Infrared Spectroscopy as a Potential Diagnostic Tool for Medulloblastoma
Abstract
:Highlights
- Comparison of healthy controls with subtypes of medulloblastoma using FTIR spectra.
- Analysis of physicochemical changes in FTIR spectrum in medulloblastoma and brain tissue.
- MB and normal brain tissue can be distinguished from one another to some extent using FTIR spectroscopy in the region 800–1800 cm−1.
- FTIR spectroscopy as a potential method in the diagnostics of medulloblastoma.
Abstract
1. Introduction
2. Results
2.1. Analysis of the Averaged FTIR Spectra
Control | Classic Subtype | Desmoplastic Subtype | Anaplastic Subtype | Biochemical Assignment |
---|---|---|---|---|
889 | 889 | 888 | 889 | C-C, C-O deoxyribose (carbohydrates, nucleic acids) |
920 | 921 | 920 | 920 | C-C residue a-helix, phosphodiester region (nucleic acids) |
absent | 964 | 964 | 964 | C-C, C-O deoxyribose (nucleic acids) |
1063 | 1060 | 1062 | 1062 | C-O stretch, deoxyribose/ribosen (nucleic acids, lipids) |
absent | 1087 | 1085 | 1090 | symmetric PO2 stretching (nucleic acids) |
1125 | absent | absent | absent | C-O, C-C, PO4 (carbohydrates, nucleic acids, RNA) |
1168 | 1168 | 1168 | 1168 | n(CC), d(COH), n(CO) stretching (lipids) |
1233 | 1232 | 1233 | 1233 | C-C stretch, C-H bend, C-O stretch, deoxyribose/ribose, DNA, RNA (nucleic acids) |
1303 | 1302 | 1301 | 1301 | deformation N-H cytosine (nucleic acids, lipids) |
absent | absent | absent | 1341 | CH3 stretch symmetric (proteins) |
1377 | 1377 | 1377 | 1377 | mostly paraffin peaks, CH3 deformation, Amide III (lipids, protein) |
1466 | 1466 | 1465 | 1465 | mostly paraffin peaks, protein CH2 and CH3 bending of methyl, CH2 bending (lipids) |
1541 | 1538 | 1539 | 1538 | Amide II band mainly (N-H) bending and (C-N) stretching (proteins) |
1650 | 1647 | 1646 | 1648 | Amide I of proteins: stretching vibrations of the C-O (proteins) (In Table 2 is an assignment of secondary structure) |
1737 | absent | 1737 | 1734 | C-O vibrations (mostly lipids, proteins) |
2847 | 2847 | 2847 | 2847 | mostly paraffin peaks, symmetric stretching vibrations of CH2 (mostly lipids, proteins) |
2915 | 2915 | 2915 | 2915 | mostly paraffin peaks, asymmetric stretching vibrations of CH2 (mostly lipids, proteins) |
2956 | 2956 | 2956 | 2956 | mostly paraffin peaks, CH3 asymmetric stretching (mostly lipids, proteins) |
3283 | 3283 | 3283 | 3282 | stretching vibrations of NH groups in peptide chains and OH stretching of functional groups of water (protein, water) |
Protein Secondary Structure | Controls (cm−1) | MB Classic Subtype (cm−1) | MB Large Cell/Anaplastic Subtype (cm−1) | MB Desmoplastic/Nodular Subtype (cm−1) |
---|---|---|---|---|
β-sheet | 1631 | 1630 | 1630 | 1631 |
β-sheet | 1641 | 1641 | 1641 | 1641 |
α-helix | 1652 | 1649 | 1649 | 1648 |
α-helix | 1658 | 1659 | 1659 | 1659 |
β-turn | 1680 | 1679 | 1680 | 1680 |
β-sheet | 1691 | 1691 | 1691 | 1691 |
2.2. PCA and HCA Analysis of the Chemical Profile
2.3. Protein Secondary Structure
2.4. Analysis of Absorbance Dynamics
3. Discussion
4. Materials and Methods
4.1. Characteristics of the Studied Population
4.2. Preparation of Samples
4.3. Infrared Spectrometer—Characteristics, Measurement Parameters
4.4. Data Analysis
4.5. Software
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Islam, M.; Abdulrazak, L.; Alam, M.; Paul, B.; Ahmed, K.; Bui, F.; Moni, M. Identification of Potential Key Genes and Molecular Mechanisms of Medulloblastoma Based on Integrated Bioinformatics Approach. BioMed Res. Int. 2022, 2022, 1776082. [Google Scholar] [CrossRef] [PubMed]
- Arche, T.; Mahoney, E.; Pomeroy, S. Medulloblastoma: Molecular Classification-Based Personal Therapeutics. Neurotherapeutics 2017, 14, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Louis, D.; Ohgaki, H.; Wiestler, O.; Cavenee, W.; Burger, P.; Jouvet, A.; Scheithauer, B.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Northcott, P.; Robinson, G.; Kratz, C.; Mabbott, D.; Pomeroy, S.; Clifford, S.; Rutkowski, S.; Ellison, D.; Malkin, D.; Taylor, M.; et al. Medulloblastoma. Nat. Rev. Dis. Prim. 2019, 5, 11. [Google Scholar] [CrossRef]
- Su, K.; Lee, W. Fourier Transform Infrared Spectroscopy as a Cancer Screening and Diagnostic Tool: A Review and Prospects. Cancers 2020, 12, 115. [Google Scholar] [CrossRef] [Green Version]
- Depciuch, J.; Barnaś, E.; Skręt, J.; Skręt, A.; Kaznowska, E.; Łach, K.; Jakubczyk, P.; Cebulski, J. Spectroscopic evaluation of carcinogenesis in endometrial cancer. Sci. Rep. 2021, 11, 9079. [Google Scholar] [CrossRef]
- Chaber, R.; Kowal, A.; Jakubczyk, P.; Arthur, C.; Łach, K.; Wojnarowska-Nowak, R.; Kusz, K.; Zawlik, I.; Paszek, S.; Cebulski, J. A Preliminary Study of FTIR Spectroscopy as a Potential Non-Invasive Screening Tool for Pediatric Precursor B Lymphoblastic Leukemia. Molecules 2021, 26, 1174. [Google Scholar] [CrossRef]
- Kaznowska, E.; Łach, K.; Depciuch, J.; Chaber, R.; Koziorowska, A.; Slobodian, S.; Kiper, K.; Chlebus, A.; Cebulski, J. Application of Infrared Spectroscopy for the Identification of Squamous Cell Carcinoma (Lung Cancer). Preliminary Study. Infrared Phys. Tech. 2018, 89C, 282–290. [Google Scholar] [CrossRef]
- Hands, J.; Dorling, K.; Abel, P.; Ashton, K.; Brodbelt, A.; Davis, C.; Dawson, T.; Jenkinson, M.; Lea, R.; Walker, C.; et al. Attenuated total reflection fourier transform infrared (ATR-FTIR) spectral discrimination of brain tumour severity from serum samples. J. Biophotonics 2014, 7, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Depciuch, J.; Tołpa, B.; Witek, P.; Szmuc, K.; Kaznowska, E.; Osuchowski, M.; Król, P.; Cebulski, J. Raman and FTIR spectroscopy in determining the chemical changes in healthy brain tissues and glioblastoma tumor tissues. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 225, 117526. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Alhasan, A. Detection of human brain tumours via evaluation of their biochemical composition using ATR-FTIR spectroscopy. Biomed. Phys. Eng. Express 2020, 6, 015014. [Google Scholar] [CrossRef]
- Hands, J.; Clemens, G.; Stables, R.; Ashton, K.; Brodbelt, A.; Davis, C.; Dawson, T.; Jenkinson, M.; Lea, R.; Walker, C.; et al. Brain tumour differentiation: Rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy. J. Neurooncol. 2016, 127, 463–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polis, B.; Imiela, A.; Polis, L.; Abramczyk, H. Raman spectroscopy for medulloblastoma. Childs Nerv. Syst. 2018, 34, 2425–2430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kołodziej, M.; Chrabąszcz, K.; Pięta, E.; Piergies, N.; Rudnicka-Czerwiec, J.; Bartosik-Psujek, H.; Paluszkiewicz, C.; Cholewa, M.; Kwiatek, W. Spectral signature of multiple sclerosis. Preliminary studies of blood fraction by ATR FTIR technique. Biochem. Biophys. Res. Commun. 2022, 593, 40–45. [Google Scholar] [CrossRef]
- Gajjar, K.; Heppenstall, L.; Pang, W.; Ashton, K.; Trevisan, J.; Patel, I.I.; Llabjani, V.; Stringfellow, H.; Martin-Hirsch, P.; Dawson, T.; et al. Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Anal. Methods 2013, 5, 89–102. [Google Scholar] [CrossRef]
- Cameron, J.; Rinaldi, C.; Butler, H.; Hegarty, M.; Brennan, P.; Jenkinson, M.; Syed, K.; Ashton, K.; Dawson, T.; Palmer, D.; et al. Stratifying Brain Tumour Histological Sub-Types: The Application of ATR-FTIR Serum Spectroscopy in Secondary Care. Cancers 2020, 12, 1710. [Google Scholar] [CrossRef] [PubMed]
- Noreen, R.; Chien, C.; Delugin, M.; Yao, S.; Pineau, R.; Hwu, Y.; Moenner, M.; Petibois, C. Detection of collagens in brain tumors based on FTIR imaging and chemometrics. Anal. Bioanal. Chem. 2011, 401, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.; Bourassa, M.; Smith, R. FTIR spectroscopic imaging of protein aggregation in living cells. Biochim. Biophys. Acta 2013, 1828, 2339–2346. [Google Scholar] [CrossRef] [Green Version]
- Guleken, Z.; Jakubczyk, P.; Wiesław, P.; Krzysztof, P.; Bulut, H.; Öten, E.; Depciuch, J.; Tarhan, N. Characterization of COVID-19 infected pregnant women sera using laboratory indexes, vibrational spectroscopy, and machine learning classifications. Talanta 2022, 237, 122916. [Google Scholar] [CrossRef]
- Tyagi, G.; Jangir, D.; Singh, P.; Mehrotra, R. DNA Interaction Studies of an Anticancer Plant Alkaloid Vincristine Using Fourier Transform Infrared Spectroscopy. DNA Cell Biol. 2010, 29, 693–699. [Google Scholar] [CrossRef] [Green Version]
- Dovbeshko, G.; Gridina, N.; Kruglova, E.; Pashchuk, O. FTIR spectroscopy studies of nucleic acid damage. Talanta 2000, 55, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Goormaghtigh, E. Infrared Imaging in Histopathology: Is a Unified Approach Possible? Biomed. Spectrosc. Imaging 2016, 5, 325–346. [Google Scholar] [CrossRef] [Green Version]
- Lyng, F.; Gazi, E.; Gardner, P. Preparation of Tissues and Cells for Infrared and Raman Spectroscopy and Imaging. In Biomedical Applications of Synchrotron Infrared Microspectroscopy; Moss, D., Ed.; RSC Analytical Spectroscopy Monographs No. 11; Royal Society of Chemistry: London, UK, 2011; pp. 147–185. [Google Scholar] [CrossRef]
- Bde, C.V.; Mello, M. Collagen type I amide I band infrared spectroscopy. Micron 2011, 42, 283–289. [Google Scholar] [CrossRef]
- Ganim, Z.; Chung, H.; Smith, A.; Deflores, L.; Jones, K.; Tokmakoff, A. Amide I two-dimensional infrared spectroscopy of proteins. Acc. Chem. Res. 2008, 41, 432–441. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 549. [Google Scholar] [CrossRef] [Green Version]
- De Meutter, J.; Goormaghtigh, E. Searching for a Better Match between Protein Secondary Structure Definitions and Protein FTIR Spectra. Anal. Chem. 2021, 93, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [Green Version]
β-Sheet (%) | α-Helix (%) | Others (%) | |
---|---|---|---|
control | 68.5 | 19.5 | 12.0 |
classic subtype | 68.2 | 21.2 | 10.6 |
desmoplastic/nodular subtype | 73.7 | 15.8 | 10.5 |
large cell/anaplastic subtype | 70.5 | 23.6 | 5.9 |
Wavenumbers (cm−1) | Discrimination Probability (%) for Patients with Medulloblastoma (All Genotypes) | Discrimination Probability (%) for Genotype 1 (Classic Subtype) | Discrimination Probability (%) for Genotype 2 (Desmoplastic/Nodular) | Discrimination Probability (%) for Genotype 4 (Large Cell/Anaplastic Subtype) |
---|---|---|---|---|
829–830 | 69–95 | 76–95 | 60–100 | 61–92 |
873–875 | 77–90 | 76–90 | 80 | 69–92 |
920–932 | 59–77 | 48–81 | 20–100 | 38–84 |
944–945 | 69–87 | 71–95 | 60–100 | 69 |
1063–1065 | 72–79 | 81–86 | 60–80 | 61–69 |
1115–1125 | 74–95 | 81–100 | 80–100 | 61–84 |
1285–1287 | 77–87 | 71–81 | 100 | 76–92 |
1343–1345 | 82–90 | 81–90 | 100 | 76–92 |
1540–1541 | 69–90 | 81–86 | 40–80 | 62–100 |
1649–1650 | 85–97 | 85–100 | 100 | 76–92 |
1714–1716 | 100 | 100 | 100 | 100 |
1723–1736 | 64–97 | 71–100 | 40–100 | 46–92 |
Male/Female Ratio | 31/9 |
---|---|
age: median (range) | 7.8 (1.5–21.5) |
histological subtype | |
classic | 21 |
desmoplastic/nodular | 5 |
anaplastic/large cells | 14 |
molecular subtype | |
WNT | 3 |
SHH | 4 |
other | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łach, K.; Kowal, A.; Perek-Polnik, M.; Jakubczyk, P.; Arthur, C.J.; Bal, W.; Drogosiewicz, M.; Dembowska-Bagińska, B.; Grajkowska, W.; Cebulski, J.; et al. Infrared Spectroscopy as a Potential Diagnostic Tool for Medulloblastoma. Molecules 2023, 28, 2390. https://doi.org/10.3390/molecules28052390
Łach K, Kowal A, Perek-Polnik M, Jakubczyk P, Arthur CJ, Bal W, Drogosiewicz M, Dembowska-Bagińska B, Grajkowska W, Cebulski J, et al. Infrared Spectroscopy as a Potential Diagnostic Tool for Medulloblastoma. Molecules. 2023; 28(5):2390. https://doi.org/10.3390/molecules28052390
Chicago/Turabian StyleŁach, Kornelia, Aneta Kowal, Marta Perek-Polnik, Paweł Jakubczyk, Christopher J. Arthur, Wioletta Bal, Monika Drogosiewicz, Bożenna Dembowska-Bagińska, Wiesława Grajkowska, Józef Cebulski, and et al. 2023. "Infrared Spectroscopy as a Potential Diagnostic Tool for Medulloblastoma" Molecules 28, no. 5: 2390. https://doi.org/10.3390/molecules28052390
APA StyleŁach, K., Kowal, A., Perek-Polnik, M., Jakubczyk, P., Arthur, C. J., Bal, W., Drogosiewicz, M., Dembowska-Bagińska, B., Grajkowska, W., Cebulski, J., & Chaber, R. (2023). Infrared Spectroscopy as a Potential Diagnostic Tool for Medulloblastoma. Molecules, 28(5), 2390. https://doi.org/10.3390/molecules28052390