High Conductivity, Semiconducting, and Metallic PEDOT:PSS Electrode for All-Plastic Solar Cells
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of the Flexible Highly Conductivity PEDOT:PSS Electrode
3.2. Fabrication of Flexible All-Plastic Solar Cells
3.3. Fabrication of ITO-Free OSCs
3.4. Fabrication of ITO-Based OSCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chong, K.; Xu, X.; Meng, H.; Xue, J.; Yu, L.; Ma, W.; Peng, Q. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination. Adv. Mater. 2022, 34, 2109516. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chen, Z.; Lu, G.; Yu, N.; Li, C.; Gao, J.; Gu, X.; Hao, X.; Lu, G.; Tang, Z.; et al. Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. Adv. Mater. 2022, 34, 2204718. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Nie, W.; Tsai, H.; Wang, N.; Huang, H.; Cheng, Y.; Wen, R.; Ma, L.; Yan, F.; Xia, Y. PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. Adv. Sci. 2019, 6, 1900813. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Lan, L.; Chen, S.; Huang, F.; Shi, H.; Chen, W.; Xia, H.; Sun, K.; Yang, C. Recent Progress in Flexible and Stretchable Organic Solar Cells. Adv. Funct. Mater. 2020, 30, 2002529. [Google Scholar] [CrossRef]
- Jana, R.; Hajra, S.; Rajaitha, P.M.; Mistewicz, K.; Kim, H.J. Recent advances in multifunctional materials for gas sensing applications. J. Environ. Chem. Eng. 2022, 10, 108543. [Google Scholar] [CrossRef]
- Rajaitha, P.M.; Hajra, S.; Mistewicz, K.; Panda, S.; Sahu, M.; Dubal, D.; Yamauchi, Y.; Kim, H.J. Multifunctional materials for photo-electrochemical water splitting. J. Mater. Chem. A 2022, 10, 15906–15931. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jung, J.H.; Lee, D.E.; Joo, J. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Met. 2002, 126, 311–316. [Google Scholar] [CrossRef]
- Ouyang, J.; Xu, Q.; Chu, C.-W.; Yang, Y.; Li, G.; Shinar, J. On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 2004, 45, 8443–8450. [Google Scholar] [CrossRef]
- Kim, W.H.; Mäkinen, A.J.; Nikolov, N.; Shashidhar, R.; Kim, H.; Kafafi, Z.H. Molecular organic light-emitting diodes using highly conducting polymers as anodes. Appl. Phys. Lett. 2002, 80, 3844–3846. [Google Scholar] [CrossRef]
- Xia, Y.; Cui, Y.; Huang, P.; Wu, L.; Du, S.; Zhu, Y.; Lin, J.; Liu, X.; Zhong, G. Highly conductive film of PEDOT:PSS treated with cosolvent of formamide and methanol for flexible piezoresistive sensor applications. Appl. Phys. Lett. 2022, 120, 203302. [Google Scholar] [CrossRef]
- Hu, X.; Meng, X.; Zhang, L.; Zhang, Y.; Cai, Z.; Huang, Z.; Su, M.; Wang, Y.; Li, M.; Li, F.; et al. A Mechanically Robust Conducting Polymer Network Electrode for Efficient Flexible Perovskite Solar Cells. Joule 2019, 3, 2205–2218. [Google Scholar] [CrossRef]
- Teo, M.Y.; Kim, N.; Kee, S.; Kim, B.S.; Kim, G.; Hong, S.; Jung, S.; Lee, K. Highly Stretchable and Highly Conductive PEDOT:PSS/Ionic Liquid Composite Transparent Electrodes for Solution-Processed Stretchable Electronics. ACS Appl. Mater. Interfaces 2017, 9, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Kee, S.; Lee, S.H.; Lee, B.H.; Kahng, Y.H.; Jo, Y.-R.; Kim, B.-J.; Lee, K. Highly Conductive PEDOT:PSS Nanofibrils Induced by Solution-Processed Crystallization. Adv. Mater. 2014, 26, 2268–2272. [Google Scholar] [CrossRef] [PubMed]
- Ely, F.; Matsumoto, A.; Zoetebier, B.; Peressinotto, V.S.; Hirata, M.K.; de Sousa, D.A.; Maciel, R. Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices. Org. Electron. 2014, 15, 1062–1070. [Google Scholar] [CrossRef]
- Luo, J.; Billep, D.; Waechtler, T.; Otto, T.; Toader, M.; Gordan, O.; Sheremet, E.; Martin, J.; Hietschold, M.; Zahn, D.R.T.; et al. Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment. J. Mater. Chem. A 2013, 1, 7576–7583. [Google Scholar] [CrossRef]
- Alemu, D.; Wei, H.-Y.; Ho, K.-C.; Chu, C.-W. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ. Sci. 2012, 5, 9662–9671. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, K.; Ouyang, J. Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices. Adv. Mater. 2012, 24, 2436–2440. [Google Scholar] [CrossRef]
- Jin Bae, E.; Hun Kang, Y.; Jang, K.-S.; Yun Cho, S. Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment. Sci. Rep. 2016, 6, 18805. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Johansson, M.; Andersson, M.R.; Hummelen, J.C.; Inganäs, O. Polymer Photovoltaic Cells with Conducting Polymer Anodes. Adv. Mater. 2002, 14, 662–665. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, T.; Zhou, Y. Recent Advances of Synthesis, Properties, Film Fabrication Methods, Modifications of Poly(3,4-ethylenedioxythiophene), and Applications in Solution-Processed Photovoltaics. Adv. Funct. Mater. 2020, 30, 2006213. [Google Scholar] [CrossRef]
- Hu, L.; Song, J.; Yin, X.; Su, Z.; Li, Z. Research Progress on Polymer Solar Cells Based on PEDOT:PSS Electrodes. Polymers 2020, 12, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X. Doping and Design of Flexible Transparent Electrodes for High-Performance Flexible Organic Solar Cells: Recent Advances and Perspectives. Adv. Funct. Mater. 2021, 31, 2009399. [Google Scholar] [CrossRef]
- Hau, S.K.; Yip, H.-L.; Zou, J.; Jen, A.K.-Y. Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes. Org. Electron. 2009, 10, 1401–1407. [Google Scholar] [CrossRef]
- Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A.J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; et al. A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics. Science 2012, 336, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Khan, T.M.; Shim, J.W.; Dindar, A.; Fuentes-Hernandez, C.; Kippelen, B. All-plastic solar cells with a high photovoltaic dynamic range. J. Mater. Chem. A 2014, 2, 3492–3497. [Google Scholar] [CrossRef]
- Li, Z.F.; Liang, Y.; Zhong, Z.C.; Qian, J.Y.; Liang, G.J.; Zhao, K.; Shi, H.X.; Zhong, S.M.; Yin, Y.Z.; Tian, W.J. A low-work-function, high-conductivity PEDOT:PSS electrode for organic solar cells with a simple structure. Synth. Met. 2015, 210, 363–366. [Google Scholar] [CrossRef]
- Li, Z.F.; Qin, F.; Liu, T.F.; Ge, R.; Meng, W.; Tong, J.H.; Xiong, S.X.; Zhou, Y.H. Optical properties and conductivity of PEDOT:PSS films treated by polyethylenimine solution for organic solar cells. Org. Electron. 2015, 21, 144–148. [Google Scholar] [CrossRef]
- Meng, W.; Ge, R.; Li, Z.F.; Tong, J.H.; Liu, T.F.; Zhao, Q.; Xiong, S.X.; Jiang, F.Y.; Mao, L.; Zhou, Y.H. Conductivity Enhancement of PEDOT:PSS Films via Phosphoric Acid Treatment for Flexible All-Plastic Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 14089–14094. [Google Scholar] [CrossRef]
- Koppitz, M.; Wegner, E.; Rödlmeier, T.; Colsmann, A. Hot-Pressed Hybrid Electrodes Comprising Silver Nanowires and Conductive Polymers for Mechanically Robust, All-Doctor-Bladed Semitransparent Organic Solar Cells. Energy Technol. 2018, 6, 1275–1282. [Google Scholar] [CrossRef]
- Li, Z.F.; Ma, G.Q.; Ge, R.; Qin, F.; Dong, X.Y.; Meng, W.; Liu, T.F.; Tong, J.H.; Jiang, F.Y.; Zhou, Y.F.; et al. Free-Standing Conducting Polymer Films for High-Performance Energy Devices. Angew. Chem. Int. Ed. 2016, 55, 979–982. [Google Scholar] [CrossRef]
- Li, Z.; Sun, H.; Hsiao, C.-L.; Yao, Y.; Xiao, Y.; Shahi, M.; Jin, Y.; Cruce, A.; Liu, X.; Jiang, Y.; et al. A Free-Standing High-Output Power Density Thermoelectric Device Based on Structure-Ordered PEDOT:PSS. Adv. Electron. Mater. 2018, 4, 1700496. [Google Scholar] [CrossRef]
- Kim, N.; Kang, H.; Lee, J.H.; Kee, S.; Lee, S.H.; Lee, K. Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method. Adv. Mater. 2015, 27, 2317–2323. [Google Scholar] [CrossRef] [PubMed]
- Bubnova, O.; Khan, Z.U.; Wang, H.; Braun, S.; Evans, D.R.; Fabretto, M.; Hojati-Talemi, P.; Dagnelund, D.; Arlin, J.-B.; Geerts, Y.H.; et al. Semi-metallic polymers. Nat. Mater. 2014, 13, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Xiong, S.; Zhou, Y.; Mao, L.; Min, X.; Li, Z.; Jiang, F.; Meng, W.; Qin, F.; Liu, T.; et al. Flexible all-solution-processed all-plastic multijunction solar cells for powering electronic devices. Mater. Horiz. 2016, 3, 452–459. [Google Scholar] [CrossRef]
Sample | Treating Method | Conductivity (S/cm) | Work Function (eV) |
---|---|---|---|
PEDOT:PSS (PH1000) | − | 0.98 | 5.22 |
HC-PEDOT:PSS-1 | 80 wt% H2SO4 | 2673 | 5.12 |
HC-PEDOT:PSS (PEI) | 0.2 wt% PEI | 1744 | 4.22 |
HC-PEDOT:PSS-2 | 80 wt% H2SO4 | 2294 | 4.53 |
Bottom Electrodes | VOC (V) | JSC (mA/cm2) | FF | PCE (%) | References |
---|---|---|---|---|---|
HC-PEDOT:PSS | 0.79 (0.79 ± 0.01) | 8.99 (8.86 ± 0.97) | 0.57 (0.57 ± 0.03) | 4.05 (3.99 ± 0.41) | This work |
EG-PEDOT:PSS | 0.80 | 7.1 | 0.52 | 3.0 | [24] |
EG-PEDOT:PSS | 0.80 ± 0.02 | 5.6 ± 0.5 | 0.55 ± 0.03 | 2.4 ± 0.2 | [25] |
P-PEDOT:PSS | 0.84 | 6.60 | 0.60 | 3.3 | [28] |
EG-PEDOT:PSS | 0.8 | 6.2 | 0.53 | 2.6 | [34] |
EG-PEDOT:PSS | 1.55 ± 0.01 | 7.0 ± 1.0 | 0.59 ± 0.02 | 6.1 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, S.; Qin, F.; Liu, Y.; Qiu, C.; Jin, Y.; Wang, H.; Liu, L.; Hu, L.; Su, Z.; Song, J.; et al. High Conductivity, Semiconducting, and Metallic PEDOT:PSS Electrode for All-Plastic Solar Cells. Molecules 2023, 28, 2836. https://doi.org/10.3390/molecules28062836
Nie S, Qin F, Liu Y, Qiu C, Jin Y, Wang H, Liu L, Hu L, Su Z, Song J, et al. High Conductivity, Semiconducting, and Metallic PEDOT:PSS Electrode for All-Plastic Solar Cells. Molecules. 2023; 28(6):2836. https://doi.org/10.3390/molecules28062836
Chicago/Turabian StyleNie, Shisong, Fei Qin, Yanfeng Liu, Chufeng Qiu, Yingzhi Jin, Hongmei Wang, Lichun Liu, Lin Hu, Zhen Su, Jiaxing Song, and et al. 2023. "High Conductivity, Semiconducting, and Metallic PEDOT:PSS Electrode for All-Plastic Solar Cells" Molecules 28, no. 6: 2836. https://doi.org/10.3390/molecules28062836
APA StyleNie, S., Qin, F., Liu, Y., Qiu, C., Jin, Y., Wang, H., Liu, L., Hu, L., Su, Z., Song, J., Yin, X., Xu, Z., Yao, Y., Wang, H., Zhou, Y., & Li, Z. (2023). High Conductivity, Semiconducting, and Metallic PEDOT:PSS Electrode for All-Plastic Solar Cells. Molecules, 28(6), 2836. https://doi.org/10.3390/molecules28062836