Attwa, M.W.; Kadi, A.A.; Abdelhameed, A.S.; Alhazmi, H.A. Metabolic Stability Assessment of New PARP Inhibitor Talazoparib Using Validated LC-MS/MS Methodology: In silico Metabolic Vulnerability and Toxicity Studies. Drug Des. Dev. Ther. 2020, 14, 783–793. [Google Scholar] [CrossRef]
- Attwa, M.W.; Kadi, A.A.; Abdelhameed, A.S. Phase I metabolic profiling and unexpected reactive metabolites in human liver microsome incubations of X-376 using LC-MS/MS: Bioactivation pathway elucidation and in silico toxicity studies of its metabolites. Rsc. Adv. 2020, 10, 5412–5427. [Google Scholar] [CrossRef] [Green Version]
- Alsubi, T.A.; Attwa, M.W.; Bakheit, A.H.; Darwish, H.W.; Abuelizz, H.A.; Kadi, A.A. In silico and in vitro metabolism of ribociclib: A mass spectrometric approach to bioactivation pathway elucidation and metabolite profiling. RSC Adv. 2020, 10, 22668–22683. [Google Scholar] [CrossRef]
- Busby, W.F., Jr.; Ackermann, J.M.; Crespi, C.L. Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450. Drug Metab Dispos. 1999, 27, 246–249. [Google Scholar]
- Taniguchi-Takizawa, T.; Shimizu, M.; Kume, T.; Yamazaki, H. Benzydamine N-oxygenation as an index for flavin-containing monooxygenase activity and benzydamine N-demethylation by cytochrome P450 enzymes in liver microsomes from rats, dogs, monkeys, and humans. Drug Metab. Pharm. 2015, 30, 64–69. [Google Scholar] [CrossRef]
- Fouin-Fortunet, H.; Tinel, M.; Descatoire, V.; Letteron, P.; Larrey, D.; Geneve, J.; Pessayre, D. Inactivation of cytochrome P-450 by the drug methoxsalen. J. Pharm. Exp. 1986, 236, 237–247. [Google Scholar]
- Sharma, S.; Goyal, S.; Chauhan, K. A review on analytical method development and validation. Int. J. Appl. Pharm. 2018, 10, 8–15. [Google Scholar] [CrossRef]
- Attwa, M.W.; Kadi, A.A.; Abdelhameed, A.S. Detection and characterization of olmutinib reactive metabolites by LC–MS/MS: Elucidation of bioactivation pathways. J. Sep. Sci. 2020, 43, 708–718. [Google Scholar] [CrossRef]
- Attwa, M.W.; Kadi, A.A.; Darwish, H.W.; Alrabiah, H. LC-MS/MS reveals the formation of reactive ortho-quinone and iminium intermediates in saracatinib metabolism: Phase I metabolic profiling. Clin. Chim. Acta 2018, 482, 84–94. [Google Scholar] [CrossRef] [PubMed]
AVC Nominal Concentrations (ng/mL) | Mean a | SD | RSD (%) b | % Error |
---|---|---|---|---|
5.0 (LLOQ) | 5.3 | 0.2 | 3.3 | 6.4 |
15.0 (LQC) c | 15.3 | 0.3 | 2.3 | 1.9 |
50.0 | 51.2 | 2.1 | 4.1 | 2.4 |
100.0 | 101.2 | 3.6 | 3.5 | 1.2 |
150.0 (MQC) c | 148.8 | 3.9 | 2.6 | −0.8 |
200.0 | 195.7 | 2.9 | 1.5 | −2.2 |
300.0 | 299.1 | 2.8 | 0.9 | −0.3 |
400.0 (HQC) c | 401.8 | 6.0 | 1.5 | 0.5 |
500.0 | 506.9 | 2.8 | 0.6 | 1.4 |
AVC in HLM Matrix (ng/mL) | Intraday Assay * | Interday Assay ** | ||||||
---|---|---|---|---|---|---|---|---|
5 (LLOQ) | 15 (LQC) | 150 (MQC) | 400 (HQC) | 5 (LLOQ) | 15 (LQC) | 150 (MQC) | 400 (HQC) | |
Mean | 5.3 | 15.3 | 148.8 | 401.8 | 5.2 | 15.2 | 148.0 | 399.5 |
SD | 0.2 | 0.3 | 3.9 | 6.0 | 0.3 | 0.6 | 3.4 | 6.0 |
Precision (% RSD) | 3.3 | 2.3 | 2.6 | 1.5 | 6.7 | 4.0 | 2.3 | 1.5 |
% Error | 6.4 | 1.9 | −0.8 | 0.5 | 3.4 | 1.6 | −1.4 | −0.1 |
Recovery (%) | 106.4 | 101.9 | 99.2 | 100.5 | 103.4 | 101.6 | 98.6 | 99.9 |
Time (min) | Mean a (ng/mL) | X b | LN X | Analytical Parameters |
---|---|---|---|---|
0.0 | 486.9 | 100.0 | 4.6 | Regression equation: y = −0.0269x + 4.559 |
2.5 | 442.5 | 90.9 | 4.5 | |
5.0 | 398.0 | 81.7 | 4.4 | R2 = 0.9875 |
7.5 | 363.5 | 74.7 | 4.3 | |
15.0 | 306.0 | 62.9 | 4.1 | Slope: −0.0269 |
20.0 | 267.1 | 54.9 | 4.0 | |
30.0 | 214.1 | 44.0 | 3.8 | t1/2: 25.8 min and |
50.0 | 194.1 | 39.9 | 3.7 | Clint: 26.9 µL/min/mg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attwa, M.W.; AlRabiah, H.; Kadi, A.A. Development and Validation of a Rapid LC-MS/MS Method for Quantifying Alvocidib: In Silico and In Vitro Metabolic Stability Estimation in Human Liver Microsomes. Molecules 2023, 28, 2368. https://doi.org/10.3390/molecules28052368
Attwa MW, AlRabiah H, Kadi AA. Development and Validation of a Rapid LC-MS/MS Method for Quantifying Alvocidib: In Silico and In Vitro Metabolic Stability Estimation in Human Liver Microsomes. Molecules. 2023; 28(5):2368. https://doi.org/10.3390/molecules28052368
Chicago/Turabian StyleAttwa, Mohamed W., Haitham AlRabiah, and Adnan A. Kadi. 2023. "Development and Validation of a Rapid LC-MS/MS Method for Quantifying Alvocidib: In Silico and In Vitro Metabolic Stability Estimation in Human Liver Microsomes" Molecules 28, no. 5: 2368. https://doi.org/10.3390/molecules28052368
APA StyleAttwa, M. W., AlRabiah, H., & Kadi, A. A. (2023). Development and Validation of a Rapid LC-MS/MS Method for Quantifying Alvocidib: In Silico and In Vitro Metabolic Stability Estimation in Human Liver Microsomes. Molecules, 28(5), 2368. https://doi.org/10.3390/molecules28052368