Host–Guest Interactions of Zirconium-Based Metal–Organic Framework with Ionic Liquid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of UiO-66 and IL@UiO-66
2.2. Structural Characterizations
2.3. Density Functional Theory Calculations
3. Methodology
3.1. Chemicals
3.2. Preparation of IL@UiO-66
3.3. X-ray Diffractions
3.4. Fourier Transformation Infrared (FTIR) Spectroscopy
3.5. Scanning Electron Microscopy
3.6. Brunauer–Emmett–Teller (BET) Surface Area Analysis
3.7. Computational Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chen, Y.; Guerin, S.; Yuan, H.; O’Donnell, J.; Xue, B.; Cazade, P.-A.; Haq, E.U.; Shimon, L.J.W.; Rencus-Lazar, S.; Tofail, S.A.M.; et al. Guest Molecule-Mediated Energy Harvesting in a Conformationally Sensitive Peptide–Metal Organic Framework. J. Am. Chem. Soc. 2022, 144, 3468–3476. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, Y.; Orr, A.A.; Makam, P.; Redko, B.; Haimov, E.; Wang, Y.; Shimon, L.J.W.; Rencus-Lazar, S.; Ju, M.; et al. Self-Assembled Peptide Nano-Superstructure towards Enzyme Mimicking Hydrolysis. Angew. Chem. Int. Ed. 2021, 60, 17164–17170. [Google Scholar] [CrossRef]
- Qin, L.; Liang, F.; Li, Y.; Wu, J.; Guan, S.; Wu, M.; Xie, S.; Luo, M.; Ma, D. A 2D Porous Zinc-Organic Framework Platform for Loading of 5-Fluorouracil. Inorganics 2022, 10, 202. [Google Scholar] [CrossRef]
- Qin, L.; Li, Y.; Liang, F.; Li, L.; Lan, Y.; Li, Z.; Lu, X.; Yang, M.; Ma, D. A microporous 2D cobalt-based MOF with pyridyl sites and open metal sites for selective adsorption of CO2. Microporous Mesoporous Mater. 2022, 341, 112098. [Google Scholar] [CrossRef]
- Dong, X.; Shi, Z.; Li, D.; Li, Y.; An, N.; Shang, Y.; Sakiyama, H.; Muddassir, M.; Si, C. The regulation research of topology and magnetic exchange models of CPs through Co(II) concentration adjustment. J. Solid State Chem. 2023, 318, 123713. [Google Scholar] [CrossRef]
- Miyata, T.; Namera, T.; Liu, Y.; Kawamura, A.; Yamaoka, T. Photoresponsive behaviour of zwitterionic polymer particles with photodimerizable groups on their surfaces. J. Mater. Chem. B 2022, 10, 2637–2648. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, J.; Zhang, L.; Cheng, Y.; Lu, C.; Liu, Y.; Singh, A.; Trivedi, M.; Kumar, A.; Liu, J. Metal organic frameworks as efficient adsorbents for drugs from wastewater. Mater. Today Commun. 2022, 31, 103514. [Google Scholar] [CrossRef]
- Noorani, N.; Mehrdad, A. Improving performance of mesoporous MOF AlTp impregnated with ionic liquids for CO2 adsorption. Sci. Rep. 2023, 13, 3227. [Google Scholar] [CrossRef]
- Yao, B.; Paluch, M.; Wojnarowska, Z. Effect of bulky anions on the liquid-liquid phase transition in phosphonium ionic liquids: Ambient and high-pressure dielectric studies. Sci. Rep. 2023, 13, 3040. [Google Scholar] [CrossRef]
- Habib, N.; Durak, Ö.; Uzun, A.; Keskin, S. Incorporation of a pyrrolidinium-based ionic liquid/MIL-101(Cr) composite into Pebax sets a new benchmark for CO2/N2 selectivity. Sep. Purif. Technol. 2023, 312, 123346. [Google Scholar] [CrossRef]
- Zhong, S.; Yin, Q.; Diao, Y.; Yang, F.; He, X.; Liu, S.; Wang, Y. Optimization of synthesis conditions, characterization and magnetic properties of lanthanide metal organic frameworks from Brønsted acidic ionic liquid. J. Mol. Struct. 2023, 1278, 134974. [Google Scholar] [CrossRef]
- Huang, T.; Lei, X.; Wang, S.; Lin, C.; Wu, X. Ionic liquid assisted in situ growth of nano-confined ionic liquids/metal-organic frameworks nanocomposites for monolithic capillary microextraction of microcystins in environmental waters. J. Chromatogr. A 2023, 1692, 463849. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Ma, J.; Ren, Y.; Wang, H.; Xie, L.; Zhu, Z.; Zhang, J. Ionic Liquid Meets MOF: A Facile Method to Optimize the Structure of CoSe2-NiSe2 Heterojunctions with N, P, and F Triple-Doped Carbon Using Ionic Liquid for Efficient Hydrogen Evolution and Flexible Supercapacitors. Adv. Sci. 2023, 10, 2206029. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, X.; Chen, G.; Zhang, Y.; Wei, M.; Chen, X.; Li, B.; Wu, Y.; Wu, L. Supramolecular framework membrane for precise sieving of small molecules, nanoparticles and proteins. Nat. Commun. 2023, 14, 975. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Wu, T.; Gu, B.; Sun, H.; He, H.; Gong, H.; Zhu, H. A win-win scenario for antibacterial activity and skin mildness of cationic surfactants based on the modulation of host-guest supramolecular conformation. Bioorg. Chem. 2023, 134, 106448. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Wang, L.-L.; Wu, C.-Q.; Li, H.; Zhang, Q.-L.; Wang, Y.; Xu, L. Controllable DNA hybridization by host–guest complexation-mediated ligand invasion. Nat. Commun. 2022, 13, 5936. [Google Scholar] [CrossRef]
- Abuhafez, N.; Perennes, A.; Gramage-Doria, R. Mimicking Enzymes: Taking Advantage of the Substrate-Recognition Properties of Metalloporphyrins in Supramolecular Catalysis. Synthesis 2022, 54, 3473–3481. [Google Scholar] [CrossRef]
- Dehdashtian, S.; Pourreza, N.; Rostamnia, S. Electrochemical sensing of indole in plasma using Pd nanoparticles modified metal-organic framework Cr-MIL-101/ionic liquid sensor. Microchem. J. 2022, 181, 107839. [Google Scholar] [CrossRef]
- Su, L.; Han, W.; Si, F.; Yue, W.; Li, F.; Zhou, X.; Wang, C.; Fu, H. Ionic liquid incorporated metal–organic framework as high conductivity solid conductor. J. Ind. Eng. Chem. 2023, 21, 393–400. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, C.; Chandresh, A.; Heinke, L. Conductivity measurement of ionic liquids confined in the nanopores of metal–organic frameworks: A case study for [BMIM][TFSI] in HKUST-1. Ionics 2022, 28, 487–494. [Google Scholar] [CrossRef]
- Wang, P.; Lin, J.; Wu, Y.; Wang, L. Construction of high-density proton transport channels in phosphoric acid doped polybenzimidazole membranes using ionic liquids and metal-organic frameworks. J. Power Sources 2023, 560, 232665. [Google Scholar] [CrossRef]
- Bridges, C.A.; Martins, M.L.; Jafta, C.J.; Sun, X.G.; Paranthaman, M.P.; Liu, J.; Dai, S.; Mamontov, E. Dynamics of Emim + in [Emim][TFSI]/LiTFSI Solutions as Bulk and under Confinement in a Quasi-liquid Solid Electrolyte. J. Phys. Chem. B 2021, 125, 5443–5450. [Google Scholar] [CrossRef] [PubMed]
- Balo, L.; Shalu; Gupta, H.; Kumar Singh, V.; Kumar Singh, R. Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochim. Acta 2017, 230, 123–131. [Google Scholar] [CrossRef]
- Ndruru, S.T.C.L.; Widiarto, S.; Pramono, E.; Wahyuningrum, D.; Bundjali, B.; Arcana, I.M. The Influences of [EMIm]Ac Ionic Liquid for the Characteristics of Li-Ion Batteries’ Solid Biopolymer Blend Electrolyte Based on Cellulose Derivatives of MC/CMC Blend. Macromol. Chem. Phys. 2022, 223, 2100362. [Google Scholar] [CrossRef]
- Yang, H.; Liu, B.; Bright, J.; Kasani, S.; Yang, J.; Zhang, X.; Wu, N. A Single-Ion Conducting UiO-66 Metal–Organic Framework Electrolyte for All-Solid-State Lithium Batteries. ACS Appl. Energy Mater. 2020, 3, 4007–4013. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, W.; Zhang, F.; Wu, F.; Chen, R.; Li, L. Hollow-Particles Quasi-Solid-State Electrolytes with Biomimetic Ion Channels for High-Performance Lithium-Metal Batteries. Small 2023, 3, 2206655. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Fang, Q.; Huang, J.; Wang, X.; Chen, S.; Zhang, S. Facilitating uniform lithium deposition via nanoconfinement of free amide molecules in solid electrolyte complexion for lithium metal batteries. Energy Storage Mater. 2023, 54, 596–604. [Google Scholar] [CrossRef]
- Choi, J.-S.; Park, H.-W.; Noh, J.-E.; Cha, J.; Jang, W.-H.; Kim, C.-G. Composite-fabric-based structure-integrated energy storage system. Compos. Struct. 2023, 310, 116757. [Google Scholar] [CrossRef]
- Forgan, R.S. Modulated self-assembly of metal–organic frameworks. Chem. Sci. 2020, 11, 4546–4562. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, M.; Hori, K.; Goshima, T.; Takaya, N.; Oumi, Y.; Uemiya, S. An Organoselective Zirconium-Based Metal–Organic-Framework UiO-66 Membrane for Pervaporation. Eur. J. Inorg. Chem. 2017, 2017, 2094–2099. [Google Scholar] [CrossRef]
- Wu, R.; Qian, X.; Zhou, K.; Liu, H.; Yadian, B.; Wei, J.; Zhu, H.; Huang, Y. Highly dispersed Au nanoparticles immobilized on Zr-based metal–organic frameworks as heterostructured catalyst for CO oxidation. J. Mater. Chem. A 2013, 1, 14294. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef]
- Chammingkwan, P.; Shangkum, G.Y.; Mai, L.T.T.; Mohan, P.; Thakur, A.; Wada, T.; Taniike, T. Modulator-free approach towards missing-cluster defect formation in Zr-based UiO-66. RSC Adv. 2020, 10, 28180–28185. [Google Scholar] [CrossRef] [PubMed]
- Allendorf, M.D.; Foster, M.E.; Léonard, F.; Stavila, V.; Feng, P.L.; Doty, F.P.; Leong, K.; Ma, E.Y.; Johnston, S.R.; Talin, A.A. Guest-Induced Emergent Properties in Metal–Organic Frameworks. J. Phys. Chem. Lett. 2015, 6, 1182–1195. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, M.; Li, K.; Zuo, Y.; Wei, Y.; Xu, S.; Zhang, G.; Song, C.; Zhang, Z.; Guo, X. Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: The role of hydrofluoric acid in crystallization. CrystEngComm 2015, 17, 6434–6440. [Google Scholar] [CrossRef]
- Zheng, H.-Q.; Zeng, Y.-N.; Chen, J.; Lin, R.-G.; Zhuang, W.-E.; Cao, R.; Lin, Z.-J. Zr-Based Metal–Organic Frameworks with Intrinsic Peroxidase-Like Activity for Ultradeep Oxidative Desulfurization: Mechanism of H2O2 Decomposition. Inorg. Chem. 2019, 58, 6983–6992. [Google Scholar] [CrossRef]
- Ferreira, T.J.; Ribeiro, R.P.P.L.; Mota, J.P.B.; Rebelo, L.P.N.; Esperança, J.M.S.S.; Esteves, I.A.A.C. Ionic Liquid-Impregnated Metal–Organic Frameworks for CO2/CH4 Separation. ACS Appl. Nano Mater. 2019, 2, 7933–7950. [Google Scholar] [CrossRef]
- Kanj, A.B.; Verma, R.; Liu, M.; Helfferich, J.; Wenzel, W.; Heinke, L. Bunching and Immobilization of Ionic Liquids in Nanoporous Metal–Organic Framework. Nano Lett. 2019, 19, 2114–2120. [Google Scholar] [CrossRef]
- Yin, N.; Wang, K.; Xia, Y.; Li, Z. Novel melamine modified metal-organic frameworks for remarkably high removal of heavy metal Pb (II). Desalination 2018, 430, 120–127. [Google Scholar] [CrossRef]
- Ghani, N.I.A.; Mt Yusuf, N.Y.; Wan Isahak, W.N.R.; Masdar, M.S. Modification of Activated Carbon from Biomass Nypa and Amine Functional Groups as Carbon Dioxide Adsorbent. J. Phys. Sci. 2017, 28, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Adhikary, K.K.; Lee, Y.-R.; Ho Row, K.; Kang, K.-K.; Ahn, W.-S. Ionic liquid entrapped UiO-66: Efficient adsorbent for Gd3+ capture from water. Chem. Eng. J. 2019, 370, 792–799. [Google Scholar] [CrossRef]
- Horiuchi, S.; Yamaguchi, T.; Tessarolo, J.; Tanaka, H.; Sakuda, E.; Arikawa, Y.; Meggers, E.; Clever, G.H.; Umakoshi, K. Symmetry-breaking host–guest assembly in a hydrogen-bonded supramolecular system. Nat. Commun. 2023, 14, 155. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.-P.; Wu, H.-L.; Zhang, L.-P.; Yang, G.-Y.; Yang, B. 2D supramolecular organic framework with tunable luminescence via cucurbit[n]uril-based hydrogen bonds, outer-surface interactions and host–guest interactions. Mater. Chem. Front. 2023, D2QM01299E. [Google Scholar] [CrossRef]
- Hyun, K.; Jin, H.; Woo, W.H.; Shin, H.; Lee, J.H.; Hwang, H.; Kim, M.; Lee, K.M.; Park, M.H.; Kim, Y. Systematic design of indium-based luminophores with color-tunable emission via combined manipulation of HOMO and LUMO levels. Dyes Pigments 2018, 158, 285–294. [Google Scholar] [CrossRef]
- Ge, L.; Bernasconi, L.; Hunt, P. Linking electronic and molecular structure: Insight into aqueous chloride solvation. Phys. Chem. Chem. Phys. 2013, 15, 13169. [Google Scholar] [CrossRef] [Green Version]
- Perepichka, D.F.; Bryce, M.R. Molecules with Exceptionally Small HOMO-LUMO Gaps. Angew. Chem. Int. Ed. 2005, 44, 5370–5373. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, X.; Huang, M.; Xiang, Z.; Hu, S.; Fu, Z.; Guo, X.; Liang, Z. Redox-Modulated Host–Guest Complex Realizing Stable Two-Electron Storage Viologen for Flow Battery. Ind. Eng. Chem. Res. 2022, 61, 14508–14514. [Google Scholar] [CrossRef]
- Chang, X.; Lin, S.; Wang, G.; Shang, C.; Wang, Z.; Liu, K.; Fang, Y.; Stang, P.J. Self-Assembled Perylene Bisimide-Cored Trigonal Prism as an Electron-Deficient Host for C60 and C70 Driven by “Like Dissolves Like”. J. Am. Chem. Soc. 2020, 142, 15950–15960. [Google Scholar] [CrossRef]
- Bähring, S.; Root, H.D.; Sessler, J.L.; Jeppesen, J.O. Tetrathiafulvalene-calix [4]pyrrole: A versatile synthetic receptor for electron-deficient planar and spherical guests. Org. Biomol. Chem. 2019, 17, 2594–2613. [Google Scholar] [CrossRef]
- Koh, S.-G.; Koide, T.; Arai, A.; Ohira, I.; Kinoshita, K. Structural Strengthening of Metal–Organic Frameworks Owing to the Confinement Effect of Ionic Liquids in the Nanopores. J. Phys. Chem. C 2022, 126, 6736–6744. [Google Scholar] [CrossRef]
- Chen, P.; Liu, S.; Bai, Z.; Liu, Y. Enhanced ionic conductivity of ionic liquid confined in UiO-67 membrane at low humidity. Microporous Mesoporous Mater. 2020, 305, 110369. [Google Scholar] [CrossRef]
- Nozari, V.; Calahoo, C.; Tuffnell, J.M.; Keen, D.A.; Bennett, T.D.; Wondraczek, L. Ionic liquid facilitated melting of the metal-organic framework ZIF-8. Nat. Commun. 2021, 12, 5703. [Google Scholar] [CrossRef] [PubMed]
- Øien, S.; Wragg, D.; Reinsch, H.; Svelle, S.; Bordiga, S.; Lamberti, C.; Lillerud, K.P. Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal–Organic Frameworks. Cryst. Growth Des. 2014, 14, 5370–5372. [Google Scholar] [CrossRef] [Green Version]
- Ryu, U.J.; Kim, S.J.; Lim, H.-K.; Kim, H.; Choi, K.M.; Kang, J.K. Synergistic interaction of Re complex and amine functionalized multiple ligands in metal-organic frameworks for conversion of carbon dioxide. Sci. Rep. 2017, 7, 612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondloch, J.E.; Katz, M.J.; Isley, W.C., III; Ghosh, P.; Liao, P.; Bury, W.; Wagner, G.W.; Hall, M.G.; DeCoste, J.B.; Peterson, G.W.; et al. Destruction of chemical warfare agents using metal–organic frameworks. Nat. Mater. 2015, 14, 512–516. [Google Scholar] [CrossRef]
- Mancuso, J.L.; Mroz, A.M.; Le, K.N.; Hendon, C.H. Electronic Structure Modeling of Metal–Organic Frameworks. Chem. Rev. 2020, 120, 8641–8715. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef]
BET Surface Area (m2/g) | Micropore Area (m2/g) | Pore Size (nm) | Pore Volume (cm3/g) | |
---|---|---|---|---|
UiO-66 | 295.9922 | 210.9590 | 2.45843 | 0.107151 |
IL@UiO-66 | 0.6684 | 0.7215 | 15.23378 | 0.000373 |
Parameter | UiO-66 | IL | IL@UiO-66 | Parameter Change |
---|---|---|---|---|
H9-H12 | 2.78095 Å | 3.13221 Å | 0.35126 | |
H10-H11 | 9.88920 Å | 9.81681 Å | −0.07239 | |
O7-H10 | 9.23503 Å | 9.25872 Å | 0.02369 | |
O4-H9 | 3.32435 Å | 3.13757 Å | −0.18678 | |
Benzene1-Benzene2 | 7.33452 Å | 7.43361 Å | 0.09909 | |
H5-C9-C13 | 121.056° | 121.643° | 0.587 | |
H7-C11-C14 | 119.935° | 119.809° | −0.126 | |
H10-O5-C15 | 110.544° | 114.608° | 4.064 | |
O5-C15-O6 | 122.942° | 122.625° | −0.317 | |
H11-O7-C16 | 106.966° | 106.906° | −0.06 | |
O7-C16-O8 | 123.319° | 122.871° | −0.448 | |
O2 *-H11 * | 2.10542 Å | 2.08674 Å | −0.01868 | |
O3 *-H5 * | 2.25052 Å | 2.30103 Å | 0.05051 | |
C6 *-F3 * | 3.63615 Å | 3.55537 Å | −0.08078 | |
C4 *-C8 * | 4.52568 Å | 4.27397 Å | −0.25171 | |
S1 *-O1 * | 1.45839 Å | 1.46381 Å | 0.00542 | |
S2 *-O4 * | 1.45877 Å | 1.45747 Å | −0.0013 | |
N1 *-N3 * | 3.09522 Å | 3.32384 Å | 0.22862 | |
N2 *-N3 * | 3.57987 Å | 4.09536 Å | 0.51549 | |
N3 *-H11 * | 2.62692 Å | 2.65812 Å | 0.0312 |
UiO-66 | IL | IL@UiO-66 | |
---|---|---|---|
HOMO (eV) | −7.57217 | −7.11229 | −7.21569 |
LUMO (eV) | −2.51163 | −1.21690 | −1.95515 |
(LUMO-HOMO) (eV) | 5.06054 | 5.89539 | 5.26054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majid, M.F.; Mohd Zaid, H.F.; Abd Shukur, M.F.; Ahmad, A.; Jumbri, K. Host–Guest Interactions of Zirconium-Based Metal–Organic Framework with Ionic Liquid. Molecules 2023, 28, 2833. https://doi.org/10.3390/molecules28062833
Majid MF, Mohd Zaid HF, Abd Shukur MF, Ahmad A, Jumbri K. Host–Guest Interactions of Zirconium-Based Metal–Organic Framework with Ionic Liquid. Molecules. 2023; 28(6):2833. https://doi.org/10.3390/molecules28062833
Chicago/Turabian StyleMajid, Mohd. Faridzuan, Hayyiratul Fatimah Mohd Zaid, Muhammad Fadhlullah Abd Shukur, Azizan Ahmad, and Khairulazhar Jumbri. 2023. "Host–Guest Interactions of Zirconium-Based Metal–Organic Framework with Ionic Liquid" Molecules 28, no. 6: 2833. https://doi.org/10.3390/molecules28062833
APA StyleMajid, M. F., Mohd Zaid, H. F., Abd Shukur, M. F., Ahmad, A., & Jumbri, K. (2023). Host–Guest Interactions of Zirconium-Based Metal–Organic Framework with Ionic Liquid. Molecules, 28(6), 2833. https://doi.org/10.3390/molecules28062833