Evaluating the Probiotic Potential of Lactic Acid Bacteria Implicated in Natural Fermentation of Table Olives, cv. Cobrançosa
Abstract
:1. Introduction
2. Results
2.1. Functional Properties
2.1.1. Caco-2 Cell Adhesion
2.1.2. Hydrophobicity
2.1.3. Autoaggregation
2.1.4. Co-Aggregation with Pathogens
2.1.5. Relationship between Functional Properties
2.2. Health Benefits
2.2.1. Antibiotic Resistance
2.2.2. Antimicrobial Activity
2.2.3. Antioxidant Activity
2.2.4. Cholesterol Assimilation
2.2.5. Proteolytic Activity
2.2.6. EPS Production
2.2.7. Enzymatic Activity
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions
4.2. Strain Selection Based on Functional Properties
4.2.1. Caco-2 Cell Adhesion
4.2.2. Hydrophobicity
4.2.3. Autoaggregation
4.2.4. Co-Aggregation
4.3. Health Benefits
4.3.1. Antibiotic Resistance
4.3.2. Antimicrobial Activity
4.3.3. Antioxidant Activity
4.3.4. Cholesterol Assimilation
4.3.5. Proteolytic Activity
4.3.6. Exopolysaccharide (EPS) Production
4.3.7. Enzymatic Activity
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasler, C.M. Functional foods: Benefits, concerns and challenges—A position paper from the American Council on Science and Health. J. Nutr. 2002, 132, 3772–3781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, F.C.; Parada, J.L.; Pandey, A.; Soccol, C.R. Trends in non-dairy probiotic beverages. Food Res. Int. 2008, 41, 111–123. [Google Scholar] [CrossRef]
- Perpetuini, G.; Prete, R.; Garcia-Gonzalez, N.; Khairul Alam, M.; Corsetti, A. Table olives more than a fermented food. Foods 2020, 9, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margalho, L.P.; Jorge, G.P.; Noleto, D.A.P.; Silva, C.E.; Abreu, J.S.; Piran, M.V.F.; Brocchi, M.; Sant’Ana, A.S. Biopreservation and probiotic potential of a large set of lactic acid bacteria isolated from Brazilian artisanal cheeses: From screening to in product approach. Microbiol. Res. 2021, 242, 126622. [Google Scholar] [CrossRef]
- Casarotti, S.N.; Carneiro, B.M.; Todorov, S.D.; Nero, L.A.; Rahal, P.; Penna, A.L.B. In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Ann. Microbiol. 2017, 67, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Speranza, B.; Racioppo, A.; Beneduce, L.; Bevilacqua, A.; Sinigaglia, M.; Corbo, M.R. Autochthonous lactic acid bacteria with probiotic aptitudes as starter cultures for fish-based products. Food Microbiol. 2017, 65, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Rattu, G.; Mitharwal, S.; Chandra, A.; Kumar, S.; Kaushik, A.; Mishra, V.; Nema, P.K. Trends in non-dairy-based probiotic food products: Advances and challenges. J. Food Process. Preserv. 2022, 46, 16578. [Google Scholar] [CrossRef]
- Bonatsou, S.; Tassou, C.C.; Panagou, E.Z.; Nychas, G.E. Table olive fermentation using starter cultures with multifunctional potential. Microorganisms 2017, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Sacchi, R.; Corrado, G.; Basile, B.; Mandarello, D.; Ambrosino, M.L.; Paduano, A.; Savarese, M.; Caporaso, N.; Aponte, M.; Genovese, A. Effect of salt addition and fermentation time on phenolics, microbial dynamics, volatile organic compounds, and sensory properties of the PDO table olives of Gaeta (Italy). Molecules 2022, 27, 8100. [Google Scholar] [CrossRef]
- Agagunduz, D.; Yilmaz, B.; Kocak, T.; Altintas Basar, H.B.; Rocha, J.M.; Ozogul, F. Novel candidate microorganisms for fermentation technology: From potential benefits to safety issues. Foods 2022, 11, 3074. [Google Scholar] [CrossRef]
- Georgieva, M.; Georgiev, K.; Hvarchanova, N. Chapter 29—Probiotics: Past, present, and future challenges. In Probiotics in the Prevention and Management of Human Diseases; Dwivedi, M.K., Amaresan, N., Sankaranarayanan, A., Kemp, E.H., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 431–448. [Google Scholar]
- Reboredo-Rodriguez, P.; Gonzalez-Barreiro, C.; Martinez-Carballo, E.; Cambeiro-Perez, N.; Rial-Otero, R.; Figueiredo-Gonzalez, M.; Cancho-Grande, B. Applicability of an in-vitro digestion model to assess the bioaccessibility of phenolic compounds from olive-related products. Molecules 2021, 26, 6667. [Google Scholar] [CrossRef] [PubMed]
- Lucena-Padros, H.; Jimenez, E.; Maldonado-Barragan, A.; Rodriguez, J.M.; Ruiz-Barba, J.L. PCR-DGGE assessment of the bacterial diversity in Spanish-style green table-olive fermentations. Int. J. Food Microbiol. 2015, 205, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doulgeraki, A.I.; Pramateftaki, P.; Argyri, A.A.; Nychas, G.-J.E.; Tassou, C.C.; Panagou, E.Z. Molecular characterization of lactic acid bacteria isolated from industrially fermented Greek table olives. LWT Food Sci. Technol. 2013, 50, 353–356. [Google Scholar] [CrossRef]
- Comunian, R.; Ferrocino, I.; Paba, A.; Daga, E.; Campus, M.; Di Salvo, R.; Cauli, E.; Piras, F.; Zurru, R.; Cocolin, L. Evolution of microbiota during spontaneous and inoculated Tonda di Cagliari table olives fermentation and impact on sensory characteristics. LWT Food Sci. Technol. 2017, 84, 64–72. [Google Scholar] [CrossRef]
- Portilha-Cunha, M.F.; Macedo, A.C.; Malcata, F.X. A review on adventitious lactic acid bacteria from table olives. Foods 2020, 9, 948. [Google Scholar] [CrossRef]
- Abouloifa, H.; Rokni, Y.; Bellaouchi, R.; Ghabbour, N.; Karboune, S.; Brasca, M.; Ben Salah, R.; Chihib, N.; Saalaoui, E.; Asehraou, A. Characterization of probiotic properties of antifungal Lactobacillus strains isolated from traditional fermenting green olives. Probiotics Antimicrob. Proteins 2020, 12, 683–696. [Google Scholar] [CrossRef] [PubMed]
- Peres, C.M.; Alves, M.; Hernandez-Mendoza, A.; Moreira, L.; Silva, S.; Bronze, M.R.; Vilas-Boas, L.; Peres, C.; Malcata, F.X. Novel isolates of lactobacilli from fermented Portuguese olive as potential probiotics. LWT Food Sci. Technol. 2014, 59, 234–246. [Google Scholar] [CrossRef] [Green Version]
- Pereira, E.L.; Ramalhosa, E.; Borges, A.; Pereira, J.A.; Baptista, P. YEAST dynamics during the natural fermentation process of table olives (Negrinha de Freixo cv.). Food Microbiol. 2015, 46, 582–586. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, T.; Ramalhosa, E.; Nunes, L.; Pereira, J.A.; Colla, E.; Pereira, E.L. Probiotic potential of indigenous yeasts isolated during the fermentation of table olives from Northeast of Portugal. Innov. Food. Sci. Emerg. Technol. 2017, 44, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, T.G.; Costa, H.S.; Oliveira, M.B.P.P. An overview of Portuguese olive oils and table olives with Protected Designation of Origin. Eur. J. Lipid Sci. Technol. 2019, 121, 1800129. [Google Scholar] [CrossRef]
- Pineiro, M.; Stanton, C. Probiotic bacteria: Legislative framework—Requirements to evidence basis. J. Nutr. 2007, 137, 850S–853S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Government of Canada. Accepted Claims about the Nature of Probiotic Microorganisms in Food—Food Labelling—Health Canada. Available online: http://www.hc-sc.gc.ca/fn-an/label-etiquet/claims-reclam/probiotics_claims-allegations_probiotiques-eng.php (accessed on 29 March 2023).
- Reis, P.J.M.; Tavares, T.G.; Rocha, J.M.; Malcata, F.X.; Macedo, A.C. Cobrançosa table olives: Characterization of processing method and lactic acid bacteria profile throughout spontaneous fermentation. Appl. Sci. 2022, 12, 9738. [Google Scholar] [CrossRef]
- Luz, C.; Calpe, J.; Manuel Quiles, J.; Torrijos, R.; Vento, M.; Gormaz, M.; Mañes, J.; Meca, G. Probiotic characterization of Lactobacillus strains isolated from breast milk and employment for the elaboration of a fermented milk product. J. Funct. Foods 2021, 84, 104599. [Google Scholar] [CrossRef]
- Maragkoudakis, P.A.; Zoumpopoulou, G.; Miaris, C.; Kalantzopoulos, G.; Pot, B.; Tsakalidou, E. Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy J. 2006, 16, 189–199. [Google Scholar] [CrossRef]
- Nath, S.; Sikidar, J.; Roy, M.; Deb, B. In vitro screening of probiotic properties of Lactobacillus plantarum isolated from fermented milk product. Food Qual. Saf. 2020, 4, 213–223. [Google Scholar] [CrossRef]
- Ozkan, E.R.; Demirci, T.; Ozturk, H.I.; Akin, N. Screening Lactobacillus strains from artisanal Turkish goatskin casing Tulum cheeses produced by nomads via molecular and in vitro probiotic characteristics. J. Sci. Food Agric. 2020, 101, 2799–2808. [Google Scholar] [CrossRef]
- Benítez-Cabello, A.; Torres-Maravilla, E.; Bermudez-Humaran, L.; Langella, P.; Martin, R.; Jimenez-Diaz, R.; Arroyo-Lopez, F.N. Probiotic properties of Lactobacillus strains isolated from table olive biofilms. Probiotics Antimicrob. Proteins 2020, 12, 1071–1082. [Google Scholar] [CrossRef]
- Motey, G.A.; Owusu-Kwarteng, J.; Obiri-Danso, K.; Ofori, L.A.; Ellis, W.O.; Jespersen, L. In vitro properties of potential probiotic lactic acid bacteria originating from Ghanaian indigenous fermented milk products. World J. Microbiol. Biotechnol. 2021, 37, 52. [Google Scholar] [CrossRef]
- Joghataei, M.; Shahidi, F.; Pouladfar, G.; Mortazavi, S.A.; Ghaderi, A. Probiotic potential comparison of Lactobacillus strains isolated from Iranian traditional food products and human feces with standard probiotic strains. J. Sci. Food Agric. 2019, 99, 6680–6688. [Google Scholar] [CrossRef]
- Rashmi, B.S.; Gayathri, D. Molecular characterization of gluten hydrolysing Bacillus sp. and their efficacy and biotherapeutic potential as probiotics using Caco-2 cell line. J. Appl. Microbiol. 2017, 123, 759–772. [Google Scholar] [CrossRef]
- Zullo, B.A.; Ciafardini, G. Evaluation of physiological properties of yeast strains isolated from olive oil and their in vitro probiotic trait. Food Microbiol. 2019, 78, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Sakandar, H.A.; Kubow, S.; Sadiq, F.A. Isolation and in-vitro probiotic characterization of fructophilic lactic acid bacteria from Chinese fruits and flowers. LWT Food Sci. Technol. 2019, 104, 70–75. [Google Scholar] [CrossRef]
- Bonatsou, S.; Karamouza, M.; Zoumpopoulou, G.; Mavrogonatou, E.; Kletsas, D.; Papadimitriou, K.; Tsakalidou, E.; Nychas, G.E.; Panagou, E. Evaluating the probiotic potential and technological characteristics of yeasts implicated in cv. Kalamata natural black olive fermentation. Int. J. Microbiol. 2018, 271, 48–59. [Google Scholar] [CrossRef] [PubMed]
- de Melo Pereira, G.V.; de Oliveira Coelho, B.; Magalhaes Junior, A.I.; Thomaz-Soccol, V.; Soccol, C.R. How to select a probiotic? A review and update of methods and criteria. Biotechnol. Adv. 2018, 36, 2060–2076. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, Y.; Cui, H.; Li, Y.; Sun, Y.; Qiu, H.J. Characterization of lactic acid bacteria isolated from the gastrointestinal tract of a wild boar as potential probiotics. Front. Vet. Sci. 2020, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, M.R.; Kragelund, C.; Jensen, P.Ø.; Keller, M.K.; Twetman, S. Probiotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro. J. Oral Microbiol. 2017, 9, 1274582. [Google Scholar] [CrossRef]
- Zarour, K.; Prieto, A.; Pérez-Ramos, A.; Kihal, M.; López, P. Analysis of technological and probiotic properties of Algerian L. mesenteroides strains isolated from dairy and non-dairy products. J. Funct. Foods 2018, 49, 351–361. [Google Scholar] [CrossRef]
- Vergalito, F.; Testa, B.; Cozzolino, A.; Letizia, F.; Succi, M.; Lombardi, S.J.; Tremonte, P.; Pannella, G.; Di Marco, R.; Sorrentino, E.; et al. Potential application of Apilactobacillus kunkeei for human use: Evaluation of probiotic and functional properties. Foods 2020, 9, 1535. [Google Scholar] [CrossRef]
- Pavli, F.; Gkana, E.; Adebambo, O.; Karatzas, K.A.; Panagou, E.; Nychas, G.E. In vitro screening of gamma-aminobutyric acid and autoinducer-2 signalling in lactic acid bacteria exhibiting probiotic potential isolated from natural black Conservolea olives. Foods 2019, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Ayyash, M.; Al-Nuaimi, A.K.; Al-Mahadin, S.; Liu, S.Q. In vitro investigation of anticancer and ACE-inhibiting activity, alpha-amylase and alpha-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk. Food Chem. 2018, 239, 588–597. [Google Scholar] [CrossRef]
- Abouloifa, H.; Hasnaoui, I.; Rokni, Y.; Bellaouchi, R.; Gaamouche, S.; Ghabbour, N.; Chaoui, J.; Brasca, M.; Karboune, S.; Ben Salah, R.; et al. Technological properties of potential probiotic Lactobacillus strains isolated from traditional fermenting green olive. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 884–889. [Google Scholar] [CrossRef]
- Pacularu-Burada, B.; Georgescu, L.A.; Vasile, M.A.; Rocha, J.M.; Bahrim, G.E. Selection of wild lactic acid bacteria strains as promoters of postbiotics in gluten-free sourdoughs. Microorganisms 2020, 8, 643. [Google Scholar] [CrossRef]
- Iorizzo, M.; Lombardi, S.J.; Macciola, V.; Testa, B.; Lustrato, G.; Lopez, F.; De Leonardis, A. Technological potential of Lactobacillus strains isolated from fermented green olives: In vitro studies with emphasis on oleuropein-degrading capability. Sci. World J. 2016, 2016, 1917592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benítez-Cabello, A.; Calero-Delgado, B.; Rodriguez-Gomez, F.; Garrido-Fernandez, A.; Jimenez-Diaz, R.; Arroyo-Lopez, F.N. Biodiversity and multifunctional features of lactic acid bacteria isolated from table olive biofilms. Front. Microbiol. 2019, 10, 836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulshan, A.; Lee, B.H.; Lamoureux, M. Characterization of enzyme profiles of Lactobacillus casei species by a Rapid API ZYM System. Int. J. Dairy Sci. 1990, 2, 264–273. [Google Scholar] [CrossRef]
- Domingos-Lopes, M.F.P.; Stanton, C.; Ross, P.R.; Dapkevicius, M.L.E.; Silva, C.C.G. Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese. Food Microbiol. 2017, 63, 178–190. [Google Scholar] [CrossRef]
- Delgado, S.; O’Sullivan, E.; Fitzgerald, G.; Mayo, B. Subtractive screening for probiotic properties of Lactobacillus species from the human gastrointestinal tract in the search for new probiotics. J. Food Sci. 2007, 72, 310–315. [Google Scholar] [CrossRef]
- Coimbra-Gomes, J.; Reis, P.J.M.; Tavares, T.G.; Silva, A.A.; Mendes, E.; Casal, S.; Malcata, F.X.; Macedo, A.C. Cobrançosa table olive fermentation as per the Portuguese traditional method, using potentially probiotic Lactiplantibacillus pentosus i106 upon alternative inoculation strategies. Fermentation 2022, 9, 12. [Google Scholar] [CrossRef]
- Coimbra-Gomes, J.; Reis, P.J.M.; Tavares, T.G.; Malcata, F.X.; Macedo, A.C. Study of lactic acid bacteria biodiversity in fermented Cobrançosa table olives to determine their probiotic potential. Foods 2022, 11, 3050. [Google Scholar] [CrossRef]
- Argyri, A.A.; Zoumpopoulou, G.; Karatzas, K.A.; Tsakalidou, E.; Nychas, G.J.; Panagou, E.Z.; Tassou, C.C. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 2013, 33, 282–291. [Google Scholar] [CrossRef]
- Montoro, B.P.; Benomar, N.; Lavilla Lerma, L.; Castillo Gutierrez, S.; Galvez, A.; Abriouel, H. Fermented Alorena table olives as a source of potential probiotic Lactobacillus pentosus strains. Front. Microbiol. 2016, 7, 1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taheur, B.F.; Kouidhi, B.; Fdhila, K.; Elabed, H.; Ben Slama, R.; Mahdouani, K.; Bakhrouf, A.; Chaieb, K. Anti-bacterial and anti-biofilm activity of probiotic bacteria against oral pathogens. Microb. Pathog. 2016, 97, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Szutowska, J.; Gwiazdowska, D. Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice. Arch. Microbiol. 2020, 203, 975–988. [Google Scholar] [CrossRef] [PubMed]
- Abouloifa, H.; Khodaei, N.; Rokni, Y.; Karboune, S.; Brasca, M.; D’Hallewin, G.; Salah, R.B.; Saalaoui, E.; Asehraou, A. The prebiotics (Fructo-oligosaccharides and Xylo-oligosaccharides) modulate the probiotic properties of Lactiplantibacillus and Levilactobacillus strains isolated from traditional fermented olive. World J. Microbiol. Biotechnol. 2020, 36, 185. [Google Scholar] [CrossRef] [PubMed]
- Mulaw, G.; Sisay Tessema, T.; Muleta, D.; Tesfaye, A. In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented Ethiopian food products. Int. J. Microbiol. 2019, 2019, 7179514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anagnostopoulos, D.; Bozoudi, D.; Tsaltas, D. Enterococci Isolated from Cypriot green table olives as a new source of technological and probiotic properties. Fermentation 2018, 4, 48. [Google Scholar] [CrossRef] [Green Version]
Species | Isolate ID | Time of Process (d) | Producer ID | Tank ID | RAPD Profile |
---|---|---|---|---|---|
L. paraplantarum | i19 | 166 | A | 2 | lpa01 |
i21 | 140 | H | 2 | lpa06 | |
i24 | 111 | A | 1 | lpa01 | |
i26 | 166 | A | 1 | lpa01 | |
i101 | 111 | A | 2 | lpa01 | |
i112 | 111 | A | 2 | lpa01 | |
L. pentosus | i17 | 111 | A | 2 | lpe205a |
i22 | 166 | A | 1 | lpe205a | |
i23 | 166 | A | 1 | lpe205a | |
i32 | 166 | A | 2 | lpe308 | |
i34 | 166 | A | 2 | lpe308 | |
i53 | 329 | A | 2 | lpe104 | |
i106 | 329 | A | 1 | lpe205b | |
i108 | 329 | A | 1 | lpe308 |
Isolates | Adhesion (% ± SD) * | Hydrophocity (% ± SD) * | Autoaggregation (% ± SD) * | |
---|---|---|---|---|
5 h | 24 h | |||
L. paraplantarum | ||||
i19 | 11.67 ± 2.57 efg | 15.79 ± 1.34 de | 32.44 ± 4.03 | 92.86 ± 8.20 ab |
i21 | 6.20 ± 0.96 hi | 55.99 ± 1.91 a | 23.71 ± 4.92 | 79.80 ± 5.50 abcd |
i24 | 5.30 ± 0.75 i | 21.58 ± 6.67 cde | 25.27 ± 6.36 | 88.69 ± 6.22 abcd |
i26 | 8.37 ± 0.65 ghi | 34.13 ± 6.08 bc | 19.02 ± 4.49 | 92.11 ± 4.95 abc |
i101 | 18.40 ± 1.10 bc | 19.34 ± 1.08 de | 25.31 ± 5.53 | 88.11 ± 6.42 abcd |
i112 | 15.80 ± 0.36 cd | 19.46 ± 5.99 de | 23.21 ± 4.01 | 90.33 ± 6.44 abcd |
L. pentosus | ||||
i17 | 13.83 ± 2.12 de | 26.42 ± 4.66 bcde | 24.21 ± 11.03 | 83.57 ± 11.18 abcd |
i22 | 12.20 ± 0.36 def | 23.50 ± 3.82 cde | 26.73 ± 8.32 | 59.39 ± 8.15 d |
i23 | 15.97 ± 1.27 cd | 21.85 ± 4.91 cde | 29.15 ± 6.04 | 88.87 ± 4.21 abcd |
i32 | 6.00 ± 0.46 hi | 40.80 ± 3.76 b | 23.67 ± 0.08 | 78.82 ± 7.98 abcd |
i34 | 1.07 ± 0.38 ij | 20.97 ± 7.55 cde | 19.63 ± 2.17 | 81.09 ± 5.40 abcd |
i53 | 22.23 ± 2.21 ab | 21.63 ± 7.79 cde | 31.36 ± 8.81 | 92.98 ± 3.04 a |
i106 | 23.03 ± 1.72 a | 21.54 ± 1.44 cde | 24.91 ± 9.38 | 88.52 ± 4.47 abcd |
i108 | 4.80 ± 1.50 ij | 20.78 ± 3.37 de | 22.37 ± 1.09 | 80.05 ± 4.35 abcd |
Reference strains ** | ||||
commercial yoghurt | 9.86 ± 1.01 fgh | 27.39 ± 4.75 bcde | 23.51 ± 1.32 | 78.92 ± 5.25 abcd |
Greek olives | 21.03 ± 0.15 ab | 32.26 ± 4.60 bcd | 26.12 ± 1.27 | 71.66 ± 4.64 d |
ANOVA | ||||
p-value | 0.000 | 0.000 | 0.354 | 0.005 |
Isolates | Co-Aggregation (% ± SD) * | ||||||
---|---|---|---|---|---|---|---|
Gram Positive | Gram−Negative | Yeast | |||||
B. cereus ATCC 11778 | S. aureus ATCC 25923 | Ent. faecalis ATCC 29212 | L. innocua ATCC 33090 | S. enteritidis ATCC 25928 | E. coli ATCC 25922 | C. albicans ATCC 0231 | |
L. paraplantarum | |||||||
i19 | 37.11 ± 8.20 | 39.24 ± 9.77 | 41.76 ± 4.36 | 34.37 ± 4.80 | 29.94 ± 4.71 | 29.07 ± 11.45 | 45.25 ± 8.85 |
i21 | 26.67 ± 11.16 | 31.35 ± 9.95 | 31.65 ± 5.11 | 38.00 ± 2.65 | 22.06 ± 8.83 | 29.84 ± 10.24 | 37.02 ± 5.92 |
i24 | 29.94 ± 13.72 | 32.01 ± 10.25 | 41.80 ± 1.46 | 39.18 ± 1.57 | 30.42 ± 7.52 | 35.22 ± 11.27 | 42.44 ± 3.99 |
i26 | 34.92 ± 14.22 | 41.62 ± 9.62 | 39.90 ± 1.33 | 30.24 ± 4.50 | 32.63 ± 17.03 | 31.52 ± 14.19 | 45.95 ± 9.03 |
i101 | 34.33 ± 8.64 | 34.73 ± 11.39 | 37.33 ± 5.91 | 34.81 ± 1.27 | 34.12± 4.26 | 33.39 ± 7.22 | 42.86 ± 5.64 |
i112 | 28.58 ± 12.10 | 34.59 ± 4.77 | 38.67 ± 5.71 | 33.82 ± 3.55 | 32.73 ± 6.57 | 27.15 ± 8.56 | 37.49 ± 2.21 |
L. pentosus | |||||||
i17 | 30.67 ± 6.23 | 22.94 ± 8.23 | 30.66 ± 6.58 | 35.03 ± 6.90 | 21.23 ±9.52 | 22.56 ±6.07 | 35.44 ± 3.44 |
i22 | 33.27 ± 8.01 | 37.30 ± 2.71 | 37.78 ± 6.53 | 33.29 ± 7.77 | 24.37 ± 4.86 | 37.10 ± 10.69 | 40.24 ± 1.60 |
i23 | 31.87 ± 12.65 | 32.53 ± 15.84 | 36.84 ± 9.02 | 40.95 ± 1.25 | 32.60 ± 13.43 | 28.35 ± 15.42 | 40.64 ± 5.01 |
i32 | 30.41 ± 8.18 | 28.86 ± 7.42 | 45.02 ± 6.41 | 34.95 ± 2.34 | 28.14 ± 11.35 | 28.88 ± 6.48 | 44.64 ± 6.22 |
i34 | 33.66 ± 16.31 | 39.82 ± 3.91 | 42.12 ± 4.00 | 38.34 ± 8.34 | 35.59 ± 6.66 | 40.78 ± 4.96 | 45.01 ± 4.78 |
i53 | 36.59 ± 10.00 | 24.66 ± 2.58 | 38.26 ± 7.67 | 39.89 ± 5.78 | 15.67 ± 5.78 | 32.82 ± 7.96 | 44.28 ± 5.63 |
i106 | 34.05 ± 6.98 | 29.45 ± 4.65 | 38.53 ± 12.50 | 38.13 ± 0.56 | 25.27 ± 6.98 | 28.58 ± 10.90 | 39.39 ± 2.98 |
i108 | 30.03 ± 7.05 | 34.66 ± 10.54 | 38.17 ± 1.50 | 36.75 ± 10.68 | 24.54 ± 4.63 | 32.34 ± 5.20 | 40.94 ± 2.94 |
Reference strains ** | |||||||
commercial yoghurt | 40.84 ± 8.56 | 39.26 ± 0.27 | 36.04 ± 0.39 | 36.57 ± 4.89 | 31.04 ± 3.49 | 35.39 ± 7.08 | 42.77 ± 4.06 |
Greek olives | 41.13 ± 2.30 | 36.91 ± 8.56 | 35.82 ± 8.35 | 35.90 ± 5.51 | 35.56 ± 9.13 | 37.48 ± 6.37 | 44.93 ± 5.83 |
ANOVA | |||||||
p-value | 0.932 | 0.761 | 0.447 | 0.658 | 0.211 | 0.314 | 0.373 |
Isolates | Antibiotic Resistance (mm) * | |||||||
---|---|---|---|---|---|---|---|---|
AMP | E | TE | VA | OFX | C | S | KF | |
L. paraplantarum | ||||||||
i19 | 38 (S) | 29 (S) | 25 (S) | 0 (R) | 0 (R) | 33 (S) | 0 (R) | 27 (S) |
i21 | 40 (S) | 29 (S) | 25 (S) | 0 (R) | 0 (R) | 29 (S) | 0 (R) | 24 (S) |
i24 | 45 (S) | 25 (S) | 28 (S) | 0 (R) | 0 (R) | 34 (S) | 0 (R) | 45 (S) |
i26 | 38 (S) | 27 (S) | 28 (S) | 0 (R) | 0 (R) | 29 (S) | 0 (R) | 26 (S) |
i101 | 35 (S) | 26 (S) | 26 (S) | 0 (R) | 0 (R) | 33 (S) | 0 (R) | 22 (S) |
i112 | 42 (S) | 27 (S) | 29 (S) | 0 (R) | 16 (I) | 33 (S) | 0 (R) | 40 (S) |
L. pentosus | ||||||||
i17 | 35 (S) | 29 (S) | 24 (S) | 0 (R) | 0 (R) | 32 (S) | 0 (R) | 25 (S) |
i22 | 48 (S) | 29 (S) | 24 (S) | 0 (R) | 0 (R) | 32 (S) | 0 (R) | 37 (S) |
i23 | 40 (S) | 26 (S) | 21 (S) | 0 (R) | 0 (R) | 39 (S) | 0 (R) | 35 (S) |
i32 | 41 (S) | 30 (S) | 26 (S) | 0 (R) | 0 (R) | 32 (S) | 0 (R) | 30 (S) |
i34 | 34 (S) | 27 (S) | 24 (S) | 0 (R) | 0 (R) | 34 (S) | 0 (R) | 28 (S) |
i53 | 39 (S) | 27 (S) | 25 (S) | 0 (R) | 0 (R) | 31 (S) | 0 (R) | 44 (S) |
i106 | 41 (S) | 27 (S) | 25 (S) | 0 (R) | 0 (R) | 34 (S) | 0 (R) | 47 (S) |
i108 | 45 (S) | 25 (S) | 24 (S) | 0 (R) | 0 (R) | 37 (S) | 0 (R) | 47 (S) |
Reference strains ** | ||||||||
commercial yoghurt | 36 (S) | 35 (S) | 35 (S) | 0 (R) | 13 (I) | 33 (S) | 0 (R) | 32 (S) |
Greek olives | 32 (S) | 28 (S) | 26 (S) | 0 (R) | 0 (R) | 28 (S) | 0 (R) | 22 (S) |
Isolates | Antioxidant Activity (% ± SD) * | Cholesterol Assimilation (% ± SD) * | Proteolytic Activity ** | EPS Production ** |
---|---|---|---|---|
L. paraplantarum | ||||
i19 | 23.00 ± 0.89 a | 78.64 ± 1.60 abc | + | − |
i21 | 20.10 ± 2.79 ab | 75.42 ± 0.67 abcd | + | + |
i24 | 20.20 ± 3.40 ab | 70.65 ± 4.37 de | + | − |
i26 | 22.27 ± 2.44 ab | 75.72 ± 3.12 abcd | + | − |
i101 | 20.47 ± 1.95 ab | 74.35 ± 1.23 bcde | + | − |
i112 | 18.03 ± 2.91 abc | 77.34 ± 1.51 abcd | + | − |
L. pentosus | ||||
i17 | 20.90 ± 0.56 ab | 73.72 ± 4.09 bcde | + | + |
i22 | 18.77 ± 0.06 bc | 75.68 ± 2.73 abcd | + | + |
i23 | 17.47 ± 2.14 bcd | 81.51 ± 0.09 a | + | + |
i32 | 20.27 ± 1.07 ab | 67.87 ± 0.69 e | + | − |
i34 | 21.73 ± 1.17 ab | 77.62 ± 1.01 abc | + | + |
i53 | 19.90 ± 0.72 ab | 79.83 ± 2.59 ab | + | + |
i106 | 19.60 ± 1.75 ab | 77.45 ± 0.54 abc | + | + |
i108 | 20.97 ± 2.35 ab | 72.20 ± 0.89 cde | + | + |
Reference strains *** | ||||
commercial yoghurt | 17.77 ± 1.67 bc | 52.27 ± 3.17 f | + | + |
Greek olives | 13.27 ± 1.65 cd | 76.54 ± 1.23 abcd | + | + |
ANOVA | ||||
p-value | 0.000 | 0.000 |
Detected Enzyme * | L. paraplantarum | L. pentosus | Reference Strains ** | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
i19 | i21 | i24 | i26 | i101 | i111 | i17 | i22 | i23 | i32 | i34 | i53 | i106 | i108 | Commercial Yoghurt | Greek Olives | |
Alkaline phosphatase | 1 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
Esterase | 3 | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 3 | 1 | 2 | 1 | 3 | 4 | 1 |
Lipase esterase | 3 | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 3 | 1 | 2 | 1 | 3 | 4 | 1 |
Lipase | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Leucine arylamidase | 4 | 5 | 4 | 4 | 4 | 4 | 3 | 3 | 3 | 4 | 3 | 5 | 3 | 5 | 5 | 3 |
Valine arylamidase | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 4 | 5 | 5 | 4 |
Cystine arylamidase | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
Trypsin | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
α-chymotrypsin | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Acid phosphatase | 4 | 5 | 4 | 4 | 4 | 4 | 3 | 3 | 3 | 4 | 3 | 4 | 3 | 4 | 4 | 3 |
Naphthol-AS-BI-phosphohydrolase | 4 | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 4 |
α-galactosidase | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
β-galactosidase | 3 | 5 | 3 | 3 | 3 | 3 | 5 | 5 | 5 | 3 | 5 | 4 | 5 | 4 | 4 | 5 |
β-glucuronidase | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
α-glucosidase | 3 | 3 | 3 | 3 | 3 | 3 | 5 | 5 | 5 | 3 | 5 | 5 | 5 | 5 | 5 | 5 |
β-glucosidase | 5 | 4 | 5 | 5 | 5 | 5 | 3 | 3 | 3 | 5 | 3 | 4 | 3 | 4 | 1 | 4 |
N-acetil-β-glucosaminidase | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
α-manosidase | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
α-fucosidase | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coimbra-Gomes, J.; Reis, P.J.M.; Tavares, T.G.; Faria, M.A.; Malcata, F.X.; Macedo, A.C. Evaluating the Probiotic Potential of Lactic Acid Bacteria Implicated in Natural Fermentation of Table Olives, cv. Cobrançosa. Molecules 2023, 28, 3285. https://doi.org/10.3390/molecules28083285
Coimbra-Gomes J, Reis PJM, Tavares TG, Faria MA, Malcata FX, Macedo AC. Evaluating the Probiotic Potential of Lactic Acid Bacteria Implicated in Natural Fermentation of Table Olives, cv. Cobrançosa. Molecules. 2023; 28(8):3285. https://doi.org/10.3390/molecules28083285
Chicago/Turabian StyleCoimbra-Gomes, Joana, Patrícia J. M. Reis, Tânia G. Tavares, Miguel A. Faria, F. Xavier Malcata, and Angela C. Macedo. 2023. "Evaluating the Probiotic Potential of Lactic Acid Bacteria Implicated in Natural Fermentation of Table Olives, cv. Cobrançosa" Molecules 28, no. 8: 3285. https://doi.org/10.3390/molecules28083285
APA StyleCoimbra-Gomes, J., Reis, P. J. M., Tavares, T. G., Faria, M. A., Malcata, F. X., & Macedo, A. C. (2023). Evaluating the Probiotic Potential of Lactic Acid Bacteria Implicated in Natural Fermentation of Table Olives, cv. Cobrançosa. Molecules, 28(8), 3285. https://doi.org/10.3390/molecules28083285