Geobarrettin D, a Rare Herbipoline-Containing 6-Bromoindole Alkaloid from Geodia barretti
Abstract
:1. Introduction
2. Results
2.1. Structural Elucidation
2.2. Anti-Inflammatory Activity
3. Discussion
4. Materials and Methods
4.1. General Procedures
4.2. Animal Materials
4.3. Extraction and Isolation
4.4. Maturation and Activation of DCs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- De Sa Alves, F.R.; Barreiro, E.J.; Fraga, C.A. From nature to drug discovery: The indole scaffold as a ‘privileged structure’. Mini Rev. Med. Chem. 2009, 9, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Netz, N.; Opatz, T. Marine indole alkaloids. Mar. Drugs 2015, 13, 4814–4914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gul, W.; Hamann, M.T. Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sci. 2005, 78, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Pauletti, P.M.; Cintra, L.S.; Braguine, C.G.; da Silva Filho, A.A.; Silva, M.L.; Cunha, W.R.; Januario, A.H. Halogenated indole alkaloids from marine invertebrates. Mar. Drugs 2010, 8, 1526–1549. [Google Scholar] [CrossRef] [Green Version]
- Franco, L.H.; Joffe, E.B.D.; Puricelli, L.; Tatian, M.; Seldes, A.M.; Palermo, J.A. Indole alkaloids from the tunicate Aplidium meridianum. J. Nat. Prod. 1998, 61, 1130–1132. [Google Scholar] [CrossRef]
- Walker, S.R.; Carter, E.J.; Huff, B.C.; Morris, J.C. Variolins and related alkaloids. Chem. Rev. 2009, 109, 3080–3098. [Google Scholar] [CrossRef]
- Butler, M.S.; Capon, R.J.; Lu, C.C. Psammopemmins (A-C), novel brominated 4-hydroxyindole alkaloids from an antarctic Sponge, Psammopemma sp. Aust. J. Chem. 1992, 45, 1871–1877. [Google Scholar] [CrossRef]
- Reyes, F.; Fernandez, R.; Rodriguez, A.; Francesch, A.; Taboada, S.; Avila, C.; Cuevas, C. Aplicyanins A-F, new cytotoxic bromoindole derivatives from the marine tunicate Aplidium cyaneum. Tetrahedron 2008, 64, 5119–5123. [Google Scholar] [CrossRef]
- Bialonska, D.; Zjawiony, J.K. Aplysinopsins-marine indole alkaloids: Chemistry, bioactivity and ecological significance. Mar. Drugs 2009, 7, 166–183. [Google Scholar] [CrossRef] [Green Version]
- Anthoni, U.; Bock, K.; Chevolot, L.; Larsen, C.; Nielsen, P.H.; Christophersen, C. Marine alkaloids. 13. Chartellamide A and B, halogenated β-lactam indole-imidazole alkaloids from the marine bryozoan Chartella papyracea. J. Org. Chem. 1987, 52, 5638–5639. [Google Scholar] [CrossRef]
- Gribble, G.W. The diversity of naturally occurring organobromine compounds. Chem. Soc. Rev. 1999, 28, 335–346. [Google Scholar] [CrossRef]
- Frederich, M.; Tits, M.; Angenot, L. Potential antimalarial activity of indole alkaloids. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 11–19. [Google Scholar] [CrossRef]
- Woolner, V.H.; Jones, C.M.; Field, J.J.; Fadzilah, N.H.; Munkacsi, A.B.; Miller, J.H.; Keyzers, R.A.; Northcote, P.T. Polyhalogenated indoles from the red alga Rhodophyllis membranacea: The first isolation of bromo-chloro-iodo secondary metabolites. J. Nat. Prod. 2016, 79, 463–469. [Google Scholar] [CrossRef]
- Lidgren, G.; Bohlin, L. Studies of Swedish marine organisms VII. A novel biologically active indole alkaloid from the sponge Geodia barretti. Tetrahedron Lett. 1986, 27, 3283–3284. [Google Scholar] [CrossRef]
- Solter, S.; Dieckmann, R.; Blumenberg, M.; Francke, W. Barettin, revisited? Tetrahedron Lett. 2002, 43, 3385–3386. [Google Scholar] [CrossRef]
- Sjogren, M.; Goransson, U.; Johnson, A.L.; Dahlstrom, M.; Andersson, R.; Bergman, J.; Jonsson, P.R.; Bohlin, L. Antifouling activity of brominated cyclopeptides from the marine sponge Geodia barretti. J. Nat. Prod. 2004, 67, 368–372. [Google Scholar] [CrossRef]
- Hedner, E.; Sjogren, M.; Hodzic, S.; Andersson, R.; Goransson, U.; Jonsson, P.R.; Bohlin, L. Antifouling activity of a dibrominated cyclopeptide from the marine sponge Geodia barretti. J. Nat. Prod. 2008, 71, 330–333. [Google Scholar] [CrossRef]
- Olsen, E.K.; Hansen, E.; Moodie, L.W.; Isaksson, J.; Sepcic, K.; Cergolj, M.; Svenson, J.; Andersen, J.H. Marine AChE inhibitors isolated from Geodia barretti: Natural compounds and their synthetic analogs. Org. Biomol. Chem. 2016, 14, 1629–1640. [Google Scholar] [CrossRef]
- Lidgren, G.; Bohlin, L.; Christophersen, C. Studies of Swedish marine organisms, part X. biologically active compounds from the marine sponge Geodia barretti. J. Nat. Prod. 1988, 51, 1277–1280. [Google Scholar] [CrossRef]
- Di, X.; Rouger, C.; Hardardottir, I.; Freysdottir, J.; Molinski, T.F.; Tasdemir, D.; Omarsdottir, S. 6-Bromoindole derivatives from the Icelandic marine sponge Geodia barretti: Isolation and anti-inflammatory activity. Mar. Drugs 2018, 16, 437. [Google Scholar] [CrossRef] [Green Version]
- Kupchan, S.M.; Tsou, G.; Sigel, C.W. Datiscacin, a novel cytotoxic cucurbitacin 20-acetate from Datisca glomerata. J. Org. Chem. 1973, 38, 1420–1421. [Google Scholar] [CrossRef] [PubMed]
- VanWagenen, B.C.; Larsen, R.; Cardellina, J.H.; Randazzo, D.; Lidert, Z.C.; Swithenbank, C. Ulosantoin, a potent insecticide from the sponge Ulosa ruetzleri. J. Org. Chem. 1993, 58, 335–337. [Google Scholar] [CrossRef]
- Di, X.; Wang, S.; Oskarsson, J.T.; Rouger, C.; Tasdemir, D.; Hardardottir, I.; Freysdottir, J.; Wang, X.; Molinski, T.F.; Omarsdottir, S. Bromotryptamine and imidazole alkaloids with anti-inflammatory activity from the bryozoan Flustra foliacea. J. Nat. Prod. 2020, 83, 2854–2866. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Kurimoto, S.-i.; Kobayashi, J.i.; Kubota, T. Ishigadine A, a new canthin-6-one alkaloid from an Okinawan marine sponge Hyrtios sp. Tetrahedron Lett. 2018, 59, 4500–4502. [Google Scholar] [CrossRef]
- Yagi, H.; Matsunaga, S.; Fusetani, N. Isolation of 1-methylherbipoline, a purine base, from a marine sponge, Jaspis sp. J. Nat. Prod. 1994, 57, 837–838. [Google Scholar] [CrossRef]
- BourguetKondracki, M.L.; Martin, M.T.; Guyot, M. A new β-carboline alkaloid isolated from the marine sponge Hyrtios erecta. Tetrahedron Lett. 1996, 37, 3457–3460. [Google Scholar] [CrossRef]
- Kimura, J.; Ishizuka, E.; Nakao, Y.; Yoshida, W.Y.; Scheuer, P.J.; Kelly-Borges, M. Isolation of 1-methylherbipoline salts of halisulfate-1 and of suvanine as serine protease inhibitors from a marine sponge, Coscinoderma mathewsi. J. Nat. Prod. 1998, 61, 248–250. [Google Scholar] [CrossRef]
- Davis, F.A.; Zhang, Y.; Anilkumar, G. Asymmetric synthesis of the quinolizidine alkaloid (–)-epimyrtine with intramolecular Mannich cyclization and N-sulfinyl δ-amino β-ketoesters. J. Org. Chem. 2003, 68, 8061–8064. [Google Scholar] [CrossRef]
- Januar, L.A.; Molinski, T.F. Acremolin from Acremonium strictum is N2,3-Etheno-2’-isopropyl-1-methylguanine, not a 1H-Azirine. Synthesis and Structural Revision. Org. Lett. 2013, 15, 2370–2373. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.K.; Song, I.H.; Park, H.Y.; Lee, Y.J.; Lee, H.S.; Sim, C.J.; Oh, D.C.; Oh, K.B.; Shin, J. Suvanine sesterterpenes and deacyl irciniasulfonic acids from a tropical Coscinoderma sp. sponge. J. Nat. Prod. 2014, 77, 1396–1403. [Google Scholar] [CrossRef]
- Rosemeyer, H. The chemodiversity of purine as a constituent of natural products. Chem. Biodivers. 2004, 1, 361–401. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.A.; Valles, E.; Diez, D.; Castro, M.A. Marine alkylpurines: A promising group of bioactive marine natural products. Mar. Drugs 2018, 16, 6. [Google Scholar] [CrossRef] [Green Version]
- Searle, P.A.; Molinski, T.F. Five new alkaloids from the tropical ascidian, Lissoclinum sp. lissoclinotoxin A is chiral. J. Org. Chem. 1994, 59, 6600–6605. [Google Scholar] [CrossRef]
- Miyanaga, A. Michael additions in polyketide biosynthesis. Nat. Prod. Rep. 2019, 36, 531–547. [Google Scholar] [CrossRef]
- Salib, M.N.; Hendra, R.; Molinski, T.F. Bioactive bromotyrosine alkaloids from the Bahamian marine sponge Aiolochroia crassa. Dimerization and Oxidative Motifs. J. Org. Chem. 2022, 87, 12831–12843. [Google Scholar] [CrossRef]
- Cafieri, F.; Fattorusso, E.; Mangoni, A.; Taglialatela-Scafati, O. Longamide and 3, 7-dimethylisoguanine, two novel alkaloids from the marine sponge Agelas longissima. Tetrahedron Lett. 1995, 36, 7893–7896. [Google Scholar] [CrossRef]
- Chehade, C.C.; Dias, R.L.; Berlinck, R.G.; Ferreira, A.G.; Costa, L.V.; Rangel, M.; Malpezzi, E.L.; de Freitas, J.C.; Hajdu, E. 1,3-Dimethylisoguanine, a new purine from the marine sponge Amphimedon viridis. J. Nat. Prod. 1997, 60, 729–731. [Google Scholar] [CrossRef]
- Tang, Z.; Ye, W.; Chen, H.; Kuang, X.; Guo, J.; Xiang, M.; Peng, C.; Chen, X.; Liu, H. Role of purines in regulation of metabolic reprogramming. Purinergic Signal. 2019, 15, 423–438. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Zheng, X.; Li, J.; Ye, C.; Song, X. Theacrine, a purine alkaloid with anti-inflammatory and analgesic activities. Fitoterapia 2010, 81, 627–631. [Google Scholar] [CrossRef]
- Da Rocha Lapa, F.; da Silva, M.D.; de Almeida Cabrini, D.; Santos, A.R. Anti-inflammatory effects of purine nucleosides, adenosine and inosine, in a mouse model of pleurisy: Evidence for the role of adenosine A2 receptors. Purinergic Signal. 2012, 8, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.X.; Hong, H.J.; Jung, M.Y.; Cho, D.; Kim, T.S. Principal role of IL-12p40 in the decreased Th1 and Th17 responses driven by dendritic cells of mice lacking IL-12 and IL-18. Cytokine 2013, 63, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.; Santner-Nanan, B.; Hu, M.; Skarratt, K.; Lee, C.H.; Stormon, M.; Wong, M.; Fuller, S.J.; Nanan, R. IL-10 potentiates differentiation of human induced regulatory T cells via STAT3 and Foxo1. J. Immunol. 2015, 195, 3665–3674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | δH a | δH b | δC a | δN b | 1H-13C HMBC a | 1H-15N HMBC b |
---|---|---|---|---|---|---|
N-1′ | 10.60 (1H, d, 2.0) | 131.3 | ||||
2′ | 7.57 (1H, s) | 7.53 (1H, d, 2.0) | 125.9 | C-1″, 3′, 5′, 3a′, 7a′ | ||
3′ | 113.4 | |||||
3a′ | 125.2 | |||||
4′ | 7.65 (1H, d, 8.5) | 7.12 (1H, d, 8.5) | 120.8 | C-3′, 6′, 3a′, 7a′ | ||
5′ | 7.24 (1H, dd, 8.5, 1.6) | 7.45 (1H, dd, 8.5, 1.6) | 124.2 | C-7′, 3a′ | ||
6′ | 117.0 | |||||
7′ | 7.60 (1H, d, 1.5) | 7.61 (1H, d, 1.5) | 115.9 | C-6′, 5′, 3a′ | ||
7a′ | - | - | 139.1 | |||
N-1″ | 47.9 c | |||||
2″ | 4.07 (1H, dd, 13.7, 5.9)4.15 (1H, dd, J = 13.7, 6.8 Hz) | 4.07 (2H, m) | 69.3 | C-2″, 3′, -N(CH3)3 | N-10 | |
3″ | 6.05 (1H, t, 6.3) | 6.05 (1H, t, 6.3) | 45.4 | C-1″, 3′, 3a′, 2′, N-10 | ||
1″-NMe | 3.30 (9H, s) | 3.27 (9H, s) | 54.8 | C-2″, 1″ | N-3″ | |
N-1 | ||||||
2 | 154.9 | |||||
N-3 | ||||||
4 | 151.0 | |||||
5 | 110.0 | |||||
6 | 155.0 | |||||
N-7 | 156.4 c | |||||
8 | 9.01 (1H, s) | 8.81 (1H, s) | 140.1 | C-11, 4, 5 | N-7, 9 | |
N-9 | 157.3 c | |||||
N-10 | 96.3 c | |||||
11 | 4.11 (3H, s) | 3.84 (3H, s) | 36.2 | C-5, 8 | N-7 | |
12 | 3.91 (3H, s) | 3.92 (3H, s) | 32.1 | C-4, 8 | N-9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, X.; Hardardottir, I.; Freysdottir, J.; Wang, D.; Gustafson, K.R.; Omarsdottir, S.; Molinski, T.F. Geobarrettin D, a Rare Herbipoline-Containing 6-Bromoindole Alkaloid from Geodia barretti. Molecules 2023, 28, 2937. https://doi.org/10.3390/molecules28072937
Di X, Hardardottir I, Freysdottir J, Wang D, Gustafson KR, Omarsdottir S, Molinski TF. Geobarrettin D, a Rare Herbipoline-Containing 6-Bromoindole Alkaloid from Geodia barretti. Molecules. 2023; 28(7):2937. https://doi.org/10.3390/molecules28072937
Chicago/Turabian StyleDi, Xiaxia, Ingibjorg Hardardottir, Jona Freysdottir, Dongdong Wang, Kirk R. Gustafson, Sesselja Omarsdottir, and Tadeusz F. Molinski. 2023. "Geobarrettin D, a Rare Herbipoline-Containing 6-Bromoindole Alkaloid from Geodia barretti" Molecules 28, no. 7: 2937. https://doi.org/10.3390/molecules28072937
APA StyleDi, X., Hardardottir, I., Freysdottir, J., Wang, D., Gustafson, K. R., Omarsdottir, S., & Molinski, T. F. (2023). Geobarrettin D, a Rare Herbipoline-Containing 6-Bromoindole Alkaloid from Geodia barretti. Molecules, 28(7), 2937. https://doi.org/10.3390/molecules28072937