Risk Assessment of Trigonelline in Coffee and Coffee By-Products
Abstract
:1. Introduction
2. Literature Research
3. Estimation of Human Oral Exposure
3.1. Trigonelline Contents of Coffee and Coffee By-Products
3.2. Theoretical Maximum Daily Intake of Trigonelline
4. Absorption, Distribution, Metabolism, and Excretion
5. Nutritional Information
6. Toxicological Information
6.1. Acute Toxicity
6.2. Subchronic Toxicity
6.3. Genotoxicity and Mutagenicity
6.4. Carcinogenicity
6.5. Reproductive Toxicity and Teratogenic Effects
6.6. Neurotoxicity
6.7. Immunotoxicity and Allergenicity
6.8. Other Adverse Effects
7. Regulatory Information
8. Risk Assessment
8.1. Limitations
8.2. Acute Oral Exposure of Trigonelline
8.3. Chronic Oral Exposure of Trigonelline
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jahns, E. Ueber die Alkaloïde des Bockshornsamens. Ber. Dtsch. Chem. Ges. 1885, 18, 2518–2523. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5570, Trigonelline. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5570#section=Names-and-Identifiers (accessed on 25 September 2022).
- CAS Common Chemistry. CAS, a Division of the American Chemical Society. Trigonelline. Available online: https://commonchemistry.cas.org/detail?cas_rn=535-83-1 (accessed on 25 September 2022).
- Mazzafera, P. Trigonelline in coffee. Phytochemistry 1991, 30, 2309–2310. [Google Scholar] [CrossRef]
- Viani, R.; Horman, I. Thermal Behavior of Trigonelline. J. Food Sci. 1974, 39, 1216–1217. [Google Scholar] [CrossRef]
- Cangussu, L.B.; Melo, J.C.; Franca, A.S.; Oliveira, L.S. Chemical Characterization of Coffee Husks, a By-Product of Coffea arabica Production. Foods 2021, 10, 3125. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Skog, K.; Jägerstad, M. Trigonelline, a naturally occurring constituent of green coffee beans behind the mutagenic activity of roasted coffee? Mutat. Res. Genet. Toxicol. Environ. Mutagen. 1997, 391, 171–177. [Google Scholar] [CrossRef]
- Ashihara, H. Metabolism of alkaloids in coffee plants. Braz. J. Plant Physiol. 2006, 18, 1–8. [Google Scholar] [CrossRef]
- Zheng, X.; Ashihara, H. Distribution, Biosynthesis and Function of Purine and Pyridine Alkaloids in Coffea arabica Seedlings. Plant Sci. 2004, 166, 807–813. [Google Scholar] [CrossRef]
- Fung, V.A.; Cameron, T.P.; Hughes, T.J.; Kirby, P.E.; Dunkel, V.C. Mutagenic activity of some coffee flavor ingredients. Mutat. Res. Genet. Toxicol. 1988, 204, 219–228. [Google Scholar] [CrossRef]
- Evans, L.S.; Tramontano, W.A. Trigonelline and promotion of cell arrest in G2 of various legumes. Phytochemistry 1984, 23, 1837–1840. [Google Scholar] [CrossRef]
- Mohamadi, N.; Sharififar, F.; Pournamdari, M.; Ansari, M. A Review on Biosynthesis, Analytical Techniques, and Pharmacological Activities of Trigonelline as a Plant Alkaloid. J. Diet. Suppl. 2018, 15, 207–222. [Google Scholar] [CrossRef]
- Matsui, A.; Yin, Y.; Yamanaka, K.; Iwasaki, M.; Ashihara, H. Metabolic fate of nicotinamide in higher plants. Physiol. Plant. 2007, 131, 191–200. [Google Scholar] [CrossRef]
- Taguchi, H.; Sakaguchi, M.; Shimabayashi, Y. Trigonelline Content in Coffee Beans and the Thermal Conversion of Trigonelline into Nicotinic Acid during the Roasting of Coffee Beans. Agric. Biol. Chem. 1985, 49, 3467–3471. [Google Scholar] [CrossRef]
- Adepoju, A.F.; Adenuga, O.O.; Mapayi, E.F.; Olaniyi, O.O.; Adepoju, F.A. Coffee: Botany, Distribution, Diversity, Chemical Composition and Its Management. IOSR-JAVS 2017, 10, 57–62. [Google Scholar] [CrossRef]
- Ky, C.L.; Louarn, J.; Dussert, S.; Guyot, B.; Hamon, S.; Noirot, M. Caffeine, Trigonelline, Chlorogenic acids and Sucrose Diversity in Wild Coffea arabica L. and C. canephora P. Accessions. Food Chem. 2001, 75, 223–230. [Google Scholar] [CrossRef]
- Lang, R.; Yagar, E.F.; Eggers, R.; Hofmann, T. Quantitative Investigation of Trigonelline, Nicotinic Acid, and Nicotinamide in Foods, Urine, and Plasma by Means of LC-MS/MS and Stable Isotope Dilution Analysis. J. Agric. Food Chem. 2008, 56, 11114–11121. [Google Scholar] [CrossRef]
- Zheng, X.-Q.; Nagai, C.; Ashihara, H. Pyridine Nucleotide Cycle and Trigonelline (N-Methylnicotinic Acid) Synthesis in Developing Leaves and Fruits of Coffea arabica. Physiol. Plant. 2004, 122, 404–411. [Google Scholar] [CrossRef]
- Acidri, R.; Sawai, Y.; Sugimoto, Y.; Handa, T.; Sasagawa, D.; Masunaga, T.; Yamamoto, S.; Nishihara, E. Phytochemical Profile and Antioxidant Capacity of Coffee Plant Organs Compared to Green and Roasted Coffee Beans. Antioxidants 2020, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, X.; Tan, L.; Yan, H.; Yuan, Y. Heat-induced formation of N,N-dimethylpiperidinium (mepiquat) in Arabica and Robusta coffee. J. Food Sci. 2020, 85, 2754–2761. [Google Scholar] [CrossRef]
- Tice, R.R. Trigonelline [535-83-1]: Review of Toxicological Literature, Research Triangle Park, North Carolina 27709, 1997. Available online: https://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/trigonelline_508.pdf (accessed on 16 April 2022).
- Guertin, K.A.; Moore, S.C.; Sampson, J.N.; Huang, W.-Y.; Xiao, Q.; Stolzenberg-Solomon, R.Z.; Sinha, R.; Cross, A.J. Metabolomics in nutritional epidemiology: Identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am. J. Clin. Nutr. 2014, 100, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Guertin, K.A.; Loftfield, E.; Boca, S.M.; Sampson, J.N.; Moore, S.C.; Xiao, Q.; Huang, W.-Y.; Xiong, X.; Freedman, N.D.; Cross, A.J.; et al. Serum biomarkers of habitual coffee consumption may provide insight into the mechanism underlying the association between coffee consumption and colorectal cancer. Am. J. Clin. Nutr. 2015, 101, 1000–1011. [Google Scholar] [CrossRef] [Green Version]
- Playdon, M.C.; Sampson, J.N.; Cross, A.J.; Sinha, R.; Guertin, K.A.; Moy, K.A.; Rothman, N.; Irwin, M.L.; Mayne, S.T.; Stolzenberg-Solomon, R.; et al. Comparing metabolite profiles of habitual diet in serum and urine. Am. J. Clin. Nutr. 2016, 104, 776–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothwell, J.A.; Fillâtre, Y.; Martin, J.-F.; Lyan, B.; Pujos-Guillot, E.; Fezeu, L.; Hercberg, S.; Comte, B.; Galan, P.; Touvier, M.; et al. New Biomarkers of Coffee Consumption Identified by the Non-Targeted Metabolomic Profiling of Cohort Study Subjects. PLoS ONE 2014, 9, e93474. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.; Wahl, A.; Skurk, T.; Yagar, E.F.; Schmiech, L.; Eggers, R.; Hauner, H.; Hofmann, T. Development of a Hydrophilic Liquid Interaction Chromatography−High-Performance Liquid Chromatography−Tandem Mass Spectrometry Based Stable Isotope Dilution Analysis and Pharmacokinetic Studies on Bioactive Pyridines in Human Plasma and Urine after Coffee Consumption. Anal. Chem. 2010, 82, 1486–1497. [Google Scholar] [CrossRef] [PubMed]
- Joshi, J.G.; Handler, P. Biosynthesis of Trigonelline. J. Biol. Chem. 1960, 235, 2981–2983. [Google Scholar] [CrossRef] [PubMed]
- Upmeier, B.; Gross, W.; Köster, S.; Barz, W. Purification and properties of S-adenosyl-l-methionine:Nicotinic acid-N-methyltransferase from cell suspension cultures of Glycine max L. Arch. Biochem. Biophys. 1988, 262, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Ashihara, H.; Ludwig, I.A.; Katahira, R.; Yokota, T.; Fujimura, T.; Crozier, A. Trigonelline and related nicotinic acid metabolites: Occurrence, biosynthesis, taxonomic considerations, and their roles in Planta and in human health. Phytochem. Rev. 2015, 14, 765–798. [Google Scholar] [CrossRef]
- Mizuno, K.; Matsuzaki, M.; Kanazawa, S.; Tokiwano, T.; Yoshizawa, Y.; Kato, M. Conversion of Nicotinic acid to Trigonelline is Catalyzed by N-methyltransferase Belonged to Motif B′ Methyltransferase Family in Coffea arabica. Biochem. Biophys. Res. Commun. 2014, 452, 1060–1066. [Google Scholar] [CrossRef]
- Ashihara, H. Trigonelline (N-methylnicotinic acid) biosynthesis and its biological role in plants. Nat. Prod. Commun. 2008, 3, 1934578X0800300906. [Google Scholar] [CrossRef] [Green Version]
- Ashihara, H. Chapter 3—Plant biochemistry: Trigonelline biosynthesis in Coffea arabica and Coffea canephora. In Coffee in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 19–28. ISBN 978-0-12-409517-5. [Google Scholar]
- Minorsky, P.V. The functions of foliar nyctinasty: A review and hypothesis. Biol. Rev. 2019, 94, 216–229. [Google Scholar] [CrossRef]
- Caetano-Anollés, G.; Gresshoff, P.M. Plant Genetic Control of Nodulation. Annu. Rev. Micobiol. 1991, 45, 345–382. [Google Scholar] [CrossRef]
- Evans, L.S.; Almeida, M.S.; Lynn, D.G.; Nakanishi, K. Chemical characterization of a hormone that promotes cell arrest in g2 in complex tissues. Science 1979, 203, 1122–1123. [Google Scholar] [CrossRef] [PubMed]
- Minorsky, P.V. The hot and the classic: Trigonelline: A diverse regulator in plants. Plant Physiol. 2002, 128, 7. [Google Scholar] [CrossRef]
- Barz, W. Metabolism and Degradation of Nicotinic Acid in Plant Cell Cultures. In Primary and Secondary Metabolism of Plant Cell Cultures; Neumann, K.H., Barz, W., Reinhard, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 186–195. ISBN 978-3-642-70717-9. [Google Scholar]
- Lang, R.; Dieminger, N.; Beusch, A.; Lee, Y.-M.; Dunkel, A.; Suess, B.; Skurk, T.; Wahl, A.; Hauner, H.; Hofmann, T. Bioappearance and pharmacokinetics of bioactives upon coffee consumption. Anal. Bioanal. Chem. 2013, 405, 8487–8503. [Google Scholar] [CrossRef] [PubMed]
- Buffo, R.A.; Cardelli-Freire, C. Coffee flavour: An overview. Flavour. Fragr. J. 2004, 19, 99–104. [Google Scholar] [CrossRef]
- Stadler, R.H.; Varga, N.; Hau, J.; Vera, F.A.; Welti, D.H. Alkylpyridiniums. 1. Formation in Model Systems via Thermal Degradation of Trigonelline. J. Agric. Food Chem. 2002, 50, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Angelino, D.; Tassotti, M.; Brighenti, F.; Del Rio, D.; Mena, P. Niacin, Alkaloids and (Poly)phenolic Compounds in the Most Widespread Italian Capsule-brewed Coffees. Sci. Rep. 2018, 8, 17874. [Google Scholar] [CrossRef] [Green Version]
- Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011, 49, 396–402. [Google Scholar] [CrossRef]
- Bhandarkar, N.S.; Mouatt, P.; Majzoub, M.E.; Thomas, T.; Brown, L.; Panchal, S.K. Coffee pulp, a by-product of coffee production, modulates gut microbiota and improves metabolic syndrome in high-carbohydrate, high-fat diet-fed rats. Pathogens 2021, 10, 1369. [Google Scholar] [CrossRef]
- de Abreu Pinheiro, F.; Ferreira Elias, L.; de Jesus Filho, M.; Uliana Modolo, M.; de Cássia Gomes Rocha, J.; Fumiere Lemos, M.; Scherer, R.; Soares Cardoso, W. Arabica and Conilon Coffee Flowers: Bioactive Compounds and Antioxidant Capacity under Different Processes. Food Chem. 2021, 336, 127701. [Google Scholar] [CrossRef]
- Nazir Lone, A.; Tanveer Malik, A.; Shahid Naikoo, H.; Sharma Raghu, R.; Sheikh, A. Tasduq. Trigonelline, a naturally occurring alkaloidal agent protects ultraviolet-B (UV-B) irradiation induced apoptotic cell death in human skin fibroblasts via attenuation of oxidative stress, restoration of cellular calcium homeostasis and prevention of endoplasmic reticulum (ER) stress. J. Photochem. Photobiol. B Biol. 2020, 202, 111720. [Google Scholar] [CrossRef]
- Aldakinah, A.-A.A.; Al-Shorbagy, M.Y.; Abdallah, D.M.; El-Abhar, H.S. Trigonelline and Vildagliptin Antidiabetic Effect: Improvement of Insulin Signalling Pathway. J. Pharm. Pharmacol. 2017, 69, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Mukherjee, S.; Yun, J.W. Trigonelline Induces Browning in 3T3-L1 White Adipocytes. Phytother. Res. 2021, 35, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Mishkinsky, J.; Joseph, B.; Sulman, F.G.; Goldschmied, A.L. Hypoglycaemic effect of trigonelline. Lancet 1967, 290, 1311–1312. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, A.E.; Olthof, M.R.; Meeuse, J.C.; Seebus, E.; Heine, R.J.; van Dam, R.M. Acute Effects of Decaffeinated Coffee and the Major Coffee Components Chlorogenic Acid and Trigonelline on Glucose Tolerance. Diabetes Care 2009, 32, 1023–1025. [Google Scholar] [CrossRef] [Green Version]
- Tharaheswari, M.; Jayachandra Reddy, N.; Kumar, R.; Varshney, K.C.; Kannan, M.; Sudha Rani, S. Trigonelline and diosgenin attenuate ER stress, oxidative stress-mediated damage in pancreas and enhance adipose tissue PPARγ activity in type 2 diabetic rats. Mol. Cell Biochem. 2014, 396, 161–174. [Google Scholar] [CrossRef]
- Peerapen, P.; Boonmark, W.; Thongboonkerd, V. Trigonelline prevents kidney stone formation processes by inhibiting calcium oxalate crystallization, growth and crystal-cell adhesion, and downregulating crystal receptors. Biomed. Pharmacother. 2022, 149, 112876. [Google Scholar] [CrossRef]
- Socała, K.; Szopa, A.; Serefko, A.; Poleszak, E.; Wlaź, P. Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int. J. Mol. Sci. 2021, 22, 107. [Google Scholar] [CrossRef]
- Teketay, D. History, Botany and Ecological Requirements of Coffee. Walia 1999, 20, 28–50. [Google Scholar]
- Petracco, M. Our Everyday Cup of Coffee: The Chemistry behind Its Magic. J. Chem. Educ. 2005, 82, 1161. [Google Scholar] [CrossRef]
- Romualdo, G.R.; Rocha, A.B.; Vinken, M.; Cogliati, B.; Moreno, F.S.; García Chaves, M.A.; Barbisan, L.F. Drinking for protection? Epidemiological and experimental evidence on the beneficial effects of coffee or major coffee compounds against gastrointestinal and liver carcinogenesis. Food Res. Int. 2019, 123, 567–589. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA) Foreign Agricultural Service. Coffee: World Markets and Trade—December 2022. 2022. Available online: https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf (accessed on 1 January 2023).
- United States Department of Agriculture (USDA) Foreign Agricultural Service. Coffee: World Markets and Trade—December 2018. 2018. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/m900nt40f/41687n67f/nk322j622/coffee.pdf (accessed on 4 January 2023).
- United States Department of Agriculture (USDA) Foreign Agricultural Service. Coffee: World Markets and Trade—December 2016. 2016. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/m900nt40f/vq27zn848/fq977v30w/tropprod-12-16-2016.pdf (accessed on 4 January 2023).
- International Coffee Organization. 2021 Coffee Development Report: The Future of Coffee: Investing in Youth for a Resilient and Sustainable Coffee Sector. 2021. Available online: https://www.internationalcoffeecouncil.com/_files/ugd/0dd08e_b2c2768ae87045e383962ce14ef44925.pdf (accessed on 9 January 2023).
- Lachenmeier, D.W.; Teipel, J.; Scharinger, A.; Kuballa, T.; Walch, S.G.; Grosch, F.; Bunzel, M.; Okaru, A.O.; Schwarz, S. Fully Automated Identification of Coffee Species and Simultaneous Quantification of Furfuryl Alcohol Using NMR Spectroscopy. J. AOAC Int. 2020, 103, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S. Sustainable Coffee Production. Oxf. Res. Encycl. 2017, 17, 1–34. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- de Melo Pereira, G.V.; de Carvalho Neto, D.P.; Magalhães Júnior, A.I.; Vásquez, Z.S.; Medeiros, A.B.P.; Vandenberghe, L.P.S.; Soccol, C.R. Exploring the impacts of postharvest processing on the aroma formation of coffee beans—A review. Food Chem. 2019, 272, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Schwarz, S.; Rieke-Zapp, J.; Cantergiani, E.; Rawel, H.; Martín-Cabrejas, M.A.; Martuscelli, M.; Gottstein, V.; Angeloni, S. Coffee By-Products as Sustainable Novel Foods: Report of the 2nd International Electronic Conference on Foods—“Future Foods and Food Technologies for a Sustainable World”. Foods 2022, 11, 3. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Rajcic de Rezende, T.; Schwarz, S. An Update on Sustainable Valorization of Coffee By-Products as Novel Foods within the European Union. Biol. Life Sci. Forum 2021, 6, 37. [Google Scholar] [CrossRef]
- Hoseini, M.; Cocco, S.; Casucci, C.; Cardelli, V.; Corti, G. Coffee By-products Derived Resources. A Review. Biomass Bioenergy 2021, 148, 106009. [Google Scholar] [CrossRef]
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Murthy, P.S.; Naidu, M.M. Recovery of Phenolic Antioxidants and Functional Compounds from Coffee Industry By-Products. Food Bioprocess Technol. 2012, 5, 897–903. [Google Scholar] [CrossRef]
- Benitez, V.; Rebollo-Hernanz, M.; Hernanz, S.; Chantres, S.; Aguilera, Y.; Martin-Cabrejas, M.A. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Res. Int. 2019, 122, 105–113. [Google Scholar] [CrossRef]
- Martuscelli, M.; Esposito, L.; Di Mattia, C.D.; Ricci, A.; Mastrocola, D. Characterization of Coffee Silver Skin as Potential Food-Safe Ingredient. Foods 2021, 10, 1367. [Google Scholar] [CrossRef]
- Tores de la Cruz, S.; Iriondo-DeHond, A.; Herrera, T.; Lopez-Tofiño, Y.; Galvez-Robleño, C.; Prodanov, M.; Velazquez-Escobar, F.; Abalo, R.; Del Castillo, M.D. An Assessment of the Bioactivity of Coffee Silverskin Melanoidins. Foods 2019, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and Council of the European Union. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Off. J. Eur. Union 2015, L 327, 1–21. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 Establishing the Union List of Novel Foods in Accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on Novel Foods. Off. J. Eur. Union 2017, L 351, 72–201. [Google Scholar]
- Stennert, A.; Maier, H.G. Trigonelline in coffee. Z. Lebensm. Unters. Forsch. 1994, 199, 198–200. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hong, D.-F.; Hu, G.-L.; Li, Z.-R.; Peng, X.-R.; Shi, Q.-Q.; Qiu, M.-H. Morphological Changes and Component Characterization of Coffee Silverskin. Molecules 2021, 26, 4914. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, Â.; Colomban, S.; Azinheira, H.G.; Guerra-Guimarães, L.; Do Céu Silva, M.; Navarini, L.; Resmini, M. Dietary Antioxidants in Coffee Leaves: Impact of Botanical Origin and Maturity on Chlorogenic Acids and Xanthones. Antioxidants 2019, 9, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Ma, Z.; Kitts, D.D. Effects of Processing Method and Age of Leaves on Phytochemical Profiles and Bioactivity of Coffee Leaves. Food Chem. 2018, 249, 143–153. [Google Scholar] [CrossRef]
- Cangeloni, L.; Bonechi, C.; Leone, G.; Consumi, M.; Andreassi, M.; Magnani, A.; Rossi, C.; Tamasi, G. Characterization of Extracts of Coffee Leaves (Coffea arabica L.) by Spectroscopic and Chromatographic/Spectrometric Techniques. Foods 2022, 11, 2495. [Google Scholar] [CrossRef]
- Montis, A.; Souard, F.; Delporte, C.; Stoffelen, P.; Stévigny, C.; van Antwerpen, P. Coffee Leaves: An Upcoming Novel Food? Planta Med. 2021, 87, 949–963. [Google Scholar]
- Nguyen, T.; Cho, E.J.; Song, Y.; Oh, C.H.; Funada, R.; Bae, H.-B. Use of coffee flower as a novel resource for the production of bioactive compounds, melanoidins, and bio-sugars. Food Chem. 2019, 299, 125120. [Google Scholar] [CrossRef] [PubMed]
- Wirz, K.; Schwarz, S.; Richling, E.; Walch, S.G.; Lachenmeier, D.W. Coffee Flower as a Promising Novel Food—Chemical Characterization and Sensory Evaluation. Biol. Life Sci. Forum 2022, 18, 53. [Google Scholar] [CrossRef]
- Castaldo, L.; Graziani, G.; Gaspari, A.; Izzo, L.; Luz, C.; Mañes, J.; Rubino, M.; Meca, G.; Ritieni, A. Study of the chemical components, bioactivity and antifungal properties of the coffee husk. J. Food. Res. 2018, 7, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Koskei, R.K.; Mugendi, B.; Muliro, P. Effects of processing methods on fatty acid profiles and biochemical compounds of Arabica coffee cultivars. Afr. J. Food Sci. 2020, 14, 92–97. [Google Scholar]
- Mehari, B.; Redi-Abshiro, M.; Chandravanshi, B.S.; Atlabachew, M.; Combrinck, S.; McCrindle, R. Simultaneous Determination of Alkaloids in Green Coffee Beans from Ethiopia: Chemometric Evaluation of Geographical Origin. Food Anal. Methods 2016, 9, 1627–1637. [Google Scholar] [CrossRef]
- Casal, S.; Oliveira, M.B.P.P.; Alves, M.R.; Ferreira, M.A. Discriminate Analysis of Roasted Coffee Varieties for Trigonelline, Nicotinic Acid, and Caffeine Content. J. Agric. Food Chem. 2000, 48, 3420–3424. [Google Scholar] [CrossRef]
- Choi, B.; Koh, E. Spent coffee as a rich source of antioxidative compounds. Food Sci. Biotechnol. 2017, 26, 921–927. [Google Scholar] [CrossRef]
- Caprioli, G.; Cortese, M.; Maggi, F.; Minnetti, C.; Odello, L.; Sagratini, G.; Vittori, S. Quantification of caffeine, trigonelline and nicotinic acid in espresso coffee: The influence of espresso machines and coffee cultivars. Int. J. Food. Sci. Nutr. 2014, 65, 465–469. [Google Scholar] [CrossRef]
- Heo, J.; Adhikari, K.; Choi, K.S.; Lee, J. Analysis of Caffeine, Chlorogenic Acid, Trigonelline, and Volatile Compounds in Cold Brew Coffee Using High-Performance Liquid Chromatography and Solid-Phase Microextraction—Gas Chromatography-Mass Spectrometry. Foods 2020, 9, 1746. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, X.; Liu, P.; Zhang, T.; Jelderks, J.A.; Corke, H. Preliminary Characterization of Phytochemicals and Polysaccharides in Diverse Coffee Cascara Samples: Identification, Quantification and Discovery of Novel Compounds. Foods 2022, 11, 1710. [Google Scholar] [CrossRef]
- Wu, H.; Gu, J.; Amrit, B.K.; Nawaz, M.A.; Barrow, C.J.; Dunshea, F.; Suleria, H. Effect of processing on bioaccessibility and bioavailability of bioactive compounds in coffee beans. Food Biosci. 2022, 46, 101373. [Google Scholar] [CrossRef]
- Stadler, R.H.; Varga, N.; Milo, C.; Schilter, B.; Vera, F.A.; Welti, D.H. Alkylpyridiniums. 2. Isolation and Quantification in Roasted and Ground Coffees. J. Agric. Food Chem. 2002, 50, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.; Yagar, E.F.; Wahl, A.; Beusch, A.; Dunkel, A.; Dieminger, N.; Eggers, R.; Bytof, G.; Stiebitz, H.; Lantz, I.; et al. Quantitative Studies on Roast Kinetics for Bioactives in Coffee. J. Agric. Food Chem. 2013, 61, 12123–12128. [Google Scholar] [CrossRef]
- Ziefuß, A.R.; Hupfeld, T.; Meckelmann, S.W.; Meyer, M.; Schmitz, O.J.; Kaziur-Cegla, W.; Tintrop, L.K.; Schmidt, T.C.; Gökce, B.; Barcikowski, S. Ultrafast cold-brewing of coffee by picosecond-pulsed laser extraction. NPJ Sci. Food 2022, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Steger, M.C.; Rigling, M.; Blumenthal, P.; Segatz, V.; Quintanilla-Belucci, A.; Beisel, J.M.; Rieke-Zapp, J.; Schwarz, S.; Lachenmeier, D.W.; Zhang, Y. Coffee Leaf Tea from El Salvador: On-Site Production Considering Influences of Processing on Chemical Composition. Foods 2022, 11, 2553. [Google Scholar] [CrossRef]
- Arai, K.; Terashima, H.; Aizawa, S.; Taga, A.; Yamamoto, A.; Tsutsumiuchi, K.; Kodama, S. Simultaneous determination of trigonelline, caffeine, chlorogenic acid and their related compounds in instant coffee samples by HPLC using an acidic mobile phase Containing Octanesulfonate. Anal. Sci. 2015, 31, 831–835. [Google Scholar] [CrossRef] [Green Version]
- Jeszka-Skowron, M.; Frankowski, R.; Zgoła-Grześkowiak, A. Comparison of methylxantines, trigonelline, nicotinic acid and nicotinamide contents in brews of green and processed Arabica and Robusta coffee beans—Influence of steaming, decaffeination and roasting processes on coffee beans. LWT 2020, 125, 109344. [Google Scholar] [CrossRef]
- Teply, L.J.; Prier, R.F. Nutrients in Coffee, Nutritional Evaluation of Coffee Including Niacin Bioassay. J. Agric. Food Chem. 1957, 5, 375–377. [Google Scholar] [CrossRef]
- Honda, M.; Takezaki, D.; Tanaka, M.; Fukaya, M.; Goto, M. Effect of Roasting Degree on Major Coffee Compounds: A Comparative Study between Coffee Beans with and without Supercritical CO2 Decaffeination Treatment. J. Oleo Sci. 2022, 71, 1541–1550. [Google Scholar] [CrossRef]
- Febvay, L.; Hamon, E.; Recht, R.; Andres, N.; Vincent, M.; Aoudé-Werner, D.; This, H. Identification of markers of thermal processing (“roasting”) in aqueous extracts of Coffea arabica L. seeds through NMR fingerprinting and chemometrics. Magn. Reson. Chem. 2019, 57, 589–602. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Drinking coffee, mate, and very hot beverages. IARC Monogr. Eval. Carcinog. Risks Hum. 2018, 116, 1–501. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2020/917 of 1 July 2020 Authorising the Placing on the Market of Infusion from Coffee leaves of Coffea arabica L. and/or Coffea canephora Pierre ex A. Froehner as a Traditional Food from a Third Country under Regulation (EU) 2015/2283 of the European Parliament and of the Council and Amending Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union 2020, L 209, 10–13. [Google Scholar]
- Max Rubner-Institut. Nationale Verzehrsstudie II: Ergebnisberich, Teil 1; Max Rubner-Institut: Karlsruhe, Germany, 2008; Available online: https://www.bmel.de/SharedDocs/Downloads/DE/_Ernaehrung/NVS_Ergebnisbericht.pdf?__blob=publicationFile&v=2 (accessed on 11 January 2023).
- Max Rubner-Institut. Nationale Verzehrsstudie II: Ergebnisbericht, Teil 2; Max Rubner-Institut: Karlsruhe, Germany, 2008; Available online: https://www.bmel.de/SharedDocs/Downloads/DE/_Ernaehrung/NVS_ErgebnisberichtTeil2.pdf?__blob=publicationFile&v=2 (accessed on 11 January 2023).
- Yuyama, S.; Suzuki, T. The Excretion of N1-Methyl-2-Pyridone-5-Carboxylic Acid and Related Compounds in Human Subjects after Oral Administration of Nicotinic Acid, Trigonalline and N1-Methyl-2-Pyridone-5-Carboxylic Acid. In Kynurenine and Serotonin Pathways: Progress in Tryptophan Research; Schwarcz, R., Young, S.N., Brown, R.R., Eds.; Springer: Boston, MA, USA, 1991; pp. 475–479. ISBN 978-1-4684-5952-4. [Google Scholar]
- Yuyama, S.; Kawano, Y. Urinary Excretion of N1-Menthyl-2-Pyridone-5-Carboxylic Acid and the Fate of Remaining of Trigonelline. In Recent Advances in Tryptophan Research: Tryptophan and Serotonin Pathways; Filippini, G.A., Costa, C.V.L., Bertazzo, A., Eds.; Springer US: Boston, MA, USA, 1996; pp. 599–604. ISBN 978-1-4613-0381-7. [Google Scholar]
- Lang, R.; Wahl, A.; Stark, T.; Hofmann, T. Urinary N-methylpyridinium and trigonelline as candidate dietary biomarkers of coffee consumption. Mol. Nutr. Food. Res. 2011, 55, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Midttun, Ø.; Ulvik, A.; Nygård, O.; Ueland, P.M. Performance of Plasma Trigonelline as a Marker of Coffee Consumption in an Epidemiologic Setting. Am. J. Clin. Nutr. 2018, 107, 941–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bresciani, L.; Tassotti, M.; Rosi, A.; Martini, D.; Antonini, M.; Dei Cas, A.; Bonadonna, R.; Brighenti, F.; Del Rio, D.; Mena, P. Absorption, Pharmacokinetics, and Urinary Excretion of Pyridines After Consumption of Coffee and Cocoa-Based Products Containing Coffee in a Repeated Dose, Crossover Human Intervention Study. Mol. Nutr. Food. Res. 2020, 64, 2000489. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.J.; Wu, J.J.; Liu, Z.Q.; Lin, N. Development of a hydrophilic interaction chromatography-UPLC assay to determine trigonelline in rat plasma and its application in a pharmacokinetic study. Chin. J. Nat. Med 2013, 11, 164–170. [Google Scholar] [CrossRef]
- Holford, N.; Yim, D.-S. Volume of Distribution. Transl. Clin. Pharmacol. 2016, 24, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Farid, M.M.; Yang, X.; Kuboyama, T.; Tohda, C. Trigonelline recovers memory function in Alzheimer’s disease model mice: Evidence of brain penetration and target molecule. Sci. Rep. 2020, 10, 16424. [Google Scholar] [CrossRef]
- Lindenblad, G.E.; Kaihara, M.; Price, J.M. The occurrence of N-methyl-2-pyridone-5-carboxylic acid and its glycine conjugate in normal human urine. J. Biol. Chem. 1956, 219, 893–901. [Google Scholar] [CrossRef]
- Strohm, D.; Bechthold, A.; Isik, N.; Leschik-Bonnet, E.; Heseker., H. Revised reference values for the intake of thiamin (vitamin B1), riboflavin (vitamin B2), and niacin. NFS J. 2016, 3, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Tohda, C.; Nakamura, N.; Komatsu, K.; Hattori, M. Trigonelline-Induced Neurite Outgrowth in Human Neuroblastoma SK-N-SH Cells. Biol. Pharm. Bull. 1999, 22, 679–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, J.C.; Lee, K.T.; You, B.J.; Lee, C.L.; Chang, W.T.; Wu, Y.C.; Lee, H.-Z. Raf/ERK/Nrf2 signaling pathway and MMP-7 expression involvement in the trigonelline-mediated inhibition of hepatocarcinoma cell migration. Food Nutr. Res. 2015, 59, 29884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brazda, F.G.; Coulson, R.A. Toxicity of Nicotinic Acid and Some of Its Derivatives. Proc. Soc. Exp. Biol. Med. 1946, 62, 19–20. [Google Scholar] [CrossRef]
- Mishkinsky, J.S.; Goldschmied, A.; Joseph, B.; Ahronson, Z.; Sulman, F.G. Hypoglycaemic effect of Trigonella foenum graecum and Lupinus termis (leguminosae) seeds and their major alkaloids in alloxan-diabetic and normal rats. Arch. Int. Pharmacodyn. Ther. 1974, 210, 27–37. [Google Scholar]
- Aswar, U.; Mohan, V.; Bodhankar, S.L. Effect of trigonelline on fertility in female rats. Int. J. Green. Pharm. 2009, 3, 220. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: Prediction of Toxicity of Chemicals. Available online: https://tox-new.charite.de/protox_II/index.php?site=home (accessed on 1 March 2023).
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faulkner, K.K.; Smith, J.W.H. Preliminary studies of the toxicity of locoweed extracts. Proc. Oklohoma Acad. Sci. 1950, 31, 48–50. [Google Scholar]
- Folwarczna, J.; Zych, M.; Nowińska, B.; Pytlik, M.; Janas, A. Unfavorable effect of trigonelline, an alkaloid present in coffee and fenugreek, on bone mechanical properties in estrogen-deficient rats. Mol. Nutr. Food. Res. 2014, 58, 1457–1464. [Google Scholar] [CrossRef]
- Allred, K.F.; Yackley, K.M.; Vanamala, J.; Allred, C.D. Trigonelline is a Novel Phytoestrogen in Coffee Beans. J. Nutr. 2009, 139, 1833–1838. [Google Scholar] [CrossRef] [Green Version]
- Deli, T.; Orosz, M.; Jakab, A. Hormone Replacement Therapy in Cancer Survivors—Review of the Literature. Pathol. Oncol. Res. 2020, 26, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Harding, A.T.; Heaton, N.S. The Impact of Estrogens and Their Receptors on Immunity and Inflammation during Infection. Cancers 2022, 14, 909. [Google Scholar] [CrossRef] [PubMed]
- Pirpour Tazehkand, A.; Salehi, R.; Velaei, K.; Samadi, N. The potential impact of trigonelline loaded micelles on Nrf2 suppression to overcome oxaliplatin resistance in colon cancer cells. Mol. Biol. Rep. 2020, 47, 5817–5829. [Google Scholar] [CrossRef]
- Hirakawa, N.; Okauchi, R.; Miura, Y.; Yagasaki, K. Anti-Invasive Activity of Niacin and Trigonelline against Cancer Cells. Biosci. Biotechnol. Biochem. 2005, 69, 653–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arlt, A.; Sebens, S.; Krebs, S.; Geismann, C.; Grossmann, M.; Kruse, M.-L.; Schreiber, S.; Schäfer, H. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 2013, 32, 4825–4835. [Google Scholar] [CrossRef]
- Fouzder, C.; Mukhuty, A.; Mukherjee, S.; Malick, C.; Kundu, R. Trigonelline inhibits Nrf2 via EGFR signalling pathway and augments efficacy of Cisplatin and Etoposide in NSCLC cells. Toxicol. In Vitro 2021, 70, 105038. [Google Scholar] [CrossRef] [PubMed]
- Sebens, S.; Bauer, I.; Geismann, C.; Grage-Griebenow, E.; Ehlers, S.; Kruse, M.-L.; Arlt, A.; Schäfer, H. Inflammatory Macrophages Induce Nrf2 Transcription Factor-dependent Proteasome Activity in Colonic NCM460 Cells and Thereby Confer Anti-apoptotic Protection. J. Biol. Chem. 2011, 286, 40911–40921. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.-C.; Chen, C.-A.; Chen, P.-J.; Chiang, Y.-C.; Chen, Y.-L.; Mao, T.-L.; Lin, H.-W.; Lin Chiang, W.-H.; Cheng, W.-F. Mesothelin enhances invasion of ovarian cancer by inducing MMP-7 through MAPK/ERK and JNK pathways. Biochem. J. 2012, 442, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Egami, H.; Abe, M.; Nozawa, F.; Hirota, M.; Ogawa, M. Involvement of MMP-7 in invasion of pancreatic cancer cells through activation of the EGFR mediated MEK–ERK signal transduction pathway. J. Clin. Pathol. 2005, 58, 1242–1248. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, T.; Funakoshi-Tago, M.; Tamura, H. Coffee reduces KRAS expression in Caco-2 human colon carcinoma cells via regulation of miRNAs. Oncol. Lett. 2017, 14, 1109–1114. [Google Scholar] [CrossRef] [Green Version]
- Sharma, L.; Lone, N.A.; Knott, R.M.; Hassan, A.; Abdullah, T. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy. Food Chem. Toxicol. 2018, 121, 283–296. [Google Scholar] [CrossRef]
- Gill, E.W.; Paton, W.D.M.; Pertwee, R.G. Preliminary Experiments on the Chemistry and Pharmacology of Cannabis. Nature 1970, 228, 134–136. [Google Scholar] [CrossRef] [PubMed]
- Tohda, C.; Kuboyama, T.; Komatsu, K. Search for Natural Products Related to Regeneration of the Neuronal Network. Neurosignals 2005, 14, 34–45. [Google Scholar] [CrossRef] [PubMed]
- SatheeshKumar, N.; Mukherjee, P.K.; Bhadra, S.; Saha, B.P. Acetylcholinesterase enzyme inhibitory potential of standardized extract of Trigonella foenum graecum L and its constituents. Phytomedicine 2010, 17, 292–295. [Google Scholar] [CrossRef]
- Hossain, S.J.; Aoshima, H.; Koda, H.; Kiso, Y. Effects of Coffee Components on the Response of GABAA Receptors Expressed in Xenopus Oocytes. J. Agric. Food Chem. 2003, 51, 7568–7575. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.; Rohm, B.; Lang, R.; Pariza, M.W.; Hofmann, T.; Somoza, V. Identification of coffee components that stimulate dopamine release from pheochromocytoma cells (PC-12). Food Chem. Toxicol. 2012, 50, 390–398. [Google Scholar] [CrossRef]
- Lin, S.X.; Curtis, M.A.; Sperry, J. Pyridine Alkaloids with Activity in the Central Nervous System. Bioorg. Med. Chem. 2020, 28, 115820. [Google Scholar] [CrossRef]
- Ghanem, S.S.; Fayed, H.S.; Zhu, Q.; Lu, J.-H.; Vaikath, N.N.; Ponraj, J.; Mansour, S.; El-Agnaf, O.M.A. Natural Alkaloid Compounds as Inhibitors for Alpha-Synuclein Seeded Fibril Formation and Toxicity. Molecules 2021, 26, 3736. [Google Scholar] [CrossRef]
- Fahanik-Babaei, J.; Baluchnejadmojarad, T.; Nikbakht, F.; Roghani, M. Trigonelline protects hippocampus against intracerebral Aβ(1–40) as a model of Alzheimer’s disease in the rat: Insights into underlying mechanisms. Metab. Brain Dis. 2019, 34, 191–201. [Google Scholar] [CrossRef]
- Temraz, T.A.; Houssen, W.E.; Jaspars, M.; Woolley, D.R.; Wease, K.N.; Davies, S.N.; Scott, R.H. A pyridinium derivative from Red Sea soft corals inhibited voltage-activated potassium conductances and increased excitability of rat cultured sensory neurones. BMC Pharmacol. 2006, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Nutrition, Novel Foods; Food Allergens; Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Safety of Dried Coffee husk (Cascara) from Coffea arabica L. as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2022, 20, e07085. [Google Scholar] [CrossRef]
- Nugrahini, A.D.; Ishida, M.; Nakagawa, T.; Nishi, K.; Sugahara, T. Trigonelline: An alkaloid with anti-degranulation properties. Mol. Immunol. 2020, 118, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Gold, L.S.; Gaylor, D.W.; Slone, T.H. Comparison of cancer risk estimates based on a variety of risk assessment methodologies. Regul. Toxicol. Pharmacol. 2003, 37, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Rehm, J. Comparative risk assessment of alcohol, tobacco, cannabis and other illicit drugs using the margin of exposure approach. Sci. Rep. 2015, 5, 8126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority. Technical Report on the notification of cherry pulp from Coffea arabica L. and Coffea canephora Pierre ex A. Froehner as a traditional food from a third country following Article 14 of Regulation (EU) 2015/2283. EFSA Support. Publ. 2021, 18, 6657E. [Google Scholar] [CrossRef]
- European Food Safety Authority. Technical Report on the Notification of Infusion from Coffee leaves (Coffea arabica L. and/or Coffea canephora Pierre ex A. Froehner) as a Traditional Food from a Third Country Pursuant to Article 14 of Regulation (EU) 2015/2283. EFSA Support. Publ. 2020, 17, 1783E. [Google Scholar] [CrossRef]
Physicochemical Property | Information |
---|---|
Molecular weight | 137.14 g/mol |
Octanol–water partition coefficient (log KOW) | −2.53 |
Matrix | Trigonelline Content | Coffee Species | Reference | Converted Trigonelline Content (g/kg) |
---|---|---|---|---|
Leaves | 2.955–11.718 mg/g DW | A | [76] | 3.0–11.7 |
3.93–6.84 mg/g | A | [77] | 3.9–6.8 | |
4.47 ± 0.13 g/kg DW | A | [78] | 4.5 | |
8.2–28.3 µmol/g FW | A | [18] | 1.1–3.9 | |
4.157–7.879 mg/g DW | R | [76] | 4.2–7.9 | |
4.2–6.0 mg/g DW | R | [79] | 4.2–6.0 | |
Range | 1.1–11.7 (min–max) | |||
Flowers | 378.1–5278.6 mg/100 g DW | A | [44] | 3.8–52.8 |
429.1–6258.3 mg/100 g DW | R | [44] | 4.3–62.6 | |
1092.8 mg/100 g DW | R | [80] | 10.9 | |
755–1965 mg/100 g | A, R | [81] | 7.6–19.7 | |
Range | 3.8–62.6 (min–max) | |||
Cherry Husks/Pulp | 285.58–542.8 mg/100 g DW 1 | A | [6] | 2.9–5.4 1 |
550.45–558.02 mg/kg DW | A | [82] | 0.6–0.6 | |
Range | 0.6–5.4 (min–max) | |||
Parchment 2 | 1.24–1.36% DW | A | [83] | 12.4–13.6 |
120.16–246.21 mg/100 g DW 2 | A | [6] | 1.2–2.5 2 | |
Range | 1.2–13.6 (min–max) | |||
Green coffee beans | 1.52–2.9 g/100 g DW | A | [4] | 15.2–29.0 |
8.8–27.6 mg/g DW | A | [79] | 8.8–27.6 | |
0.88–1.77% DW | A | [16] | 8.8–17.7 | |
9.1–15.9 g/kg | A | [20] | 9.1–15.9 | |
16.8–71.2 µmol/g | A | [18] | 2.3–9.8 | |
55.67 µmol/g FW | A | [17] | 7.6 | |
52.5 ± 0.8 µmol/g FW | A | [13] | 7.2 | |
0.98–1.32% w/w DW | A | [84] | 9.8–13.2 | |
547–991 mg/100 g | A | [14] | 5.5–9.9 | |
7.5–34.2 mg/g DW | R | [79] | 7.5–34.2 | |
3.08 g/100 g DW | R | [4] | 30.8 | |
0.75–1.24% DW | R | [16] | 7.5–12.4 | |
7.5–12.0 g/kg | R | [20] | 7.5–12.0 | |
Range | 2.3–34.2 (min–max) | |||
Roasted coffee beans | 5.25–7.48 g/kg DW | A | [85] | 5.3–7.5 |
3.69–4.81 mg/g | A | [14] | 3.7–4.8 | |
41.82 ± 2.1 µmol/g FW | A | [17] | 5.7 | |
3.08–5.54 g/kg DW | R | [85] | 3.1–5.5 | |
Range | 3.1–7.5 (min–max) | |||
Silver skin | 3.65% DW | A | [75] | 36.5 |
36.5 | ||||
Coffee beverages | 1.9–7.2 mg/mL | A | [86] | 1.9–7.2 |
50.74–72.70 mg/25 mL (espresso) | A | [87] | 2.0–2.9 | |
0.19–0.33 mg/mL | A | [88] | 0.2–0.3 | |
2310 nmol/mL | A | [26] | 0.3 | |
21.99–49.44 mg/25 mL (espresso) | R | [87] | 0.9–2.0 | |
Range | 0.2–7.2 (min–max) | |||
Spent coffee grounds | 0.4–2.4 mg/mL | A | [86] | 0.4–2.4 |
Range | 0.4–2.4 (min–max) |
Matrix | Trigonelline Content per Serving (g/200 mL) 1 | Consumption of Tea Infusions or Coffee Beverages (mL/day) | Theoretical Maximum Daily Intake (g/day) |
---|---|---|---|
Leaves | 0.023 | 1300 | 0.152 |
Flowers | 0.125 | 1300 | 0.814 |
Cherry Husks/Pulp | 0.011 | 1300 | 0.070 |
Green coffee beans | 0.068 | 1300 | 0.445 |
Silver skin | 0.073 | 1300 | 0.475 |
Coffee beverages | 1.44 | 1914 | 13.8 |
Test System | Strains | Metabolic Activation | Dose of Trigonelline | Result | Ref. |
---|---|---|---|---|---|
L5178Y TK+/− mouse lymphoma assay | - | With and without 0.5 mL of S9 from Aroclor-1254-induced male Fischer 344 rats | Up to 7429 µg/mL | Negative | [10] |
S. typhimurium assay | TA1535 TA1537 TA1538 TA98 TA100 | With and without 0.5 mL of S9 from Aroclor-1254-induced male Fischer 344 rats and Syrian golden hamsters | Up to 10,000 µg/plate | Negative | |
S. typhimurium assay | TA98 | With 0.5 mL of S9 from chlorophene-induced rat liver | 1000 µmol | Positive | [7] |
Plus 1000 µmol of a single amino acid: | |||||
Alanine | Positive | ||||
Arginine | Positive | ||||
Cysteine | Positive | ||||
Cystine | Negative | ||||
Lysine | Positive | ||||
Phenylalanine | Positive | ||||
Proline | Positive | ||||
Serine | Positive | ||||
Threonine | Positive | ||||
Tryptophan | Negative | ||||
Valine | Positive | ||||
Plus 200,000 µmol/L of glucose | Positive | ||||
S. typhimurium assay | TA98 | With 0.5 mL of S9 from chlorophene-induced rat liver | Mix I 1 | Positive | [7] |
Mix II 2 | Positive | ||||
Without 0.5 mL of S9 from chlorophene-induced rat liver | Mix I | Positive | |||
Mix II | Positive | ||||
YG1024 | With 0.5 mL of S9 from chlorophene-induced rat liver | Mix I | Positive | ||
Mix II | Positive | ||||
Without 0.5 mL of S9 from chlorophene-induced rat liver | Mix I | Toxic | |||
Mix II | Toxic | ||||
YG1029 | With 0.5 mL of S9 from chlorophene-induced rat liver | Mix I | Negative | ||
Mix II | Negative | ||||
Without 0.5 mL of S9 from chlorophene-induced rat liver | Mix I | Positive | |||
Mix II | Positive |
Matrix | Beverage Volume (L) per Day for Reaching Oral BMDL10 = 490 mg/kg bw 1 |
---|---|
Leaves | 293 |
Flowers | 55 |
Cherry husks/pulp | 635 |
Green coffee beans | 100 |
Silver skin | 94 |
Coffee beverages | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantinidis, N.; Franke, H.; Schwarz, S.; Lachenmeier, D.W. Risk Assessment of Trigonelline in Coffee and Coffee By-Products. Molecules 2023, 28, 3460. https://doi.org/10.3390/molecules28083460
Konstantinidis N, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Trigonelline in Coffee and Coffee By-Products. Molecules. 2023; 28(8):3460. https://doi.org/10.3390/molecules28083460
Chicago/Turabian StyleKonstantinidis, Nick, Heike Franke, Steffen Schwarz, and Dirk W. Lachenmeier. 2023. "Risk Assessment of Trigonelline in Coffee and Coffee By-Products" Molecules 28, no. 8: 3460. https://doi.org/10.3390/molecules28083460
APA StyleKonstantinidis, N., Franke, H., Schwarz, S., & Lachenmeier, D. W. (2023). Risk Assessment of Trigonelline in Coffee and Coffee By-Products. Molecules, 28(8), 3460. https://doi.org/10.3390/molecules28083460