Evaluation of the Chemical Composition of Selected Varieties of L. caerulea var. kamtschatica and L. caerulea var. emphyllocalyx
Abstract
:1. Introduction
2. Results and Discussion
2.1. pH and Acidity of Fruits
2.2. Contents of Ascorbic Acid and Antioxidant Activity in L. kamtschatica and L. emphyllocalyx Fruit
2.3. Polyphenolic Compound Content in L. kamtschatica and L. emphyllocalyx Fruit
2.4. Sugar Content of L. kamtschatica and L. emphyllocalyx Fruit
3. Materials and Methods
3.1. Material
3.2. Determination of pH and Acidity
3.3. Determination of the Contents of Bioactive Compounds in Fruit and Determination of Their Antioxidant Activity
3.4. Determination of Sugars in L. kamtschatica and L. emphyllocalyx Fruit
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gawronski, J.; Hortynski, J.; Kaczmarska, E.; Dyduch-Sieminska, M.; Marecki, W.; Witorozec, A. Evaluation of phenotypic and genotypic diversity of some Polish and Russian blue honeysuckle (Lonicera caerulea L.) cultivars and clones. Acta Sci. Polonorum. Hortorum Cultus 2014, 13, 157–169. [Google Scholar]
- Kula, M.; Krauze-Baranowska, M. Blue Honeysuckle (Lonicera caerulea L.)—The current state of phytochemical research and biological activity. Post Fitoter. 2016, 17, 111–118. [Google Scholar]
- Kucharska, A.Z.; Sokół-Łętowska, A.; Oszmiański, J.; Piórecki, N.; Fecka, I. Iridoids, Phenolic Compounds and Antioxidant Activity of Edible Honeysuckle Berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules 2017, 22, 405. [Google Scholar] [CrossRef] [Green Version]
- Maxine, T.M. Introducing haskap, Japanese Blue honeysuckle. J. Am. Pomol. Soc. 2006, 60, 164–168. [Google Scholar]
- Minami, M.; Takase, H.; Nakamura, M.; Makino, T. Methanol extract of Lonicera caerulea var. emphyllocalyx fruit has anti-motility and anti-biofilm activity against enteropathogenic Escherichia coli. Drug Discov. Ther. 2019, 19, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Ochmian, D.; Skupień, K.; Grajkowski, J.; Smolik, M.; Ostrowska, K. Chemical Composition and Physical Characteristics of Fruits of Two Cultivars of Blue Honeysuckle (Lonicera caerulea L.) in Relation to their Degree of Maturity and Harvest Date. Not. Bot. Horti. Agrobot. 2012, 40, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Rupasinghe, H.P.V.; Yu, L.J.; Bhullar, K.S.; Bors, B. Short Communication: Haskap (Lonicera caeruela): A new berry crop with high antioxidant capacity. Can. J. Plant Sci. 2012, 21, 4334. [Google Scholar] [CrossRef]
- Bakowska-Barczak, A.M.; Marianchuk, M.; Kolodziejczak, P. Survey of bioactive components in Western Canadian berries. Can. J. Physiol. Pharmacol. 2007, 85, 1139–1152. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Arumuggam, N.; Amararathna, M.; De Silva, A.B.K.H. The potential health benefits of haskap (Lonicera caerulea L.): Role of cyanidin-3-O-glucoside. J. Funct. Foods 2018, 44, 24–39. [Google Scholar] [CrossRef]
- Celli, G.B.; Ghanem, A.; Brooks, M.S.L. Haskap Berries (Lonicera caerulea L.)—A Critical Review of Antioxidant Capacity and Health-Related Studies for Potential Value-Added Products. Food Bioprocess Technol. 2014, 7, 1541–1554. [Google Scholar] [CrossRef]
- Khattab, R.; Ghanem, A.; Brooks, M.S.L. Quality of dried haskap berries (Lonicera caerulea L.) as affected by prior juice extraction, osmotic treatment, and drying conditions. Dry. Technol. 2017, 35, 375–391. [Google Scholar] [CrossRef]
- Gołba, M.; Sokół-Łętowska, A.; Kucharska, A. Health Properties and Composition of Honeysuckle Berry Lonicera caerulea L. An U date on Recent Studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef] [Green Version]
- Belyaeva, O.V.; Sergeeva, I.Y.; Belyaeva, E.E.; Chernobrovkina, E.V. Study of antioxidant activity of juices and beverages from blue honeysuckle and black chokeberry. IOP Conf. Ser. Earth Environ. Sci. 2021, 640, 052008. [Google Scholar] [CrossRef]
- Grobelna, A.; Kalisz, S.; Kieliszek, M. The effect of the addition of blue honeysuckle berry juice to apple juice on the selected quality characteristics, anthocyanin stability, and antioxidant properties. Biomolecules 2019, 9, 744. [Google Scholar] [CrossRef] [Green Version]
- Senica, M.; Stampar, F.; Mikulic-Petkovsek, M. Different extraction processes affect the metabolites in blue honeysuckle (Lonicera caerulea L. subsp. edulis) food products. Turk. J. Agric. For. 2019, 43, 576–585. [Google Scholar] [CrossRef]
- Jurikova, T.; Matuškovič, J.; Gazdik, Z. Effect of irrigation on intensity of respiration and study of sugar and organic acids content in different development stages of Lonicera kamtschatica and Lonicera edulis berries. HortScience 2009, 36, 14–20. [Google Scholar]
- Sharma, A.; Hae-Jeung, L. Lonicera caerulea: An updated account of its phytoconstituents and health-promoting activities. Trends Food Sci. Technol. 2021, 107, 130–149. [Google Scholar] [CrossRef]
- Gerbrand, E.M.; Bors, R.H.; Meyer, D.; Wilen, R.; Chibbar, R. Fruit quality of Japanese, Kuril and Russian blue honeysuckle (Lonicera caerulea L.) germplasm compared to blueberry, raspberry and strawberry. Euphytica 2020, 216, 59. [Google Scholar] [CrossRef]
- Auzanneau, N.; Weber, P.; Kosińska-Cagnazzo, A.; Audlauer, W. Bioactive compounds and antioxidant capacity of Lonicera caerulea berries: Comparison of seven cultivars over three harvesting years. J. Food Compos. Anal. 2018, 66, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, T.; Hoshino, Y. Intersecific hybridization in Lonicera caerulea and Lonicera gracilipes: The occurrence of green/albino plants by reciprocal crossing. Sci. Hortic. 2010, 125, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Oszmiański, J.; Wojdyło, A.; Lachowicz, S. Effect of dried powder preparation process on polyphenolic content and antioxidant activity of blue honeysuckle berries (Lonicera caerulea L. var. kamtschatica). LWT Food Sci. Technol. 2015, 64, 214–222. [Google Scholar] [CrossRef]
- Gorzelany, J.; Kapusta, I.; Zardzewiały, M.; Belcar, J. Effects of ozone application on microbiological stability and content of sugars and bioactive compounds in the fruit of the saskatoon berry (Amelanchier alnifolia Nutt.). Molecules 2022, 27, 6446. [Google Scholar] [CrossRef]
- Kużniar, P.; Belcar, J.; Zardzewiały, M.; Basara, O.; Gorzelany, J. Effect of Ozonation on the Mechanical, Chemical, and Microbiological Properties of Organically Grown Red Currant (Ribes rubrum L.) Fruit. Molecules 2022, 27, 8231. [Google Scholar] [CrossRef]
- Gorzelany, J.; Basara, O.; Kuźniar, P.; Pawłowska, M.; Belcar, J. Effect of ozone treatment on mechanical and chemical properties of sea-buckthorn (Hippophae rhamnoides L.) fruit. Acta Univ. Cibinensis Ser. E Food Technol. 2022, 2, 183–194. [Google Scholar] [CrossRef]
- Cheng, K.; Peng, B.; Yuan, F. Volatile composition of eight blueberry cultivars and their relationship with sensory attributes. Flavour Fragr. J. 2020, 35, 443–453. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.-H.; Kim, S.-D.; Chang, M.-S.; Jo, I.-S.; Kim, S.-J.; Hwang, K.T.; Jo, H.-B.; Kim, J.-H. Chemical composition, functional constituents, and antioxidant activities of berry fruits produced in Korea. J. Korean Soc. Food Sci. Nutr. 2015, 44, 1295–1303. [Google Scholar] [CrossRef]
- MacKenzie, J.O.; Eiford, E.M.A.; Subramanian, J.; Brandt, R.W.; Stone, K.E.; Sulivan, J.A. Performance of five haskap (Lonicera caeurlea L.) cultivars and effect of hexanal on postharvest quality. Can. J. Plant Sci. 2018, 98, 432–443. [Google Scholar] [CrossRef] [Green Version]
- Gorzelany, J.; Belcar, J.; Kuźniar, P.; Niedbała, G.; Pentoś, K. Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning. Agriculture 2022, 12, 200. [Google Scholar] [CrossRef]
- Djordjević, B.S.; Djurovic, D.B.; Zec, G.D.; Meland, M.O.; Fotiric Aksic, M.M. Effect of shoot age on biological and chemical properties of red currant (Ribes rubrum L.) cultivars. Folia Hort. 2020, 32, 291–305. [Google Scholar] [CrossRef]
- Du, J.; Cullen, J.J.; Buettner, G.R. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta 2012, 1826, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Jurnikova, T.; Rop, O.; Mlcek, J.; Sochor, J.; Balla, S.; Szekeres, L.; Hegedusova, A.; Hubalek, J.; Adam, V.; Kizek, R. Phenolic profiles of edible honeysuckle berries (Genus Lonicera) and Their Biological Effects. Molecules 2012, 17, 61–79. [Google Scholar] [CrossRef] [Green Version]
- Martinsen, B.K.; Aaby, K.; Skrede, G. Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams. Food Chem. 2020, 316, 126297. [Google Scholar] [CrossRef]
- Jabłońska-Ryś, E.; Zalewska-Korona, M.; Kalbarczyk, J. Antioxidant capacity, ascorbic acid and phenolics content in wild edible fruits. J. Fruit Ornam. Plant Res. 2009, 17, 115–120. [Google Scholar]
- Paliková, I.; Valentová, K.; Oborná, I.; Ulrichová, J. Protectivity of blue honeysuckle extract against oxidative human endothelilal cells and rat hepatocyte damage. J. Agric. Food Chem. 2009, 57, 6584–6589. [Google Scholar] [CrossRef]
- Khattab, R.; Brooks, M.S.-L.; Ghanem, A. Phenolic analyses of haskap berries (Lonicera caerulea L.): Spectrophotometry Versus High Performance Liquid Chromatography. Int. J. Food Prop. 2016, 19, 1708–1725. [Google Scholar] [CrossRef] [Green Version]
- Raudsepp, P.; Anton, D.; Roasto, M.; Meremäe, K.; Pedastsarr, P.; Mäesaar, M.; Raal, A.; Laikoja, K.; Pȕssa, T. The antioxidative and antimicrobial properties of the blue honeysuckle (Lonicera caerulea L.), Siberian rhubarb (Rheum rhaponticum L.) and some other plants, compared to ascorbic acid and sodium nitrate. Food Control 2013, 31, 129–135. [Google Scholar] [CrossRef]
- Rop, O.; Řezníček, V.; Mlček, J.; Juríková, T.; Balík, J.; Sochor, J.; Kramářová, D. Antioxidant and radical oxygen species scavenging activities of 12 cultivars of blue honeysuckle fruit. Hort. Sci. 2011, 38, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Zdarilová, A.; Svobodvaá, A.R.; Chytilová, K.; Simánek, V.; Ulrichová, J. Polyphenolic fraction of Lonicera caerulea L. fruits reduces oxidative stress and inflammatory markers induced by lipopolysaccharide in gingival fibroblasts. Food Chem. Toxicol. 2010, 48, 1555–1561. [Google Scholar] [CrossRef]
- Kant, V.; Mehta, M.; Varshneya, C. Antioxidant potential and total phenolic contents of seabuckthorn (Hippophae rhamnoides) pomace. Free. Radic. Antioxid. 2012, 2, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Vasco, C.; Ruales, J.; Kamal-Eldin, A. Total phenolic compound and antioxidant capacities of major fruits from Ecuador. Food Chem. 2008, 4, 816–823. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S.; Gorzelany, J.; Matłok, N. The effect of different maturity stages on phytochemical composition and antioxidant capacity of cranberry cultivars. Eur. Food Res. Technol. 2017, 244, 705–719. [Google Scholar] [CrossRef] [Green Version]
- Truong, V.D.; McFeeters, R.F.; Thompson, R.T.; Dean, L.L.; Shofran, B. Phenolic Acid Content and Composition in Leaves and Roots of Common Commercial Sweet Potato (Ipomea batatas L.) Cultivars in the United States. J. Food Sci. 2007, 72, 343–349. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.H.; Koo, B.; Kim, H.-B.; Jo, Y.-Y.; Kweon, H.; Ju, W.-T. Flavonoids analysis in leaves and fruits of Korean mulberry cultivar, Baekokwang having white fruits. Int. J. Ind. Entomol. 2020, 41, 45–50. [Google Scholar] [CrossRef]
- Ju, W.-T.; Kwon, O.-C.; Kim, H.-B.; Sung, G.-B.; Kim, H.-W.; Kim, Y.-S. Qualitative and quantitative analysis of flavonoids from 12 species of Korean mulberry leaves. J. Food Sci. Technol. 2018, 55, 1789–1796. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Prior, R. Systematic Identification and Characterization of Anthocyanins by HPLC-ESI-MS/MS in Common Foods in the United States: Fruits and Berries. J. Agric. Food Chem. 2005, 53, 2589–2599. [Google Scholar] [CrossRef]
- Semwal, R.; Joshi, S.K.; Semwal, R.B.; Semwal, D.K. Health benefits and limiatation of rutin—A natural flavonoid with high nutraceutical value. Phytochem. Lett. 2021, 46, 119–128. [Google Scholar] [CrossRef]
- Kithama, A.; De Silva, H.; Rupasinghe, H.P.V. Polyphenols composition and anti-diabetic properties in vitro oh haskap (Lonicera caerulea L.) beries in relation to cultivar harvesting date. J. Food Compos. Anal. 2019, 88, 103402. [Google Scholar] [CrossRef]
- Raudonė, L.; Liaudanskas, M.; Vilkickytė, G.; Kviklys, D.; Žwikas, V.; Viškelis, P. Phenolic profiles, antioxidant activity and phenotypic characterization of Lonicera caerulea L. berries, cultivated in Lithuania. Antioxidants 2021, 10, 115. [Google Scholar] [CrossRef]
- Senica, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue honeysuckle (Lonicera cearulea L. subs. Edulis) berry; A rich source of some nutrients and their differences among four different cultivars. Sci. Hortic. 2018, 19, 215–221. [Google Scholar] [CrossRef]
- Cheng, Z.; Bao, Y.; Li, Z.; Wang, J.; Wang, M.; Wang, S.; Wang, Y.; Wang, Y.; Li, B. Lonicera caerulea (Haskap berries): A review of development traceability, functional value, product development status, future opportunities and challenges. Crit. Rev. Food Sci. Nutr. 2022, 1–25. [Google Scholar] [CrossRef]
- Wojdyło, A.; Jáuregui, P.N.N.; Carbonell-Barrachina, A.A.; Oszmiański, J.; Golis, T. Varability of Phytochemical Properties and content of bioactive compounds in Lonicera caerulea L. var. kamtschatica Berries. J. Agric. Food Chem. 2013, 61, 12072–12084. [Google Scholar] [CrossRef]
- PN-EN 12147:2000; Fruit and Vegetable Juices—Determination of Titrable Acidity. Polish Committee for Standardization: Warsaw, Poland, 2000.
- PN-A-04019:1998; Food Products—Determination of Vitamin C Content. Polish Committee for Standardization: Warsaw, Poland, 1998.
- Jurčaga, L.; Bobko, M.; Kolesárová, A.; Bobková, A.; Demianová, A.; Hašćík, P.; Belej, L.; Mendelová, A.; Bučko, O.; Kročko, M.; et al. Blackcurrant (Ribes nigrum L.) and Kamchatka Honeysuckle (Lonicera caerulea var. Kamtschatica) Extract Effects on Technological Properties, Sensory Quality, and Lipid Oxidation of Raw-Cooked Meat Product (Frankfurters). Foods 2021, 10, 2957. [Google Scholar] [CrossRef]
Lonicera kamtschatica | Lonicera emphyllocalyx | |||||
---|---|---|---|---|---|---|
‘Duet’ | ‘Aurora’ | ‘Colin’ | ‘Lori’ | ‘Willa’ | ||
Ascorbic acid content [mg·100 g−1 f.w.] | 44.40 b ± 0.4 | 62.60 e ± 0.6 | 49.70 c ± 0.7 | 51.30 d ± 0.3 | 36.80 a ± 0.5 | |
Antioxidant activity | DPPH [% inhibition] | 89.62 d ± 0.01 | 68.68 a ± 0.08 | 72.11 b ± 0.01 | 79.02 b ± 0.02 | 68.97 a ± 0.04 |
FRAP [μM Fe2 +·g−1 f.w.] | 37.67 e ± 0.07 | 30.52 a ± 0.02 | 36.77 d ± 0.07 | 33.17 b ± 0.07 | 35.22 c ± 0.02 | |
ABTS [mM TE·100 g−1 f.w.] | 2.26 b ± 0.06 | 1.97 a ± 0.07 | 1.91 a ± 0.01 | 2.12 b ± 0.02 | 2.21 c ± 0.04 |
No. | Compund [mg·100 g−1] | Rt | λmax | [M-H]+/− m/z | Lonicera emphyllocalyx | Lonicera kamtschatica | ||||
---|---|---|---|---|---|---|---|---|---|---|
min | nm | MS | MS/MS | ‘Lori’ | ‘Colin’ | ‘Willa’ | ‘Aurora’ | ‘Duet’ | ||
Anthocyanins | ||||||||||
1. | (+)Catechin-Cyanidin-3-O-glucoside | 1.99 | 280, 522 | 737+ | 449, 287 | 1.30 a ± 0.10 | 1.21 a ± 0.04 | 1.35 a ± 0.31 | 1.56 a ± 0.23 | 1.41 a ± 0.21 |
2. | Pelargonidin 3-O-rutinoside | 2.01 | 279, 520 | 579+ | 271 | 1.12 bc ± 0.10 | 0.87 ab ± 0.05 | 0.67 a ± 0.03 | 0.63 a ± 0.44 | 1.30 c ± 0.31 |
3. | (−)Epicatechin-Cyanidin-3-O-glucoside | 2.08 | 279, 520 | 737+ | 449, 287 | 1.67 b ± 0.22 | 1.05 a ± 0.01 | 1.14 a ± 0.19 | 1.18 a ± 0.14 | 2.09 b ± 0.48 |
4. | Cyanidin 3,5-O-diglucoside | 2.20 | 276, 512 | 611+ | 287 | 26.31 c ± 1.48 | 17.50 ab ± 0.56 | 20.40 bc ± 2.42 | 14.00 a ± 1.54 | 40.49 d ± 6.62 |
5. | Malvidin 3-O-glucoside | 2.33 | 279, 522 | 493+ | 331 | 1.70 d ± 0.27 | 1.36 bc ± 0.10 | 1.05 b ± 0.20 | 0.72 a ± 0.10 | 1.47 cd ± 0.14 |
6. | Cyanidin 3-O-glucoside | 2.61 | 279, 515 | 449+ | 287 | 355.73 b ± 8.40 | 259.41 a ± 2.03 | 364.89 b ± 33.45 | 374.62 b ± 18.00 | 382.18 b ± 28.34 |
7. | Cyanidin 3-O-rutinoside | 2.93 | 279, 517 | 595+ | 287 | 33.73 d ± 0.20 | 32.06 cd ± 1.82 | 30.67 c ± 3.07 | 16.06 b ± 1.00 | 12.48 a ± 0.45 |
8. | Cyanidin 3-O-galactoside | 3.05 | 278, 521 | 449+ | 287 | 0.12 a ± 0.03 | 0.82 d ± 0.09 | 0.63 c ± 0.06 | 0.37 b ± 0.01 | 0.38 b ± 0.01 |
9. | Pelagonidin 3-O-glucoside | 3.16 | 277, 502 | 433+ | 271 | 1.40 a ± 0.04 | 2.05 b ± 0.13 | 2.23 b ± 0.37 | 3.24 c ± 0.27 | 1.28 a ± 0.14 |
10. | Pelargonidin 3-O-galactoside | 3.28 | 277, 505 | 433+ | 271 | 0.32 b ± 0.04 | 0.83 c ± 0.04 | 0.38 b ± 0.03 | 0.76 c ± 0.01 | 0.19 a ± 0.06 |
11. | Peonidin 3-O-glucoside | 3.46 | 279, 517 | 463+ | 301 | 21.42 c ± 0.55 | 14.27 ab ± 0.06 | 16.15 b ± 2.00 | 16.29 b ± 1.56 | 12.57 a ± 0.40 |
12. | Cyanidin 3-(6”-acetylo)-glucoside | 3.59 | 279, 519 | 591+ | 449, 287 | 2.52 c ± 0.02 | 2.75 d ± 0.17 | 1.69 b ± 0.10 | 0.79 a ± 0.04 | 0.63 a ± 0.06 |
13. | Cyanidin 3-O-rutinoside-5-O-dlucoside | 3.79 | 279, 522 | 757+ | 595, 287 | 0.13 b ± 0.03 | 0.15 b ± 0.03 | 0.43 c ± 0.05 | 0.39 c ± 0.02 | 0.07 a ± 0.01 |
14. | Delphinidin 3-O-glucoside-pentoside | 3.77 | 279, 522 | 597+ | 303 | 0.26 c ± 0.07 | 0.16 b ± 0.00 | 0.26 c ± 0.01 | 0.37 d ± 0.01 | 0.09 a ± 0.02 |
Phenolic acids | ||||||||||
15. | Neochlorogenic acid | 2.25 | 288sh, 324 | 353− | 191 | 0.68 b ± 0.02 | 0.42 a ± 0.01 | 0.76b ± 0.10 | 1.18c ± 0.01 | 1.28d ± 0.02 |
16. | Chlorogenic acid | 2.87 | 288sh, 324 | 353− | 191 | 6.92 a ± 0.26 | 8.82 b ± 0.48 | 9.94b ± 1.41 | 13.44c ± 0.39 | 9.71b ± 0.81 |
Flavon-3-ols | ||||||||||
17. | Procyanidin dimer B-type | 3.11 | 279 | 577− | 289 | 2.10 b ± 0.25 | 1.46 a ± 0.05 | 2.35 b ± 0.22 | 1.97 b ± 0.10 | 2.32 b ± 0.36 |
Flavonoids | ||||||||||
18. | Quercetin 3-O-rutinoside-7-O-rhamnoside | 4.03 | 255, 350 | 755− | 609, 301 | 0.30 b ± 0.00 | 0.45 c ± 0.02 | 0.30 b ± 0.02 | 0.56 d ± 0.01 | 0.21 a ± 0.04 |
19. | Quercetin 3-O-arabinoside-glucoside | 4.22 | 255, 355 | 595− | 301 | 4.44 e ± 0.20 | 3.06 d ± 0.06 | 0.88 a ± 0.16 | 2.02 c ± 0.07 | 1.12 b ± 0.01 |
20. | Quercetin 3-O-rutinoside | 4.54 | 255, 355 | 609− | 301 | 3.04 a ± 0.09 | 2.65 a ± 0.15 | 4.75 b ± 0.66 | 14.08 c ± 0.29 | 5.32 b ± 0.11 |
21. | Quercetin 3-O-glucoside | 4.72 | 255, 355 | 463− | 301 | 1.88 c ± 0.02 | 1.32 b ± 0.02 | 0.98 a ± 0.15 | 2.46 d ± 0.25 | 1.92 c ± 0.27 |
22. | Quercetin 3-O-pentoside | 4.88 | 255, 355 | 433− | 301 | 0.15 a ± 0.01 | 0.20 ab ± 0.03 | 0.17 a ± 0.07 | 0.29 b ± 0.05 | 0.87 c ± 0.11 |
23. | Quercetin 3-O-rhamnoside | 3.95 | 255, 355 | 447− | 301 | 0.11 a ± 0.01 | 0.43 c ± 0.06 | 0.23 b ± 0.04 | 0.53 d ± 0.04 | 0.44 c ± 0.02 |
24. | Kaempferol 3-O-rutinoside | 5.09 | 265, 347 | 593− | 285 | 0.06 a ± 0.00 | 0.07 a ± 0.01 | 0.08 a ± 0.02 | 0.41 b ± 0.05 | 0.04 a ± 0.02 |
25. | 3,4–di-O-caffeoyl-quinic acid | 5.25 | 288sh, 324 | 515− | 353 | 1.90 b ± 0.15 | 1.87 b ± 0.08 | 3.23 c ± 0.38 | 2.92 c ± 0.02 | 1.22 a ± 0.02 |
26. | Quercetin 3-O-(6”-acetylo)-glucoside | 5.50 | 255, 333 | 505− | 463, 301 | 0.92 b ± 0.01 | 1.06 c ± 0.05 | 0.66 a ± 0.06 | 1.11 c ± 0.04 | 0.89 b ± 0.13 |
Total polyphenols content [mg GAE·100 g f.w.] | 747.85 e ± 0.05 | 522.06 c ± 0.06 | 416.94 a ± 0.04 | 597.29 d ± 0.04 | 506.29 b ± 0.06 |
Lonicera kamtschatica | Lonicera emphyllocalyx | ||||
---|---|---|---|---|---|
‘Aurora’ | ‘Duet’ | ‘Lori’ | ‘Colin’ | ‘Willa’ | |
Fructose content [mg·100 g−1] | 1503.00 b ± 5 | 2109.00 c ± 2 | 1179.00 a ± 9 | 1163.00 a ± 4 | 2087.00 c ± 4 |
Glucose content [mg·100 g−1] | 2963.00 c ± 3 | 2666.00 b ± 1 | 2943.00 c ± 5 | 2795.00 bc ± 5 | 2125.00 a ± 3 |
Sucrose content [mg·100 g−1] | 275.00 c ± 4 | 192.00 b ± 6 | 192.00 b ± 1 | 171.00 b ± 5 | 132.00 a ± 5 |
Total sugar content [mg·100 g−1] | 4741.00 bc ± 0.4 | 4968.50 c ± 0.4 | 4315.50 ab ± 0.8 | 4129.50 a ± 0.1 | 4345.50 ab ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorzelany, J.; Basara, O.; Kapusta, I.; Paweł, K.; Belcar, J. Evaluation of the Chemical Composition of Selected Varieties of L. caerulea var. kamtschatica and L. caerulea var. emphyllocalyx. Molecules 2023, 28, 2525. https://doi.org/10.3390/molecules28062525
Gorzelany J, Basara O, Kapusta I, Paweł K, Belcar J. Evaluation of the Chemical Composition of Selected Varieties of L. caerulea var. kamtschatica and L. caerulea var. emphyllocalyx. Molecules. 2023; 28(6):2525. https://doi.org/10.3390/molecules28062525
Chicago/Turabian StyleGorzelany, Józef, Oskar Basara, Ireneusz Kapusta, Korfanty Paweł, and Justyna Belcar. 2023. "Evaluation of the Chemical Composition of Selected Varieties of L. caerulea var. kamtschatica and L. caerulea var. emphyllocalyx" Molecules 28, no. 6: 2525. https://doi.org/10.3390/molecules28062525
APA StyleGorzelany, J., Basara, O., Kapusta, I., Paweł, K., & Belcar, J. (2023). Evaluation of the Chemical Composition of Selected Varieties of L. caerulea var. kamtschatica and L. caerulea var. emphyllocalyx. Molecules, 28(6), 2525. https://doi.org/10.3390/molecules28062525