Assessment of In Silico and In Vitro Selpercatinib Metabolic Stability in Human Liver Microsomes Using a Validated LC-MS/MS Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Silico SLP Metabolic Stability
2.2. LC–MS/MS Method
2.3. Validation Parameters
2.3.1. Specificity
2.3.2. Sensitivity and Linearity
2.3.3. Precision and Accuracy
2.3.4. Matrix Effects and Extraction Recovery
2.4. Metabolic Stability
3. Material and Methods
3.1. Materials and Instruments
3.2. In Silico SLP Metabolic Stability Assessment
3.3. LC-MS/MS Analytical Methodology
3.3.1. Liquid Chromatographic
3.3.2. Mass Spectrometry
3.4. SLP Working Solutions
3.5. SLP Calibration Standards
3.6. Method Validation
3.6.1. Specificity
3.6.2. Linearity and Sensitivity
3.6.3. Accuracy and Precision
3.6.4. Matrix Effect and Extraction Recovery
3.7. SLP Metabolic Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Mattiuzzi, C.; Lippi, G. Current Cancer Epidemiology. J. Epidemiol. Glob. Health 2019, 9, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Barinaga, M. From Bench Top to Bedside. Science 1997, 278, 1036–1039. [Google Scholar] [CrossRef] [PubMed]
- Passiglia, F.; Bertolaccini, L.; Del Re, M.; Facchinetti, F.; Ferrara, R.; Franchina, T.; Malapelle, U.; Menis, J.; Passaro, A.; Pilotto, S.; et al. Diagnosis and treatment of early and locally advanced non-small-cell lung cancer: The 2019 AIOM (Italian Association of Medical Oncology) clinical practice guidelines. Crit. Rev. Oncol. Hematol. 2020, 148, 102862. [Google Scholar] [CrossRef] [PubMed]
- Li, A.Y.; McCusker, M.G.; Russo, A.; Scilla, K.A.; Gittens, A.; Arensmeyer, K.; Mehra, R.; Adamo, V.; Rolfo, C. RET fusions in solid tumors. Cancer Treat. Rev. 2019, 81, 101911. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.E.; Subbiah, V.; Oxnard, G.R.; Bauer, T.M.; Velcheti, V.; Lakhani, N.J.; Besse, B.; Park, K.; Patel, J.D.; Cabanillas, M.E.; et al. A phase 1 study of LOXO-292, a potent and highly selective RET inhibitor, in patients with RET-altered cancers. J. Clin. Oncol. 2018, 36, 102. [Google Scholar] [CrossRef]
- Bradford, D.; Larkins, E.; Mushti, S.L.; Rodriguez, L.; Skinner, A.M.; Helms, W.S.; Price, L.S.; Zirkelbach, J.F.; Li, Y.; Liu, J. FDA approval summary: Selpercatinib for the treatment of lung and thyroid cancers with RET gene mutations or fusions. Clin. Cancer Res. 2021, 27, 2130–2135. [Google Scholar] [CrossRef]
- Shankar, A.; Kurzawinski, T.; Ross, E.; Stoneham, S.; Beale, T.; Proctor, I.; Hulse, T.; Simpson, K.; Gaze, M.N.; Cattaneo, E.; et al. Treatment outcome with a selective RET tyrosine kinase inhibitor selpercatinib in children with multiple endocrine neoplasia type 2 and advanced medullary thyroid carcinoma. Eur. J. Cancer 2021, 158, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Şentürk, R.; Wang, Y.; Schinkel, A.H.; Beijnen, J.H.; Sparidans, R.W. Quantitative bioanalytical assay for the selective RET inhibitors selpercatinib and pralsetinib in mouse plasma and tissue homogenates using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2020, 1147, 122131. [Google Scholar] [CrossRef]
- Wang, W.; Shi, L.; Jin, L.; Wang, K. Determination of selpercatinib, a RET kinase inhibitor, in rat plasma and its application to a pharmacokinetic study. Biomed. Chromatogr. 2021, 35, e5052. [Google Scholar] [CrossRef]
- Tyzack, J.D.; Kirchmair, J. Computational methods and tools to predict cytochrome P450 metabolism for drug discovery. Chem. Biol. Drug Des. 2019, 93, 377–386. [Google Scholar] [CrossRef]
- Marothu Vamsi, K.; Kantamaneni, P.; Gorrepati, M. In Vitro Metabolic Stability of Drugs and Applications of LC-MS in Metabolite Profiling. In Drug Metabolism; Katherine, D., Ed.; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- Houston, J.B. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem. Pharmacol. 1994, 47, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Obach, R.S.; Baxter, J.G.; Liston, T.E.; Silber, B.M.; Jones, B.C.; MacIntyre, F.; Rance, D.J.; Wastall, P. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J. Pharmacol. Exp. Ther. 1997, 283, 46–58. [Google Scholar] [PubMed]
- Attwa, M.W.; Abdelhameed, A.S.; Alsaif, N.A.; Kadi, A.A.; AlRabiah, H. A validated LC-MS/MS analytical method for the quantification of pemigatinib: Metabolic stability evaluation in human liver microsomes. RSC Adv. 2022, 12, 20387–20394. [Google Scholar] [CrossRef] [PubMed]
- Abdelhameed, A.S.; Kadi, A.A.; Attwa, M.W.; AlRabiah, H. Validated LC-MS/MS assay for quantification of the newly approved tyrosine kinase inhibitor, dacomitinib, and application to investigating its metabolic stability. PLoS ONE 2019, 14, e0214598. [Google Scholar] [CrossRef] [Green Version]
- Attwa, M.W.; AlRabiah, H.; Mostafa, G.A.E.; Kadi, A.A. Development of an LC-MS/MS Method for Quantification of Sapitinib in Human Liver Microsomes: In Silico and In Vitro Metabolic Stability Evaluation. Molecules 2023, 28, 2322. [Google Scholar] [CrossRef]
- Amer, S.M.; Kadi, A.A.; Darwish, H.W.; Attwa, M.W. LC–MS/MS method for the quantification of masitinib in RLMs matrix and rat urine: Application to metabolic stability and excretion rate. Chem. Cent. J. 2017, 11, 136. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Kirchmair, J. Software for metabolism prediction. In Drug Metabolism Prediction; Wiley-VCH: Weinheim, Germany, 2014; pp. 27–52. [Google Scholar]
- Hunt, P.A.; Segall, M.D.; Tyzack, J.D. WhichP450: A multi-class categorical model to predict the major metabolising CYP450 isoform for a compound. J. Comput.-Aided Mol. Des. 2018, 32, 537–546. [Google Scholar] [CrossRef]
- Shin, Y.G.; Le, H.; Khojasteh, C.; ECA Hop, C. Comparison of metabolic soft spot predictions of CYP3A4, CYP2C9 and CYP2D6 substrates using MetaSite and StarDrop. Comb. Chem. High Throughput Screen. 2011, 14, 811–823. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Bioanalytical Method Validation; Guidance for Industry; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2018.
- McNaney, C.A.; Drexler, D.M.; Hnatyshyn, S.Y.; Zvyaga, T.A.; Knipe, J.O.; Belcastro, J.V.; Sanders, M. An automated liquid chromatography-mass spectrometry process to determine metabolic stability half-life and intrinsic clearance of drug candidates by substrate depletion. ASSAY Drug Dev. Technol. 2008, 6, 121–129. [Google Scholar] [CrossRef]
- Leahy, D.E. Integrating invitro ADMET data through generic physiologically based pharmacokinetic models. Expert Opin. Drug Metab. Toxicol. 2006, 2, 619–628. [Google Scholar] [CrossRef]
- Alrabiah, H.; Kadi, A.A.; Attwa, M.W.; Abdelhameed, A.S. A simple liquid chromatography-tandem mass spectrometry method to accurately determine the novel third-generation EGFR-TKI naquotinib with its applicability to metabolic stability assessment. RSC Adv. 2019, 9, 4862–4869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadi, A.A.; Darwish, H.W.; Abuelizz, H.A.; Alsubi, T.A.; Attwa, M.W. Identification of reactive intermediate formation and bioactivation pathways in Abemaciclib metabolism by LC-MS/MS: In vitro metabolic investigation. R. Soc. Open Sci. 2019, 6, 181714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attwa, M.W.; AlRabiah, H.; Kadi, A.A. Development and Validation of a Rapid LC-MS/MS Method for Quantifying Alvocidib: In Silico and In Vitro Metabolic Stability Estimation in Human Liver Microsomes. Molecules 2023, 28, 2368. [Google Scholar] [CrossRef]
- Busby, W.F., Jr.; Ackermann, J.M.; Crespi, C.L. Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450. Drug Metab. Dispos. 1999, 27, 246–249. [Google Scholar]
- Störmer, E.; Roots, I.; Brockmöller, J. Benzydamine N-oxidation as an index reaction reflecting FMO activity in human liver microsomes and impact of FMO3 polymorphisms on enzyme activity. Br. J. Clin. Pharmacol. 2000, 50, 553–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouin-Fortunet, H.; Tinel, M.; Descatoire, V.; Letteron, P.; Larrey, D.; Geneve, J.; Pessayre, D. Inactivation of cytochrome P-450 by the drug methoxsalen. J. Pharmacol. Exp. Ther. 1986, 236, 237–247. [Google Scholar]
- Słoczyńska, K.; Gunia-Krzyżak, A.; Koczurkiewicz, P.; Wójcik-Pszczoła, K.; Żelaszczyk, D.; Popiół, J.; Pękala, E. Metabolic stability and its role in the discovery of new chemical entities. Acta Pharm. 2019, 69, 345–361. [Google Scholar] [CrossRef] [Green Version]
SLP Nominal Concentrations (ng/mL) | Mean | SD | RSD (%) | Accuracy (%) | Recovery |
---|---|---|---|---|---|
1 (LLQC) | 0.95 | 0.02 | 2.08 | −5.08 | 94.92 |
3 (LQC) | 3.09 | 0.03 | 1.00 | 3.15 | 103.15 |
15 | 15.16 | 0.19 | 1.28 | 1.07 | 101.07 |
50 | 50.98 | 1.10 | 2.15 | 1.97 | 101.97 |
100 | 105.06 | 1.47 | 1.40 | 5.06 | 105.06 |
300 | 303.45 | 2.36 | 0.78 | 1.15 | 101.15 |
500 | 502.91 | 1.41 | 0.28 | 0.58 | 100.58 |
900 (MQC) | 898.67 | 4.33 | 0.48 | −0.15 | 99.85 |
1500 | 1492.58 | 11.37 | 0.76 | −0.49 | 99.51 |
2400 (HQC) | 2387.68 | 34.32 | 1.44 | −0.51 | 99.49 |
3000 | 3025.03 | 36.16 | 1.20 | 0.83 | 100.83 |
SLP in HLM’s Matrix (ng/mL) | Intra-Batch Assay (Twelve Replicates in the Same Day) | Inter-Batch Assay (Six Replicates in Three Consecutive Days) | ||||||
---|---|---|---|---|---|---|---|---|
1 (LLQC) | 3 (LQC) | 900 (MQC) | 2400 (HQC) | 1 (LLQC) | 3 (LQC) | 900 (MQC) | 2400 (HQC) | |
Mean | 0.95 | 3.09 | 898.67 | 2387.68 | 0.93 | 3.16 | 912.08 | 2375.59 |
SD | 0.02 | 0.03 | 4.33 | 34.32 | 0.02 | 0.10 | 15.59 | 24.66 |
Precision (%RSD) | 2.08 | 1.00 | 0.48 | 1.44 | 2.01 | 3.08 | 1.71 | 1.04 |
% Accuracy | −5.08 | 3.15 | −0.15 | −0.51 | −6.56 | 5.22 | 1.34 | −1.02 |
Recovery (%) | 94.92 | 103.15 | 99.85 | 99.49 | 93.44 | 105.22 | 101.34 | 98.98 |
Time (min) | Mean a (ng/mL) | X b | LN X | Linearity Parameters |
---|---|---|---|---|
0 | 626 | 100.00 | 4.61 | Regression equation: y = −0.0291x + 4.6221 |
2.5 | 586 | 93.61 | 4.54 | |
7.5 | 527 | 84.19 | 4.43 | R2 = 0.9971 |
15 | 418 | 66.77 | 4.20 | |
20 | 353 | 56.39 | 4.03 | Slope: −0.0291 |
30 | 264 | 42.17 | 3.74 | |
40 | 238 | 38.02 | 3.64 | t1/2: 23.82 min and |
50 | 227 | 36.26 | 3.59 | Clint: 34 mL/min/kg |
60 | 218 | 34.82 | 3.55 | |
70 | 197 | 31.47 | 3.45 |
Analytes | Methanol | ACN | Solid Phase Extraction | Protein Precipitation | C18 or C8 Column | PFP Column |
---|---|---|---|---|---|---|
SLP | 1.71 min | 2.1 min | Low recovery | High recovery | 2.65 min | 2.1 min |
Tailed | Perfect | Irreproducible | Reproducible | Tailed | Perfect | |
FLG | 1.34 min | 1.1 min | Low recovery | High recovery | 2.34 min | 1.1 min |
Overlapped | Perfect | Irreproducible | Reproducible | Perfect | Perfect |
Drug | ESI Mode | Rt | Precursor (m/z) | Qualification Traces (m/z) | Quantification Traces (m/z) | Collision Energy (CE, eV) | Cone Voltage (V) |
---|---|---|---|---|---|---|---|
SLP | +ve | 2.1 | 526.0 | 52.98 | 122.0 | 66/28 | 42 |
FLG (IS) | +ve | 1.1 | 426.0 | 223.17 | 291.11 | 24/38 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attwa, M.W.; AlRabiah, H.; Mostafa, G.A.E.; Bakheit, A.H.; Kadi, A.A. Assessment of In Silico and In Vitro Selpercatinib Metabolic Stability in Human Liver Microsomes Using a Validated LC-MS/MS Method. Molecules 2023, 28, 2618. https://doi.org/10.3390/molecules28062618
Attwa MW, AlRabiah H, Mostafa GAE, Bakheit AH, Kadi AA. Assessment of In Silico and In Vitro Selpercatinib Metabolic Stability in Human Liver Microsomes Using a Validated LC-MS/MS Method. Molecules. 2023; 28(6):2618. https://doi.org/10.3390/molecules28062618
Chicago/Turabian StyleAttwa, Mohamed W., Haitham AlRabiah, Gamal A.E. Mostafa, Ahmed H. Bakheit, and Adnan A. Kadi. 2023. "Assessment of In Silico and In Vitro Selpercatinib Metabolic Stability in Human Liver Microsomes Using a Validated LC-MS/MS Method" Molecules 28, no. 6: 2618. https://doi.org/10.3390/molecules28062618
APA StyleAttwa, M. W., AlRabiah, H., Mostafa, G. A. E., Bakheit, A. H., & Kadi, A. A. (2023). Assessment of In Silico and In Vitro Selpercatinib Metabolic Stability in Human Liver Microsomes Using a Validated LC-MS/MS Method. Molecules, 28(6), 2618. https://doi.org/10.3390/molecules28062618