Chemical, Nutritional and Biological Evaluation of a Sustainable and Scalable Complex of Phytochemicals from Bergamot By-Products
Abstract
:1. Introduction
2. Results
2.1. PBJ Composition
2.2. In Vitro Studies
2.2.1. Anti-Inflammatory Activity
2.2.2. Radical Scavenging and Cellular Antioxidant Activity
2.3. In Vivo Studies
2.3.1. Nutritional Intake
2.3.2. Metabolic Syndrome Parameters
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. PBJ Preparation
4.3. Analytical Characterization and Nutritional Values
4.3.1. Polyphenols Profiling by LC-ESI-MS
4.3.2. Quantitative Analysis of Polyphenols by HPLC-PDA
4.3.3. Stachydrine Content by LC-HRMS Standard Addition Method
4.3.4. Semi-Quantitative Data Analysis
4.3.5. Nutritional Composition
4.4. In Vitro and Cell Activities
4.4.1. In Vitro Radical-Scavenging Activity
4.4.2. Anti-Inflammatory Activity
4.4.3. Antioxidant Activity
4.5. Pharmacological Studies
4.5.1. Experimental Protocol and Group Characterization
4.5.2. PBJ Administration
4.5.3. Nutritional Parameters
4.5.4. Metabolic Analysis
4.5.5. Systolic Blood Pressure
4.5.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rapisarda, A.; Germanò, M.P. Citrus × bergamia Risso & Poiteau botanical classification, morphology and anatomy. In Citrus bergamia, 1st ed.; Dugo, G., Bonaccorsi, I., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 16–24. [Google Scholar]
- Mannucci, C.; Navarra, M.; Calapai, F.; Squeri, R.; Gangemi, S.; Calapai, G. Clinical Pharmacology of Citrus bergamia: A Systematic Review. Phytother. Res. 2017, 31, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Baron, G.; Altomare, A.; Mol, M.; Garcia, J.L.; Correa, C.; Raucci, A.; Mancinelli, L.; Mazzotta, S.; Fumagalli, L.; Trunfio, G.; et al. Analytical Profile and Antioxidant and Anti-Inflammatory Activities of the Enriched Polyphenol Fractions Isolated from Bergamot Fruit and Leave. Antioxidants 2021, 10, 141. [Google Scholar] [CrossRef] [PubMed]
- Maruca, G.; Laghetti, G.; Mafrica, R.; Turiano, D.; Hammer, K. The Fascinating History of Bergamot (Citrus bergamia Risso & Poiteau), the Exclusive Essence of Calabria: A Review. J. Environ. Sci. Eng. 2017, 6, 8. [Google Scholar]
- Carresi, C.; Gliozzi, M.; Musolino, V.; Scicchitano, M.; Scarano, F.; Bosco, F.; Nucera, S.; Maiuolo, J.; Macrì, R.; Ruga, S.; et al. The Effect of Natural Antioxidants in the Development of Metabolic Syndrome: Focus on Bergamot Polyphenolic Fraction. Nutrients 2020, 12, 1504. [Google Scholar] [CrossRef] [PubMed]
- Lamiquiz-Moneo, I.; Giné-González, J.; Alisente, S.; Bea, A.M.; Pérez-Calahorra, S.; Marco-Benedí, V.; Baila-Rueda, L.; Jarauta, E.; Cenarro, A.; Civeira, F.; et al. Effect of bergamot on lipid profile in humans: A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3133–3143. [Google Scholar] [CrossRef] [Green Version]
- Perna, S.; Spadaccini, D.; Botteri, L.; Girometta, C.; Riva, A.; Allegrini, P.; Petrangolini, G.; Infantino, V.; Rondanelli, M. Efficacy of bergamot: From anti-inflammatory and anti-oxidative mechanisms to clinical applications as preventive agent for cardiovascular morbidity, skin diseases, and mood alterations. Food Sci. Nutr. 2019, 7, 369–384. [Google Scholar] [CrossRef] [Green Version]
- Di Donna, L.; De Luca, G.; Mazzotti, F.; Napoli, A.; Salerno, R.; Taverna, D.; Sindona, G. Statin-like principles of bergamot fruit (Citrus bergamia): Isolation of 3-hydroxymethylglutaryl flavonoid glycosides. J. Nat. Prod. 2009, 72, 1352–1354. [Google Scholar] [CrossRef]
- Leopoldini, M.; Malaj, N.; Toscano, M.; Sindona, G.; Russo, N. On the inhibitor effects of bergamot juice flavonoids binding to the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme. J. Agric. Food Chem. 2010, 58, 10768–10773. [Google Scholar] [CrossRef]
- Cha, J.Y.; Cho, Y.S.; Kim, I.; Anno, T.; Rahman, S.M.; Yanagita, T. Effect of hesperetin, a citrus flavonoid, on the liver triacylglycerol content and phosphatidate phosphohydrolase activity in orotic acid-fed rats. Plant Foods Hum. Nutr. 2001, 56, 349–358. [Google Scholar] [CrossRef]
- Risitano, R.; Currò, M.; Cirmi, S.; Ferlazzo, N.; Campiglia, P.; Caccamo, D.; Ientile, R.; Navarra, M. Flavonoid fraction of Bergamot juice reduces LPS-induced inflammatory response through SIRT1-mediated NF-κB inhibition in THP-1 monocytes. PLoS ONE 2014, 9, e107431. [Google Scholar] [CrossRef] [Green Version]
- Maugeri, A.; Russo, C.; Musumeci, L.; Lombardo, G.E.; De Sarro, G.; Barreca, D.; Cirmi, S.; Navarra, M. The Anticancer Effect of a Flavonoid-Rich Extract of Bergamot Juice in THP-1 Cells Engages the SIRT2/AKT/p53 Pathway. Pharmaceutics 2022, 14, 2168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Virgous, C.; Si, H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J. Nutr. Biochem. 2019, 69, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Capomolla, A.S.; Janda, E.; Paone, S.; Parafati, M.; Sawicki, T.; Mollace, R.; Ragusa, S.; Mollace, V. Atherogenic Index Reduction and Weight Loss in Metabolic Syndrome Patients Treated with A Novel Pectin-Enriched Formulation of Bergamot Polyphenols. Nutrients 2019, 11, 1271. [Google Scholar] [CrossRef] [Green Version]
- Ferlazzo, N.; Cirmi, S.; Calapai, G.; Ventura-Spagnolo, E.; Gangemi, S.; Navarra, M. Anti-Inflammatory Activity of Citrus bergamia Derivatives: Where Do We Stand? Molecules 2016, 21, 1273. [Google Scholar] [CrossRef] [Green Version]
- Scerra, M.; Foti, F.; Caparra, P.; Cilione, C.; Violi, L.; Flamingo, G.; D’Agui, G.; Chies, L. Effects of feeding fresh bergamot (Citrus bergamia, Risso) pulp at up to 35% of dietary dry matter on growth performance and meat quality from lambs. Small Rumin. Res. 2018, 169, 6. [Google Scholar] [CrossRef]
- Conidi, C.; Cassano, A.; Drioli, E. A membrane-based study for the recovery of polyphenols from bergamot juice. J. Membr. Sci. 2011, 375, 8. [Google Scholar] [CrossRef]
- Sommella, E.; Pepe, G.; Pagano, F.; Tenore, G.C.; Marzocco, S.; Manfra, M.; Calabrese, G.; Aquino, R.P.; Campiglia, P. UHPLC profiling and effects on LPS-stimulated J774A.1 macrophages of flavonoids from bergamot (Citrus bergamia) juice, an underestimated waste product with high anti-inflammatory potential. J. Funct. Foods 2014, 7, 8. [Google Scholar] [CrossRef]
- Guan, Z.W.; Yu, E.Z.; Feng, Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef]
- Baron, G.; Ferrario, G.; Marinello, C.; Carini, M.; Morazzoni, P.; Aldini, G. Effect of Extraction Solvent and Temperature on Polyphenol Profiles, Antioxidant and Anti-Inflammatory Effects of Red Grape Skin By-Product. Molecules 2021, 26, 5454. [Google Scholar] [CrossRef]
- Ferrario, G.; Baron, G.; Gado, F.; Della Vedova, L.; Bombardelli, E.; Carini, M.; D’Amato, A.; Aldini, G.; Altomare, A. Polyphenols from Thinned Young Apples: HPLC-HRMS Profile and Evaluation of Their Anti-Oxidant and Anti-Inflammatory Activities by Proteomic Studies. Antioxidants 2022, 11, 1577. [Google Scholar] [CrossRef]
- Della Vedova, L.; Ferrario, G.; Gado, F.; Altomare, A.; Carini, M.; Morazzoni, P.; Aldini, G.; Baron, G. Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS) Profiling of Commercial Enocianina and Evaluation of Their Antioxidant and Anti-Inflammatory Activity. Antioxidants 2022, 11, 1187. [Google Scholar] [CrossRef] [PubMed]
- Ticinesi, A.; Mancabelli, L.; Carnevali, L.; Nouvenne, A.; Meschi, T.; Del Rio, D.; Ventura, M.; Sgoifo, A.; Angelino, D. Interaction Between Diet and Microbiota in the Pathophysiology of Alzheimer’s Disease: Focus on Polyphenols and Dietary Fibers. J. Alzheimers Dis. 2022, 86, 961–982. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Noguera, F.J.; Marín-Pagán, C.; Carlos-Vivas, J.; Alcaraz, P.E. 8-Week Supplementation of 2S-Hesperidin Modulates Antioxidant and Inflammatory Status after Exercise until Exhaustion in Amateur Cyclists. Antioxidants 2021, 10, 432. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Jung, K.J.; Choi, J.S.; Chung, H.Y. Modulation of the age-related nuclear factor-kappaB (NF-kappaB) pathway by hesperetin. Aging Cell 2006, 5, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Okuno, A.; Ishisono, K.; Yajima, Y.; Toyoda, A. Dietary Hesperidin Suppresses Lipopolysaccharide-Induced Inflammation in Male Mice. Int. J. Tryptophan Res. 2022, 15, 11786469221128697. [Google Scholar] [CrossRef]
- Stabrauskiene, J.; Kopustinskiene, D.M.; Lazauskas, R.; Bernatoniene, J. Naringin and Naringenin: Their Mechanisms of Action and the Potential Anticancer Activities. Biomedicines 2022, 10, 1686. [Google Scholar] [CrossRef]
- Yoon, J.H.; Kim, M.Y.; Cho, J.Y. Apigenin: A Therapeutic Agent for Treatment of Skin Inflammatory Diseases and Cancer. Int. J. Mol. Sci. 2023, 24, 1498. [Google Scholar] [CrossRef]
- Cheng, F.; Zhou, Y.; Wang, M.; Guo, C.; Cao, Z.; Zhang, R.; Peng, C. A review of pharmacological and pharmacokinetic properties of stachydrine. Pharmacol. Res. 2020, 155, 104755. [Google Scholar] [CrossRef]
- Jung, T.W.; Kim, H.; Park, S.Y.; Cho, W.; Oh, H.; Lee, H.J.; Abd El-Aty, A.M.; Hacimuftuoglu, A.; Jeong, J.H. Stachydrine alleviates lipid-induced skeletal muscle insulin resistance via AMPK/HO-1-mediated suppression of inflammation and endoplasmic reticulum stress. J. Endocrinol. Investig. 2022, 45, 2181–2191. [Google Scholar] [CrossRef]
- Liu, H.; Liang, J.; Liang, C.; Liang, G.; Lai, J.; Zhang, R.; Wang, Q.; Xiao, G. Physicochemical properties of dietary fiber of bergamot and its effect on diabetic mice. Front. Nutr. 2022, 9, 1040825. [Google Scholar] [CrossRef]
- Sarabandi, K.; Peighambardoust, S.H.; Sadeghi Mahoonak, A.R.; Samaei, S.P. Effect of different carriers on microstructure and physical characteristics of spray dried apple juice concentrate. J. Food Sci. Technol. 2018, 55, 3098–3109. [Google Scholar] [CrossRef] [PubMed]
- Slama, I.; Abdelly, C.; Bouchereau, A.; Flowers, T.; Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 2015, 115, 433–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atwater, W.; Benedict, F. Experiments on the Metabolism of Matter and Energy in the Human Body; Bulletin (United States. Office of Experiment Stations), no. 109 1902; Washington Government Printing Office, U.S. Department of Agriculture: Washington, DC, USA, 2014; pp. 1898–1900. [Google Scholar]
- Zuoyi, Z.; Yu, Z.; Junhong, W.; Xue, L.; Wei, W.; Zhongping, H. Characterization of sugar composition in Chinese royal jelly by ion chromatography with pulsed amperometric detection. J. Food Compos. Anal. 2019, 78, 6. [Google Scholar]
- Scherer, R.; Rybka, A.C.P.; Ballus, C.A.; Meinhart, A.D.; Filho, J.T.; Godoy, H.T. Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chem. 2012, 135, 4. [Google Scholar] [CrossRef] [Green Version]
- Francisqueti, F.V.; Minatel, I.O.; Ferron, A.J.T.; Bazan, S.G.Z.; Silva, V.D.S.; Garcia, J.L.; de Campos, D.H.S.; Ferreira, A.L.; Moreto, F.; Cicogna, A.C.; et al. Effect of Gamma-Oryzanol as Therapeutic Agent to Prevent Cardiorenal Metabolic Syndrome in Animals Submitted to High Sugar-Fat Diet. Nutrients 2017, 9, 1299. [Google Scholar] [CrossRef] [Green Version]
- Luvizotto, R.e.A.; Nascimento, A.F.; Imaizumi, E.; Pierine, D.T.; Conde, S.J.; Correa, C.R.; Yeum, K.J.; Ferreira, A.L. Lycopene supplementation modulates plasma concentrations and epididymal adipose tissue mRNA of leptin, resistin and IL-6 in diet-induced obese rats. Br. J. Nutr. 2013, 110, 1803–1809. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.L.; Vileigas, D.F.; Gregolin, C.S.; Costa, M.R.; Francisqueti-Ferron, F.V.; Ferron, A.J.T.; De Campos, D.H.S.; Moreto, F.; Minatel, I.O.; Bazan, S.G.Z.; et al. Rice (Oryza sativa L.) bran preserves cardiac function by modulating pro-inflammatory cytokines and redox state in the myocardium from obese rats. Eur. J. Nutr. 2022, 61, 901–913. [Google Scholar] [CrossRef] [PubMed]
- Morales-Gurrola, G.; Simental-Mendía, L.E.; Castellanos-Juárez, F.X.; Salas-Pacheco, J.M.; Guerrero-Romero, F. The triglycerides and glucose index is associated with cardiovascular risk factors in metabolically obese normal-weight subjects. J. Endocrinol. Investig. 2020, 43, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.P.; Rafacho, B.P.; Gonçalves, A.e.F.; Jaldin, R.G.; Nascimento, T.B.; Silva, M.A.; Cau, S.B.; Roscani, M.G.; Azevedo, P.S.; Minicucci, M.F.; et al. Vitamin D induces increased systolic arterial pressure via vascular reactivity and mechanical properties. PLoS ONE 2014, 9, e98895. [Google Scholar] [CrossRef] [Green Version]
Nutritional Components | Value | |
---|---|---|
Moisture | 11.68 ± 0.38 g/100 g | |
Proteins | 5.65 ± 0.35 g/100 g | |
Total carbohydrates | 57.250 ± 2.088 g/100 g | |
Total fat | 0.240 ± 0.036 g/100 g | |
Ash | 5.78 ± 0.30 g/100 g | |
Energy value (kcal/100 g) | 316 ± 3 kcal/100 g | |
Energy value (kJ/100 g) | 1348 ± 11 kJ/100 g | |
Fatty acids | ||
Polyunsaturated (>C20) | <LOQ (0.0010 g/100 g) | |
Saturated | 0.079 ± 0.014 g/100 g | |
Monounsaturated | 0.0210 ± 0.0070 | |
Polyunsaturated | 0.127 ± 0.021 | |
Total dietary fibers | 19.4 ± 2.0 g/100 g | |
Dietary soluble fibers | 18.2 ± 1.9 g/100 g | |
Dietary insoluble fibers | 1.20 ± 0.35 g/100 g | |
Fructooligosaccharide | <LOQ (0.10 g/100 g) | |
Sodium | 1370 ± 110 mg/Kg | |
Sugar composition | ||
Glucose | 12.33 ± 0.90 | |
Fructose | 10.57 ± 0.68 | |
Lactose | <LOQ | |
Saccharose | 3.09 ± 0.30 | |
Maltose | <LOQ | |
Organic acids | ||
Malic acid | 1.21 ± 0.015 g/100 g | |
Succinic acid | <LOQ (0.010 g/100 g) | |
Lactic acid | <LOQ (0.010 g/100 g) | |
Fumaric acid | <LOQ (0.010 g/100 g) | |
Tartaric acid | <LOQ (0.010 g/100 g) | |
Citric acid | 13.8 ± 1.6 g/100 g | |
Formic acid | <LOQ (0.010 g/100 g) | |
Propionic acid | <LOQ (0.010 g/100 g) | |
Acetic acid | <LOQ (0.010 g/100 g) |
Peak | Compound | RT | [M-H]- | MS/MS | [M+H]+ | MS/MS | Ionic Relative % |
---|---|---|---|---|---|---|---|
1 | Quinic acid | 1.3 | 191.0564 | 147 | - | - | 1.7 |
2 | Betonicine | 1.4 | - | - | 160.0967 | 88-98-102-114-160 | <1.0 |
3 | Stachydrine | 1.4 | - | - | 144,1019 | 84-144 | <1.0 |
4 | Citric acid | 1.5 | 191.0202 | 111-147 | 193.0349 | 129-147-157 | 7.5 |
5 | HMG-glucoside | 1.9 | 323.0974 | - | - | - | <1.0 |
6 | N-(1-Deoxy-1-fructosyl)leucine | 2 | - | - | 294.1549 | 144-230-248-258 | <1.0 |
7 | Luteolin-6,8-di-C-glucoside | 6.7 | 609.1443 | 369-399-429-471-489-519 | 611.1612 | 371-473 | <1.0 |
8 | Feruloyl glucoside isomer 1 | 7.1 | 355.1029 | 193 | 357.1182 | 287-195 | <1.0 |
9 | Sinapoyl glucoside | 7.8 | 385.1133 | 223 | 387.1288 | 225 | <1.0 |
10 | Citrusin F | 8.6 | 519.1714 | 195-357 | - | - | <1.0 |
11 | Apigenin-6,8-di-C-glucoside | 9.4 | 593.1495 | 353-383-473-503 | 595.1657 | 355-457 | 2.3 |
12 | Chrysoeriol-6,8-di-C-glucoside | 11.3 | 623.1612 | 312-383-413-503-533 | 625.1762 | 385-487-505 | <1.0 |
13 | 2-Hydroxy-4-methoxyhydrocinnamoyl-2-O-glucoside | 11.6 | 357.1179 | 151-177-195 | - | - | <1.0 |
14 | p-Coumaric acid | 11.8 | 163.0406 | 119 | - | - | <1.0 |
15 | Diosmetin-6,8-di-C-glucoside | 12.9 | 623.1604 | 312-383-413-503-533 | 625.1761 | 385-487-505 | 1.4 |
16 | Neoeriocitrin-O-glucoside/eriocitrin-O-glucoside | 13.2 | 757.2193 | 287-595 | 759.2349 | - | <1.0 |
17 | Luteolin-C-glucoside | 13.6 | 447.0924 | 285 | 449.1079 | 287-329 | <1.0 |
18 | Naringin-glucoside | 13.9 | 741.2249 | 271 | - | - | <1.0 |
19 | Unknown 1 | 14.5 | 611.1617 | 449-475 | 613.1762 | - | <1.0 |
20 | 6-(beta-D-glucopyranosyloxy)-5-benzofuranpropanoic acid | 16.9 | 367.1028 | 161-205 | - | - | <1.0 |
21 | Eriodictyol-7-O-glucoside | 18.2 | 449.108 | 287 | 451.1235 | 289 | <1.0 |
22 | Apigenin-8-C-glucoside | 18.3 | 431.0983 | 283-311-341 | 433.1131 | 283-397 | <1.0 |
23 | Eriodictyol 7-O-neohesperidoside (Neoeriocitrin) | 18.8 | 595.1651 | 287-449 | 597.1813 | 451 | <1.0 |
24 | Apigenin-6-C-glucoside | 19.1 | 431.0979 | 283-311-341 | 433.113 | 283-313-337-367-379-397 | <1.0 |
25 | Apigenin-di-O-glucoside-O-HMG | 19.3 | 737.1903 | 431-635-675 | - | - | <1.0 |
26 | Eriodictyol 7-O-rutinoside (Eriocitrin) | 20.6 | 595.1657 | 287 | 597.1812 | 289-451 | 11.7 |
27 | 6-(beta-D-glucopyranosyloxy)-4-methoxy-5-benzofuranpropanoic acid | 20.7 | 397.1135 | 176-191-217-235 | 399.1288 | 202-219-237-245-263-285-288-313-325-339 | <1.0 |
28 | Chrysoeriol-8-C-glucoside | 22.7 | 461.1084 | - | 463.1234 | 325-343-367-381-397-409-427-445 | <1.0 |
29 | Eriodictyol-O-diglucoside-O-HMG | 23 | 755.2003 | 287-449-491 | - | - | <1.0 |
30 | Diosmetin-di-C-glucoside-O-HMG | 23.7 | 767.1998 | 299-461 | - | - | <1.0 |
31 | Luteolin-7-O-neohesperidoside | 24.1 | 593.1496 | 285-447 | 595.1653 | 287-449 | 2.5 |
32 | Diosmetin-8-C-glucoside | 24.5 | 461.109 | 341-371 | 463.1228 | 343-367-397-409-427 | <1.0 |
33 | Naringenin 7-O-rutinoside (Narirutin) | 25.2 | 579.1713 | 271 | 581.1863 | 435 | <1.0 |
34 | Naringenin-7-O-glucoside (Prunasin) | 26.5 | 433.1133 | 271 | - | - | <1.0 |
35 | Neoeriocitrin-glucoside-O-HMG | 26.5 | 901.2591 | 287-595-637-677-799 | - | - | <1.0 |
36 | Hesperetin-di-C-glucoside | 26.8 | 625.1776 | 301-343-505 | 627.1924 | 303 | <1.0 |
37 | Chrysoeriol-di-O-glucoside-O-HMG | 26.9 | 767.1998 | 461 | - | - | <1.0 |
38 | Diosmetin-di-O-glucoside-O-HMG | 28 | 767.2006 | - | - | - | <1.0 |
39 | Bergamjuicin (Melitidin-glucoside) | 28 | 885.264 | 459-579-621-661-723-741-783 | 887.282 | 273 | <1.0 |
40 | Naringenin 7-O-neohesperidoside (Naringin) | 28.4 | 579.1705 | 271 | 581.1863 | 417-435 | 11.4 |
41 | Apigenin-O-glucoside | 29.1 | 431.0976 | - | 433.1132 | - | <1.0 |
42 | Neohesperidin-glucoside-O-HMG | 29.2 | 915.273 | - | - | - | <1.0 |
43 | Apigenin-7-O-neohesperidoside | 31 | 577.1557 | 269 | 579.1705 | 271-433 | 2.3 |
44 | Hesperetin 7-O-rutinoside (Hesperidin) | 31.4 | 609.1816 | 301-489 | 611.1971 | - | <1.0 |
45 | Chrysoeriol-7-O-glucoside | 32.4 | 461.1079 | - | 463.1232 | 301 | <1.0 |
46 | Diosmetin-7-O-glucoside | 33.2 | 461.1082 | 284-299 | 463.1233 | 301 | <1.0 |
47 | Eriodictyol 7-O-glucoside-O-HMG | 33.5 | 593.1495 | 287-449-491-531 | 595.1654 | - | <1.0 |
48 | Hesperetin-O-glucoside isomer 1 | 33.7 | 463.1239 | 301 | - | - | <1.0 |
49 | Eriocitrin-O-HMG | 34.1 | 739.2052 | 287-595-637-677 | 741.2234 | - | <1.0 |
50 | Chrysoeriol-7-O-neohesperidoside | 34.3 | 607.1655 | 284-299-461 | - | - | <1.0 |
51 | Demethoxycentaureidin-7-O-glucoside | 35 | 491.1199 | 314-329 | 493.1339 | 331 | <1.0 |
52 | Hesperetin 7-O-neohesperidoside (Neohesperidin) | 35 | 609.1809 | 301-489 | 611.1965 | 303 | 16.5 |
53 | Diosmetin-7-O-neohesperidoside | 36.2 | 607.1655 | 284-299 | - | - | 1.8 |
54 | Hesperetin-O-glucoside isomer 2 | 36.5 | 463.1241 | - | - | - | <1.0 |
55 | Neoeriocitrin-O-HMG | 36.5 | 739.2067 | 595-637-677 | 741.2233 | - | 3.8 |
56 | 6-(beta-D-glucopyranosyloxy)-4-methoxy-5-benzofuranpropanoic acid-O-HMG | 36.7 | 541.1556 | 191-217-235-397-439-479 | 543.1704 | 325-367-499 | 1.1 |
57 | 6-hydroxy-4-methoxy-5-benzofuranpropanoic acid | 38 | 235.0611 | 176-191 | - | - | <1.0 |
58 | Luteolin-7-O-neohesperidoside-O-HMG | 38.5 | 737.1934 | 593-635-675 | 739.2083 | 593-677 | <1.0 |
59 | Eriodictyol | 39.2 | 287.056 | - | - | - | <1.0 |
60 | Nomilin glucoside | 41.7 | 693.2748 | 427-471-565-607-633 | - | - | 3.2 |
61 | Naringenin-acetyl-C-neohesperidoside | 42.6 | 621.1812 | 271-459-501-579 | - | - | <1.0 |
62 | Naringenin-O-rutinoside-O-HMG | 42.7 | 723.2142 | 579-621-661 | 725.2291 | - | <1.0 |
63 | Naringenin 7-O-glucoside-O-HMG | 43 | 577.1554 | 271-433 | 579.1711 | - | <1.0 |
64 | Nomilinic acid glucoside | 44.6 | 711.285 | 607-651 | - | - | 4.1 |
65 | Melitidin (Naringin-O-HMG) | 44.6 | 723.2148 | 579-621-661 | 725.2289 | 689 | 6.7 |
66 | Apigenin-7-O-neohesperidoside-O-HMG | 46.3 | 721.1959 | 577-619-659 | 723.2133 | 271 | <1.0 |
67 | Chrysoeriol-O-glucoside-O-HMG | 47.4 | 605.1508 | 299-461-503 | 607.1652 | 301-463 | <1.0 |
68 | Diosmetin-acetyl-O-neohesperidoside | 47.8 | 649.1771 | 284-299-607 | - | - | <1.0 |
69 | Obacunone glucoside | 48.3 | 633.2535 | 331-359-427 | - | - | <1.0 |
70 | Diosmetin-7-O-neohesperidoside-O-HMG | 48.3 | 751.2095 | 607-649-689 | 753.2227 | 607-691 | <1.0 |
71 | Hesperetin-O-rutinoside-O-HMG | 48.4 | 753.2223 | 609-651-691 | 755.2392 | 301-609 | 1.4 |
72 | Hesperetin 7-O-glucoside-O-HMG | 48.8 | 607.1651 | 301-463-505 | - | <1.0 | |
73 | Brutieridin (Neohesperidin-O-HMG) | 49.2 | 753.2221 | 301-609-651-691 | 755.2389 | 301-609 | 6.9 |
74 | Diosmetin-O-glucoside-O-HMG | 49.3 | 605.1505 | 299-461-503-543 | 607.1655 | 301 | <1.0 |
75 | Demethoxycentaureidin-7-O-glucoside-HMG | 49.8 | 635.1604 | 329-491-533 | 637.1761 | 331 | <1.0 |
76 | Unknown 2 | 51.3 | 417.0819 | 129-173-251-295 | - | - | <1.0 |
77 | Naringenin | 51.5 | 271.0608 | 107-151-177 | - | - | <1.0 |
78 | Unknown 3 | 52.5 | 417.0816 | 129-173-251-295 | - | - | <1.0 |
79 | 255-C-glucoside-O-rhamnoside-O-HMG | 53.1 | 707.2159 | 255-357-563-605-645 | 709.2337 | - | <1.0 |
80 | Isosakuranetin-7-O-neohesperidoside-O-HMG | 53.4 | 737.2266 | 285-593-635-675 | 739.244 | - | <1.0 |
81 | Deacetylnomilinic acid | 56.1 | 489.2125 | 325-333-411 | 491.2275 | 341-369-385-411-455 | <1.0 |
82 | Limonoate A-ring lactone | 56.7 | 487.1953 | 383-427 | 489.2119 | 369-383-427-445 | <1.0 |
83 | Limonin | 58.7 | 469.1872 | 229-278-283-306-321-381 | 471.2012 | 367-409-425 | <1.0 |
84 | Obacunoic acid | 59.4 | 471.2017 | 307-325-409 | 473.2172 | - | <1.0 |
85 | Nomilinic acid | 59.4 | 531.222 | 427-471-489 | 533.2383 | 341-369-411 | <1.0 |
86 | Deacetylnomilin | 60.2 | 471.2015 | 307-325-409 | 473.2173 | - | <1.0 |
Sample | IC50 (µg/mL) |
---|---|
PBJ | 233.6 ± 18.0 (30 µg/mL expressed as polyphenols) |
Trolox | 5.0 ± 0.3 |
Ascorbic acid | 3.918 ± 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Della Vedova, L.; Gado, F.; Vieira, T.A.; Grandini, N.A.; Palácio, T.L.N.; Siqueira, J.S.; Carini, M.; Bombardelli, E.; Correa, C.R.; Aldini, G.; et al. Chemical, Nutritional and Biological Evaluation of a Sustainable and Scalable Complex of Phytochemicals from Bergamot By-Products. Molecules 2023, 28, 2964. https://doi.org/10.3390/molecules28072964
Della Vedova L, Gado F, Vieira TA, Grandini NA, Palácio TLN, Siqueira JS, Carini M, Bombardelli E, Correa CR, Aldini G, et al. Chemical, Nutritional and Biological Evaluation of a Sustainable and Scalable Complex of Phytochemicals from Bergamot By-Products. Molecules. 2023; 28(7):2964. https://doi.org/10.3390/molecules28072964
Chicago/Turabian StyleDella Vedova, Larissa, Francesca Gado, Taynara A. Vieira, Núbia A. Grandini, Thiago L. N. Palácio, Juliana S. Siqueira, Marina Carini, Ezio Bombardelli, Camila R. Correa, Giancarlo Aldini, and et al. 2023. "Chemical, Nutritional and Biological Evaluation of a Sustainable and Scalable Complex of Phytochemicals from Bergamot By-Products" Molecules 28, no. 7: 2964. https://doi.org/10.3390/molecules28072964
APA StyleDella Vedova, L., Gado, F., Vieira, T. A., Grandini, N. A., Palácio, T. L. N., Siqueira, J. S., Carini, M., Bombardelli, E., Correa, C. R., Aldini, G., & Baron, G. (2023). Chemical, Nutritional and Biological Evaluation of a Sustainable and Scalable Complex of Phytochemicals from Bergamot By-Products. Molecules, 28(7), 2964. https://doi.org/10.3390/molecules28072964