Volatile Constituents in Essential Oil from Leaves of Withania adpressa Coss. Ex Exhibit Potent Antioxidant and Antimicrobial Properties against Clinically-Relevant Pathogens
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Identification of EOW
2.2. Antioxidant Activity
2.3. Antibacterial Activity
2.4. Antifungal Activity
2.5. In Vitro Toxicity of EOW against Human Cells
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material
4.3. Extraction of Essential Oils
4.4. Characterization of Phytochemicals
4.5. Antioxidant Activity
4.5.1. DPPH Free Radical Scavenging
4.5.2. Ferric Reducing Power
4.5.3. Total Antioxidant Capacity of EOW
4.6. Antibacterial and Antifungal Activities
4.6.1. Microbial Strains
4.6.2. Microbial Suspension Preparation
4.6.3. Disc Diffusion Method
4.6.4. Determination of Minimum Inhibitory Concentration (MIC)
4.7. Cell Line, Culturing Condition and MTT Viability Assay
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellakhdar, J. The Traditional Moroccan Pharmacopee, Ancient Arab Medicine and Popular Knowledge; IBIS Press: Paris, France, 1998. [Google Scholar]
- Bourhia, M.; Messaoudi, M.; Bakrim, H.; Mothana, R.A.; Sddiqui, N.A.; Almarfadi, O.M.; El Mzibri, M.; Gmouh, S.; Laglaoui, A.; Benbacer, L. Citrullus colocynthis (L.) Schrad: Chemical Characterization, Scavenging and Cytotoxic Activities. Open Chem. 2020, 18, 986–994. [Google Scholar] [CrossRef]
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef]
- Mohammad Salamatullah, A.; Hayat, K.; Husain, F.M.; Ahmed, M.A.; Arzoo, S.; Althbiti, M.M.; Alzahrani, A.; Al-Zaied, B.A.M.; Alyahya, H.K.; Albader, N.; et al. Effects of Different Solvents Extractions on Total Polyphenol Content, HPLC Analysis, Antioxidant Capacity, and Antimicrobial Properties of Peppers (Red, Yellow, and Green (Capsicum annum L.)). Evid. Based Complement. Altern. Med. 2022, 2022, 7372101. [Google Scholar] [CrossRef]
- Khalil Alyahya, H.; Subash-Babu, P.; Mohammad Salamatullah, A.; Hayat, K.; Albader, N.; Alkaltham, M.S.; Ahmed, M.A.; Arzoo, S.; Bourhia, M. Quantification of Chlorogenic Acid and Vanillin from Coffee Peel Extract and its Effect on α-Amylase Activity, Immunoregulation, Mitochondrial Oxidative Stress, and Tumor Suppressor Gene Expression Levels in H2O2-Induced Human Mesenchymal Stem Cells. Front. Pharmacol. 2021, 12, 760242. [Google Scholar] [CrossRef] [PubMed]
- Erdemoglu, N.; Turan, N.N.; Cakõcõ, I.; Sener, B.; Aydõn, A. Antioxidant activities of some Lamiaceae plant extracts. Phytother. Res. 2006, 20, 9–13. [Google Scholar] [CrossRef]
- Pieroni, V.; Janiak, C.; Dürr, M.; Lüdeke, S.; Trachsel, E.; Heinrich, M. In vitro antioxidant activity of non-cultivated vegetables of ethnic Albanians in southern Italy. Phytother. Res. 2002, 16, 467–473. [Google Scholar] [CrossRef]
- Bourhia, M.; Laasri, F.E.; Aourik, H.; Boukhris, A.; Ullah, R.; Bari, A.; Ali, S.S.; El Mzibri, M.; Benbacer, L.; Gmouh, S. Antioxidant and Antiproliferative Activities of Bioactive Compounds Contained in Rosmarinus officinalis Used in the Mediterranean Diet. Evid. Based Complement. Altern. Med. 2019, 2019, 7623830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djeussi, D.E.; Noumedem, J.A.; Seukep, J.A.; Fankam, A.G.; Voukeng, I.K.; Tankeo, S.B.; Nkuete, A.H.; Kuete, V. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria. BMC Complement. Altern. Med. 2013, 13, 164. [Google Scholar] [CrossRef] [Green Version]
- Hancock, R.E. Export Citation. Lancet Infect. Dis. 2001, 1, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, S.; Chaman, L.S.; Bhuvneshwar, K. Antibacterial resistance: Current problems and possible solutions. Indian J. Med. Sci. 2005, 59, 120–129. [Google Scholar]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Chebbac, K.; Ghneim, H.K.; El Moussaoui, A.; Bourhia, M.; El Barnossi, A.; Benziane Ouaritini, Z.; Salamatullah, A.M.; Alzahrani, A.; Aboul-Soud, M.A.M.; Giesy, J.P.; et al. Antioxidant and Antimicrobial Activities of Chemically-Characterized Essential Oil from Artemisia aragonensis Lam. against Drug-Resistant Microbes. Molecules 2022, 27, 1136. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- EL Moussaoui, M.; Bourhia, F.; Jawhari, Z.; Salamatullah, A.M.; Ullah, R.; Bari, A.; Majid Mahmood, H.; Sohaib, M.; Serhii, B.; Rozhenko, A.; et al. Chemical Profiling, Antioxidant, and Antimicrobial Activity against Drug-Resistant Microbes of Essential Oil from Withania frutescens L. Appl. Sci. 2021, 11, 5168. [Google Scholar] [CrossRef]
- Mesaik, M.A.; Zaheer-Ul-Haq; Murad, S.; Ismail, Z.; Abdullah, N.R.; Gill, H.K.; Yousaf, M.; Siddiqui, R.A.; Ahmad, A.; Choudhary, M.I.; et al. Biological and molecular docking studies on coagulin-H: Human IL-2 novel natural inhibitor. Mol. Immunol. 2006, 43, 1855–1863. [Google Scholar] [CrossRef]
- Jayaprakasam, B.; Nair, M.G. Cyclooxygenase-2 enzyme inhibitory withanolides from Withania somnifera leaves. Tetrahedron 2003, 59, 841–849. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Ghosal, S.; Bhattacharya, S.K. Anti-oxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. J. Ethnopharmacol. 2001, 74, 1–6. [Google Scholar] [CrossRef]
- Cordero, P.; Morantes, S.J.; Páez, A.; Rincón, J.; Aristizábal, F.A. Cytotoxicity of withanolides isolated from Acnistus arborescens. Fitoterapia 2009, 80, 364–368. [Google Scholar] [CrossRef] [PubMed]
- El Bouzidi, L.; Larhsini, M.; Markouk, M.; Abbad, A.; Bekkouche, K. Antioxidant and Antimicrobial Activities of Withania frutescens. Nat. Prod. Commun. 2011, 6, 1447–1450. [Google Scholar] [CrossRef] [Green Version]
- El Moussaoui, F.; Jawhari, Z.; Bourhia, M.; Maliki, I.; Sounni, F.; Mothana, R.A.; Bousta, D.; Bari, A. Withania frutescens: Chemical characterization, analgesic, anti-inflammatory, and healing activities. Open Chem. 2020, 18, 927–935. [Google Scholar] [CrossRef]
- El Moussaoui, A.; Mechchate, H.; Bourhia, M.; Es-safi, I.; Salamatullah, A.M.; Alkaltham, M.S.; Alyahya, H.K.; Bousta, D.; Bari, A. Glycemic control potential of chemically characterized extract from Withania frutescens L. Roots in severe diabetes-induced mice. Appl. Sci. 2021, 11, 3998. [Google Scholar] [CrossRef]
- EL Moussaoui, A.; Jawhari, F.; EL Ouahdani, K.; Es-Safi, I.; Bousta, D.; Bari, A. Valorization of the Pharmacological Potential of Phytochemical Compounds Contained in the Crude Extract of the Root of a Plant of Withania frutescens L. Phytothérapie 2019, 19, 77–82. [Google Scholar] [CrossRef]
- Rabhi, G.; Arcile, G.; Le Goff, C.; Da Costa, N.; Ouazzani, J. Neuroprotective effect of CR-777, a glutathione derivative of Withaferin A, obtained through the bioconversion of Withania somnifera (L.) Dunal extract by the fungus Beauveria bassiana. Molecules 2019, 24, 4599. [Google Scholar] [CrossRef] [Green Version]
- Ben Bakrim, W.; El Bouzidi, L.; Manouze, H.; Hafsa, J.; Sobeh, M.; Ba-M’Hamed, S.; Bekkouche, K.; Kouisni, L. Anti-amnesic effects of withaferin A, a steroidal lactone isolated from Withania adpressa, on scopolamine-induced memory impairment in mice. Arab. J. Chem. 2022, 15, 103529. [Google Scholar] [CrossRef]
- Abdelfattah, E.M.; Aimad, A.; Bourhia, M.; Chebbac, K.; Salamatullah, A.M.; Soufan, W.; Nafidi, H.-A.; Aboul-Soud, M.A.M.; Ouahmane, L.; Bari, A. Insecticidal and Antifungal Activities of Chemically-Characterized Essential Oils from the Leaves of Withania frutescens L. Life 2022, 12, 88. [Google Scholar] [CrossRef]
- Bakhtawar, S.; Mughal, T.; Naeem, I. Chemical Composition of the Essential Oil of Withania coagulans. Asian J. Chem. 2010, 22, 122–126. [Google Scholar]
- El moussaoui, A.; Kadiri, M.; Bourhia, M.; Agour, A.; Salamatullah, A.M.; Alzahrani, A.; Alyahya, H.K.; Albadr, N.A.; Chedadi, M.; Sfaira, M.; et al. Promising Antioxidant and Anticorrosion Activities of Mild Steel in 1.0 M Hydrochloric Acid Solution by Withania frutescens L. Essential Oil. Front. Chem. 2021, 9, 760. [Google Scholar] [CrossRef]
- El Atki, Y.; Aouam, I.; El Kamari, F.; Taroq, A.; Lyoussi, B.; Oumokhtar, B.; Abdellaoui, A. Phytochemistry, antioxidant and antibacterial activities of two Moroccan Teucrium polium L. subspecies: Preventive approach against nosocomial infections. Arab. J. Chem. 2019, 13, 3866–3874. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M.S.A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Calleja, M.A.; Vieites, J.M.; Montero-Meterdez, T.; Torres, M.I.; Faus, M.J.; Gil, A.; Suárez, A. The antioxidant effect of β-caryophyllene protects rat liver from carbon tetrachloride-induced fibrosis by inhibiting hepatic stellate cell activation. Br. J. Nutr. 2013, 109, 394–401. [Google Scholar] [CrossRef]
- Luo, Q.; Tian, Z.; Zheng, T.; Xu, S.; Ma, Y.; Zuo, Z. Terpenoid composition and antioxidant activity of extracts from four chemotypes of Cinnamomum camphora and their main antioxidant agents. Biofuels Bioprod. Biorefin. 2022, 16, 510–522. [Google Scholar] [CrossRef]
- Jawhari, F.Z.; Moussaoui, A.E.L.; Bourhia, M.; Imtara, H.; Saghrouchni, H.; Ammor, K.; Ouassou, H.; Elamine, Y.; Ullah, R.; Ezzeldin, E.; et al. Anacyclus pyrethrum var. pyrethrum (L.) and Anacyclus pyrethrum var. depres-sus (Ball) Maire: Correlation between total phenolic and flavonoid contents with antioxidant and antimicrobial activities of chemically characterized Extracts. Plants 2021, 10, 149. [Google Scholar] [CrossRef] [PubMed]
- Mukai, A.; Takahashi, K.; Ashitani, T. Natural autoxidation of longifolene and anti-termite activities of the products. J. Wood Sci. 2017, 63, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Pérez-López, A.; Cirio, T.; Rivas-Galindo, V.M.; Aranda, R.S.; de Torres, N.W. Activity against Streptococcus pneumoniae of the Essential Oil and δ-Cadinene Isolated from Schinus molle Fruit. J. Essent. Oil Res. 2011, 2905, 25–28. [Google Scholar] [CrossRef]
- Shu, H.; Chen, H.; Wang, X.; Hu, Y.; Yun, Y.; Zhong, Q.; Chen, W.; Chen, W. Antimicrobial Activity and Proposed Action Mechanism of 3-Carene against Brochothrix thermosphacta and Pseudomonas fluorescens. Molecules 2019, 24, 3246. [Google Scholar] [CrossRef] [Green Version]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 43, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassolé, H.N.; Lamien-meda, A.; Bayala, B.; Obame, L.C.; Ilboudo, A.J.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination. Phytomedicine 2011, 18, 1070–1074. [Google Scholar] [CrossRef]
- Askarne, L.; Talibi, I.; Boubaker, H.; Boudyach, E.H.; Msanda, F.; Saadi, B.; Serghini, M.A.; Ait Ben Aoumar, A. In vitro and in vivo antifungal activity of several Moroccan plants against Penicillium italicum, the causal agent of citrus blue mold. Crop Prot. 2012, 40, 53–58. [Google Scholar] [CrossRef]
- Pina-Vaz, F.; Sansonetty, A.; Rodrigues, G.; Martinez-De-Oliveira, J.; Fonseca, A.F.; Mårdh, P.A. Antifungal activity of ibuprofen alone and in combination with fluconazole against Candida species. J. Med. Microbiol. 2000, 49, 831–840. [Google Scholar] [CrossRef] [Green Version]
- Chebbac, A.; Moussaoui, E.; Bourhia, M.; Salamatullah, A.M.; Alzahrani, A.; Guemmouh, R. Chemical Analysis and Antioxidant and Antimicrobial Activity of Essential oils from Artemisia negrei L. against Drug-Resistant Microbes. Evid. Based Complement. Altern. Med. 2021, 2021, 5902851. [Google Scholar]
- Tian, J.; Ban, X.; Zeng, H.; He, J.; Chen, Y.; Wang, Y. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PLoS ONE 2012, 7, e30147. [Google Scholar] [CrossRef] [Green Version]
- Cristani, M.; D’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.G.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J. Agric. Food Chem. 2007, 55, 6300–6308. [Google Scholar] [CrossRef] [PubMed]
- Edris, E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef]
- Chebbac, K.; Benziane Ouaritini, Z.; El Moussaoui, A.; Chebaibi, M.; Salamatullah, A.M.; Lafraxo, S.; Bourhia, M.; Giesy, J.P.; Aboul-Soud, M.A.; Guemmouh, R. In Vitro and In Silico Studies of Antimicrobial, and Antioxidant Activities of Chemically Characterized Essential Oil of Artemisia Flahaultii L. (Asteraceae). Life 2023, 13, 779. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatograpy/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Nartey, J.; Gyesi, N.; Borquaye, L.S. Chemical composition and biological activities of the essential oils of Chrysophyllum albidum G. Don (African star apple). Biochem. Res. Int. 2021, 2021, 9911713. [Google Scholar] [CrossRef] [PubMed]
- Tepe, B.; Daferera, D.; Sokmen, A.; Sokmen, M.; Polissiou, M. Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chem. 2005, 90, 333–340. [Google Scholar] [CrossRef]
- Moattar, F.S.; Sariri, R.; Yaghmaee, P.; Giahi, M. Enzymatic and non-enzymatic antioxidants of Calamintha officinalis moench extracts. J. Appl. Biotechnol. Rep. 2016, 3, 489–494. [Google Scholar]
- Mašković, P.Z.; Manojlović, N.T.; Mandić, A.I.; Mišan, A.Č.; Milovanović, I.L.; Radojković, M.M.; Cvijović, M.S. Phytochemi-cal screening and biological activity of extracts of plant species Halacsya sendtneri (Boiss.). Dörfl. Hem. Ind. 2012, 66, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Agour, A.; Mssillou, I.; Saghrouchni, H.; Bari, A.; Badiaa, L.; Derwich, E. Chemical Composition, Antioxidant Potential and Antimicrobial Properties of the Essential Oils of Haplophyllum tuberculatum (Forsskal) A. Juss from Morocco. Trop. J. Nat. Prod. Res. 2021, 4. [Google Scholar] [CrossRef]
- Saghrouchni, H.; El Barnossi, A.; Salamatullah, A.; Bourhia, M.; Alzahrani, A.; Alkaltham, M.; Alyahya, H.; Tahiri, N.; Imtara, H.; Var, I. Carvacrol: A Promising Environmentally Friendly Agent to Fight Seeds Damping-Off Diseases Induced by Fungal Species. Agronomy 2021, 11, 985. [Google Scholar] [CrossRef]
- Amrati, F.E.-Z.; Bourhia, M.; Saghrouchni, H.; Slighoua, M.; Grafov, A.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Bari, A.; Ibenmoussa, S.; et al. Caralluma europaea (Guss.) N.E.Br.: Anti-Inflammatory, Antifungal, and Antibacterial Activities against Nosocomial Antibiotic-Resistant Microbes of Chemically Characterized Fractions. Molecules 2021, 26, 636. [Google Scholar] [CrossRef]
- Bouslamti, M.; Metouekel, A.; Chelouati, T.; El Moussaoui, A.; Barnossi, A.E.; Chebaibi, M.; Nafidi, H.-A.; Salamatullah, A.M.; Alzahrani, A.; Aboul-Soud, M.A. Solanum elaeagnifolium Var. Obtusifolium (Dunal) Dunal: Antioxidant, Antibacterial, and Antifungal Activities of Polyphenol-Rich Extracts Chemically Characterized by Use of In Vitro and In Silico Approaches. Molecules 2022, 27, 8688. [Google Scholar] [CrossRef] [PubMed]
Peak | Retention Time | Compound | Retention Index | Chemical Formula | Cas | Area (%) | |
---|---|---|---|---|---|---|---|
Calculate | Literature | ||||||
1 | 5.40 | Acetonyl acetone | 924 | 921 | C6H10O6 | 110-13-4 | 2.05 |
2 | 7.51 | δ-2-Carene | 1002 | 1002 | C10H16 | 554-61-0 | 8.29 |
3 | 9.07 | Santolina alcohol | 1040 | 1040 | C10H18O | 35671-15-9 | 3.25 |
4 | 11.48 | Undecane | 1100 | 1100 | C11H24 | 1120-21-4 | 4.28 |
5 | 11.56 | Phenyl propanal | 1102 | 1102 | C9H10O | 53-S3-8 | 2.61 |
6 | 15.65 | Ethyloctanoate | 1195 | 1197 | C10H20O2 | 106-32-1 | 6.35 |
7 | 18.77 | Nonanoic acid | 1269 | 1270 | C9H18O2 | 112-05-0 | 7.73 |
8 | 20.10 | Acetophenone | 1296 | 1298 | C9H10O2 | 98-86-2 | 8.58 |
9 | 22.66 | Caryophyllene (z) | 1408 | 1415 | C15H26O | 7S737-41-2 | 20.26 |
10 | 24.91 | Longifolene | 1409 | 1407 | C15H24 | 475-20-7 | 11.29 |
11 | 29.72 | γ-Cadinene | 1517 | 1522 | C15H24 | 39029-41-9 | 18.08 |
12 | 35.99 | Cadalene | 1674 | 1675 | C15H18 | 483-78-3 | 0.12 |
13 | 43.47 | Rimuene | 1894 | 1896 | C20H32 | 1686-67-5 | 0.08 |
14 | 50.33 | Methyl linoleate | 2081 | 2085 | C19H34O2 | 112-63-0 | 5.17 |
Total identified | 99.14 |
Strain | Diameter of the Inhibition Zone (mm) | Minimum Inhibitory Concentration (µg/mL) | ||||
---|---|---|---|---|---|---|
EOW | Kanamycin | Oxacillin | EOW | Kanamycin | Oxacillin | |
E. coli | 18.11 ± 0.5 | 0 | 0 | 51 ± 3 a | 15 ± 1 b | 11 ± 0 b |
K. pneumoniae | 12.13 ± 0.31 | 0 | 0 | 46 ± 3 a | 14 ± 1 ns | 14 ± 1 ns |
S. pneumoniae | 11.09 ± 0.47 | 0 | 0 | 31 ± 1 a | 15 ± 1 ns | 13 ± 1 ns |
S. aureus | 17.10 ± 0.42 | 0 | 0 | 42 ± 5 a | 14 ± 1 ns | 14 ± 1 ns |
Strain | Diameters of Inhibition Zones (mm) | Minimum Inhibitory Concentrations (µg/mL) | ||
---|---|---|---|---|
EOW | Fluconazole | EOW | Fluconazole | |
A. niger | 24.51 ± s1.07 c | 36.12 ± 2.04 c | 22.26 ± 0.55 c | 3.21 ± 0.04 c |
C. albicans | 29.00 ± 1.5 b | 33.08 ± 1.23 b | 28.04 ± 0.26 b | 2.44 ± 0.08 b |
A. flavus | 31.32 ± 1.32 a | 39.41 ± 1.21 a | 8.41 ± 0.40 a | 2.52 ± 0.03 a |
F. oxysporum | 27.63 ± 2.10 a | 32.52 ± 1.20 a | 9.05 ± 0.76 a | 3.68 ± 0.04 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourhia, M.; Alyousef, A.A.; Doumane, G.; Saghrouchni, H.; Giesy, J.P.; Ouahmane, L.; Gueddari, F.E.; Al-Sheikh, Y.A.; Aboul-Soud, M.A.M. Volatile Constituents in Essential Oil from Leaves of Withania adpressa Coss. Ex Exhibit Potent Antioxidant and Antimicrobial Properties against Clinically-Relevant Pathogens. Molecules 2023, 28, 2839. https://doi.org/10.3390/molecules28062839
Bourhia M, Alyousef AA, Doumane G, Saghrouchni H, Giesy JP, Ouahmane L, Gueddari FE, Al-Sheikh YA, Aboul-Soud MAM. Volatile Constituents in Essential Oil from Leaves of Withania adpressa Coss. Ex Exhibit Potent Antioxidant and Antimicrobial Properties against Clinically-Relevant Pathogens. Molecules. 2023; 28(6):2839. https://doi.org/10.3390/molecules28062839
Chicago/Turabian StyleBourhia, Mohammed, Abdullah A. Alyousef, Ghizlane Doumane, Hamza Saghrouchni, John P. Giesy, Lahcen Ouahmane, Fatiha EL Gueddari, Yazeed A. Al-Sheikh, and Mourad A. M. Aboul-Soud. 2023. "Volatile Constituents in Essential Oil from Leaves of Withania adpressa Coss. Ex Exhibit Potent Antioxidant and Antimicrobial Properties against Clinically-Relevant Pathogens" Molecules 28, no. 6: 2839. https://doi.org/10.3390/molecules28062839
APA StyleBourhia, M., Alyousef, A. A., Doumane, G., Saghrouchni, H., Giesy, J. P., Ouahmane, L., Gueddari, F. E., Al-Sheikh, Y. A., & Aboul-Soud, M. A. M. (2023). Volatile Constituents in Essential Oil from Leaves of Withania adpressa Coss. Ex Exhibit Potent Antioxidant and Antimicrobial Properties against Clinically-Relevant Pathogens. Molecules, 28(6), 2839. https://doi.org/10.3390/molecules28062839