Study of the Sensing Kinetics of G Protein-Coupled Estrogen Receptor Sensors for Common Estrogens and Estrogen Analogs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Expression of hGPER Receptor
2.2. UV-Vis and Transmission Electron Microscope (TEM) Characterization of AuNPs
2.3. Electrode Assembly and Characterization
2.3.1. Electrode Pretreatment and Characterization
2.3.2. Electrochemical Characterization of the Assembly Process of Double-Layer GPER Nanogold Receptor Biosensors
2.4. Potential Optimization by the Current–Time Determination Method
2.5. Kinetic Determination of Estrogens and Estrogen Mimics with the Electrochemical Double-Layer AuNP-Modified GPER Sensor
2.5.1. Determination of Response Ranges of Estrogens and Estrogen Mimics to GPER
2.5.2. The Interconnected Allosteric Constant (Ka) Produced by Estrogens and Estrogen Mimics to GPER
2.6. Analysis of Molecular Simulation Docking Results of GPER with Estrogens and Estrogen Analogs
2.7. Molecular Dynamics Simulations
2.8. Stability and Reproducibility of Receptor Sensors
2.9. Discussion
3. Materials and Methods
3.1. Experimental Materials and Reagents
3.2. Instruments and Equipment
3.3. Statistical Analysis
3.4. Expression and Extraction of hGPER
3.5. Western Blot Analysis
3.6. Preparation and Detection of the hGPER Electrochemical Receptor Sensor
3.6.1. Pre-Treatment of Glassy Carbon Electrodes
3.6.2. Preparation and Characterization of AuNPs
3.6.3. Preparation of Double-Layer hGPER Receptor Nanogold Sensor
3.7. Measurement with the Electrochemical GPER Sensor
3.8. Molecular Simulation Docking of GPER with Estrogens and Estrogen Analogs
3.8.1. Preparation and Handling of GPER with Estrogens and Estrogen Analogs
3.8.2. Molecular Docking Parameter Settings
3.8.3. Molecular Simulation Docking of GPER with Estrogens and Estrogen Analogs
3.9. Molecular Dynamics Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molina, L.; Bustamante, F.A.; Bhoola, K.D.; Figueroa, C.D. Possible role of phytoestrogens in breast cancer via GPER-1/GPR30 signaling. Clin. Sci. 2018, 132, 2583–2598. [Google Scholar] [CrossRef]
- Prossnitz, E.R.; Arterburn, J.B. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol. Rev. 2015, 67, 505–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbara, S.R.; Maria, A.R.; Javier, H.B.; Antonio, V.H.; Miguel, Á.R. Chromatographic analysis of natural and synthetic estrogens in milk and dairy products. Trends Anal. Chem. 2013, 44, 58–77. [Google Scholar] [CrossRef]
- Zhang, F.; Kong, L.; Zhao, A.; Ge, W.; Yan, Z.; Li, L.; Massimo, D.F.; Wei, S. Inflammatory cytokines as key players of apoptosis induced by environmental estrogens in the ovary. Environ. Res. 2021, 198, 111225. [Google Scholar] [CrossRef]
- Peter, V.; Barbara, O.; Simona, M.B.; Janja, M. The many faces of estrogen signaling. Biochem. Med. 2014, 24, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Qin, W.; Zhao, K.; Liu, C.; Zhao, L.; Guo, L. Environmental Estrogens and Their Biological Effects through GPER Mediated Signal Pathways. Environ. Pollut. 2021, 278, 116826. [Google Scholar] [CrossRef]
- Venkatakrishnan, A.J.; Deupi, X.; Lebon, G.; Tate, C.G.; Schertler, G.F.; Babu, M.M. Molecular signatures of G-protein-coupled receptors. Nature 2013, 494, 185–194. [Google Scholar] [CrossRef]
- Chetana, M.R.; Daniel, F.C.; Larry, A.S.; Jeffrey, B.A.; Eric, R.P. A Transmembrane Intracellular Estrogen Receptor Mediates Rapid Cell Signaling. Science 2005, 307, 1625–1630. [Google Scholar] [CrossRef] [Green Version]
- Jerome, C.N.; Sathish, S.; Nelson, E.B.; Alexander, A.P.; Travis, S.H.; Julie, A.P.; Olsi, G.; Valerie, C.; Jason, N.; Ruben, D.G.; et al. Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network. eLife 2014, 3, e02057. [Google Scholar] [CrossRef]
- Poimenova, A.; Markaki, E.; Rahiotis, C.; Kitraki, E. Corticosterone-reg-ulated actions in the rat brain are affected by perinatal exposure to low dose of bisphenol A. Neuroscience 2010, 167, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Cristian, G.B.; Chetana, M.R.; Susan, M.Y.; Bruce, S.E.; Jeffrey, B.A.; Alexander, S.K.; Matthew, A.P.; Sergey, E.T.; Nikolay, P.S.; Larry, A.S.; et al. Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat. Chem. Biol. 2006, 2, 207–212. [Google Scholar] [CrossRef]
- Dennis, M.; Burai, R.; Ramesh, C.; Petrie, W.; Alcon, S.; Nayak, T.; Bologa, C.; Leitao, A.; Brailoiu, E.; Deliu, E.; et al. In vivo effects of a GPR30 antagonist. Nat. Chem. Biol. 2009, 5, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Sun, J.; Sun, X. Recent advances in biosensors for the detection of estrogens in the environment and food. Trends Anal. Chem. 2020, 127, 115882–115890. [Google Scholar] [CrossRef]
- Martins, S.A.M.; Trabuco, J.R.C.; Monteiro, G.A.; Chu, V.; Conde, J.P.; Prazeres, D.M.F. Towards the miniaturization of GPCR-based live-cell screening assays. Trends Biotechnol. 2012, 30, 566–574. [Google Scholar] [CrossRef]
- Wei, L.; Xie, J.; Qiao, L.; Pang, G. A kinetic study of bitter taste receptor sensing using immobilized porcine taste bud tissues. Biosens. Bioelectron. 2017, 92, 74–80. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, L.; Pang, G.; Xie, J. A Novel GABABR1a Receptor Electrochemical Biosensor Based on Gold Nanoparticles Chitosan-horseradish Peroxidase. Electroanalysis 2021, 33, 1606–1614. [Google Scholar] [CrossRef]
- Lu, D.; Xu, Q.; Pang, G.; Lu, F. A novel electrochemical immunosensor based on Au nanoparticles and horseradish peroxidase signal amplification for ultrasensitive detection of α-fetoprotein. Biomed. Microdevices 2018, 20, 46. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wang, X.; Lu, D.; Li, Y.; Pang, G.; Xie, J. A Novel Staphylococcal Enterotoxin Q Immunosensor Prepared with Self-Assembly Method Based on Horseradish Peroxidase and Double-Layer Gold Nanoparticles. Food Anal. Methods 2017, 10, 892–899. [Google Scholar] [CrossRef]
- Lu, D.; Pang, G.; Xie, J. A new phosphothreonine lyase electrochemical immunosensor for detectingSalmonellabased on horseradish peroxidase/GNPs-thionine/chitosan. Biomed. Microdevices 2017, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Lu, F.; Pang, G. A Novel Tetrahydrocannabinol Electrochemical Nano Immunosensor Based on Horseradish Peroxidase and Double-Layer Gold Nanoparticles. Molecules 2016, 21, 1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.; Lu, D.; Pang, G. Comparative study of hGPR120 receptor self-assembled nano-gold sensor and tissue sensor. Sens. Actuators B Chem. 2020, 320, 128382. [Google Scholar] [CrossRef]
- Casarini, L.; Lazzaretti, C.; Paradiso, E.; Limoncella, S.; Riccetti, L.; Sperduti, S.; Melli, B.; Marcozzi, S.; Anzivino, C.; Sayers, N.S.; et al. Membrane Estrogen Receptor (GPER) and Follicle-Stimulating Hormone Receptor (FSHR) Heteromeric Complexes Promote Human Ovarian Follicle Survival. iScience 2020, 23, 101812. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kwok-Keung, S. Scanning tunneling microscopic and voltammetric studies of the surface structures of an electrochemically activated glassy carbon electrode. Anal. Chem. 2002, 74, 879–885. [Google Scholar] [CrossRef]
- Nagaoka, T.; Yoshino, T. Surface properties of electrochemically pretreated glassy carbon. Anal. Chem. 1986, 58, 1037–1042. [Google Scholar] [CrossRef]
- Lu, D.; Xu, Q.; Pang, G. A bombykol electrochemical receptor sensor and its kinetics. Bioelectrochemistry 2019, 128, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Warshel, A. Dynamics of Enzymatic Reactions. Proc. Natl. Acad. Sci. USA 1984, 81, 444–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Lu, D.; Pang, G. Construction of a Ginseng Root-Meristem Sensor and a Sensing Kinetics Study on the Main Nitrogen Nutrients. Sensors 2021, 21, 681. [Google Scholar] [CrossRef]
- Du, X.; Dai, L.; Jiang, D.; Li, H.; Hao, N.; You, T.; Mao, H.; Wang, K. Gold nanrods plasmon-enhanced photoelectrochemical aptasensing based on hematite/N-doped graphene films for ultrasensitive analysis of 17β-estradiol. Biosens. Bioelectron. 2017, 91, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Lu, D.; Zheng, Z.; Yuan, S.; Pang, G. Replacing arginine 99 with leucine to study the kinetics of interconnected allosteric interactions between FFAR4 and naturally occurring fatty acids. Food Chem. 2022, 382, 132323. [Google Scholar] [CrossRef]
- Moharana, M.; Pattanayak, S.K.; Khan, F. Bioactive compounds from Pandanous fascicularis as potential therapeutic candidate to tackle hepatitis a inhibition: Docking and molecular dynamics simulation study. J. Biomol. Struct. Dyn. 2022, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Feldman, R.; Limbird, L. Copernicus Revisited: Overturning Ptolemy’s View of the GPER Universe. Trends Endocrinol. Metab. 2015, 6, 592–594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, J.; Zhang, X.; Wang, W.; Yang, C.; Shi, X.; Feng, Y.; Abdurahman, R. NIR persistent luminescence nanoparticles based turn-on aptasensor for autofluorescence-free determination of 17β-estradiol in milk. Food Chem. 2022, 373, 131432. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Lai, Y.; Wei, Z.; Li, J. Rapid detection of estrogen compounds using surface-enhanced Raman spectroscopy with a Zn/Au-Ag/Ag sandwich-structured substrate. Opt. Mater. 2020, 112, 110759. [Google Scholar] [CrossRef]
- Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Schauperl, M.; Nerenberg, P.S.; Jang, H.; Wang, L.-P.; Bayly, C.I.; Mobley, D.L.; Gilson, M.K. Non-bonded force field model with advanced restrained electrostatic potential charges (RESP2). Commun. Chem. 2020, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Lu, T. Sobtop, Version 1.0 (dev3.1). Available online: http://sobereva.com/soft/Sobtop/ (accessed on 2 October 2022).
- Wang, J.; Xia, W.; Xiao, Y.; Ying, C.; Long, J.; Zhang, H.; Chen, X.; Mao, C.; Li, X.; Wang, L. Assessment of estrogen disrupting potency in animal foodstuffs of China by combined biological and chemical analyses. J. Environ. Sci. 2014, 26, 2131–2137. [Google Scholar] [CrossRef]
Gridbox Center Coordinates | Gridbox SIZE | |||||
---|---|---|---|---|---|---|
Center_x | Center_y | Center_z | Size_x | Size_y | Size_z | |
RES | 5.542 | 2.038 | −13.944 | 30.0 | 25.5 | 33.0 |
BPA | 5.542 | 2.038 | −13.944 | 30.0 | 25.5 | 33.0 |
E2 | 5.542 | 2.038 | −13.944 | 30.0 | 25.5 | 33.0 |
G1 | 5.542 | 2.038 | −13.944 | 30.0 | 25.5 | 33.0 |
G15 | 5.542 | 2.038 | −13.944 | 30.0 | 25.5 | 33.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, D.; Wang, X.; Feng, C.; Liu, D.; Liu, Y.; Liu, Y.; Li, J.; Zhang, J.; Li, N.; Deng, Y.; et al. Study of the Sensing Kinetics of G Protein-Coupled Estrogen Receptor Sensors for Common Estrogens and Estrogen Analogs. Molecules 2023, 28, 3286. https://doi.org/10.3390/molecules28083286
Lu D, Wang X, Feng C, Liu D, Liu Y, Liu Y, Li J, Zhang J, Li N, Deng Y, et al. Study of the Sensing Kinetics of G Protein-Coupled Estrogen Receptor Sensors for Common Estrogens and Estrogen Analogs. Molecules. 2023; 28(8):3286. https://doi.org/10.3390/molecules28083286
Chicago/Turabian StyleLu, Dingqiang, Xinqian Wang, Chunlei Feng, Danyang Liu, Yixuan Liu, Yujiao Liu, Jie Li, Jiayao Zhang, Na Li, Yujing Deng, and et al. 2023. "Study of the Sensing Kinetics of G Protein-Coupled Estrogen Receptor Sensors for Common Estrogens and Estrogen Analogs" Molecules 28, no. 8: 3286. https://doi.org/10.3390/molecules28083286
APA StyleLu, D., Wang, X., Feng, C., Liu, D., Liu, Y., Liu, Y., Li, J., Zhang, J., Li, N., Deng, Y., Wang, K., Ren, R., & Pang, G. (2023). Study of the Sensing Kinetics of G Protein-Coupled Estrogen Receptor Sensors for Common Estrogens and Estrogen Analogs. Molecules, 28(8), 3286. https://doi.org/10.3390/molecules28083286