Changes in Physicochemical and Bioactive Properties of Quince (Cydonia oblonga Mill.) and Its Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties of Fresh Quince Fruits and Their Products
2.2. Bioactive Properties of Fresh Quince Fruits and Their Products
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Dry Matter (d.m.), Moisture Content, Water Activity (aw), Soluble Solids Content (°Brix), pH, and Total Acidity (TA) of Quince and Its Products
3.2.2. Color Parameters in L*a*b* Color Space of Quince and Its Products
3.2.3. Tannin Content in Quince and Its Products
3.2.4. Carotenoid Compounds of Quince and Its Products
3.2.5. Phenolic Compounds (Flavonoids and Phenolic Acids) of Quince and Its Products
3.2.6. Total Polyphenol Content and Antioxidant Potential of Quince and Its Products
3.2.7. Chemicals
3.2.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sabir, S.; Qureshi, R.; Arshad, M.; Amjad1, M.S.; Fatima, S.; Saboon, M.M.; Chaudhari, S.K. Pharmacognostic and clinical aspects of Cydonia oblonga: A review. Asian Pac. J. Trop. Dis. 2015, 5, 850–855. [Google Scholar] [CrossRef]
- Hanan, E.; Sharma, V.; Ahmad, F.J. Nutritional composition, phytochemistry and medicinal use of quince (Cydonia oblonga Miller) with emphasis on its processed and fortified food products. Int. J. Food Process. Technol. 2020, 11, 831. [Google Scholar] [CrossRef]
- Postman, J. The USDA quince and pear genebank in Oregon, a world source of fire blight resistance. Acta. Hort. 2008, 793, 357–362. [Google Scholar] [CrossRef]
- Postman, J. Cydonia oblonga: The unappreciated quince. Arnoldia 2009, 67, 2–9. [Google Scholar]
- Radovic, A.; Nikolic, D.; Milatovic, D.; Djurovic, D.; Trajkovic, J. Investigation of pollen morphological characteristics in some quince (Cydonia oblonga Mill.) cultivars. Turk. J. Agric. For. 2016, 40, 441–449. [Google Scholar] [CrossRef]
- Lim, T.K. Cydonia oblonga. In Edible Medicinal and Non-Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2012; Volume 1, pp. 371–380. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Bielicki, P. Polyphenolic composition, antioxidant activity, and polyphenol oxidase (PPO) activity of quince (Cydonia oblonga Miller) varieties. J. Agric. Food Chem. 2013, 61, 2762–2772. [Google Scholar] [CrossRef]
- Iqbal, A.; Murtaza, A.; Muhammad, Z.; Elkhedir, A.E.; Tao, M.; Xu, X. Inactivation, aggregation and conformational changes of polyphenol oxidase from quince (Cydonia oblonga Miller) juice subjected to thermal and high-pressure carbon dioxide treatment. Molecules 2018, 23, 1743. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A.; Murtaza, A.; Marszałek, K.; Iqbal, M.A.; Chughtai, M.F.J.; Hu, W.; Barba, F.J.; Bi, J.; Liu, X.; Xua, X. Inactivation and structural changes of polyphenol oxidase in quince (Cydonia oblonga Miller) juice subjected to ultrasonic treatment. J. Sci. Food Agric. 2020, 100, 2065–2073. [Google Scholar] [CrossRef]
- Yildiz, G.; Izli, G.; Aadil, E.M. Comparison of chemical, physical, and ultrasound treatments on the shelf life of fresh-cut quince fruit (Cydonia oblonga Mill.). J. Food Process. Preserv. 2019, 44, e14366. [Google Scholar] [CrossRef]
- Legua, P.; Serrano, M.; Melgarejo, P.; Valero, D.; Martínez, J.J.; Martínez, R.; Hernández, F. Quality parameters, biocompounds and antioxidant activity in fruits of nine quince (Cydonia oblonga Miller) accessions. Sci. Hortic. 2013, 154, 61–65. [Google Scholar] [CrossRef]
- Szychowski, P.J.; Munera-Picazo, S.; Szumny, A.; Ángel, A.; Carbonell-Barrachina, Á.A.; Hernández, F. Quality parameters, bio-compounds, antioxidant activity and sensory attributes of Spanish quinces (Cydonia oblonga Miller). Sci. Hortic. 2014, 165, 163–170. [Google Scholar] [CrossRef]
- Ashraf, M.U.; Muhammad, G.; Hussain, M.A.; Bukhari, S.N.A. Cydonia oblonga M. A medicinal plant rich in phytonutrients for phaemaceuticals. Front. Pharmacol. 2016, 7, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmati, A.A.; Kalantari, H.; Jalali, A.; Rezai, S.; Zadeh, H.H. Healing effect of quince seed mucilage on T-2 toxin-induced dermal toxicity in rabbit. Exp. Toxicol. Pathol. 2012, 64, 181–186. [Google Scholar] [CrossRef]
- Hilgert, N.I. Plants used in home medicine in the Zenta River basin, Northwest Argentina. J. Ethnopharmacol. 2001, 76, 11–34. [Google Scholar] [CrossRef]
- Rahimi, R.; Shams-Ardakani, M.R.; Abdollahi, M. A review of the efficacy of traditional Iranian medicine for inflammatory bowel disease. World J. Gastroenterol. 2010, 16, 4504–4514. [Google Scholar] [CrossRef]
- Siddiqui, T.A.; Zafar, S.; Iqbal, N. Comparative double-blind randomized placebo-controlled clinical trial of a herbal eye drop formulation (Qatoor Ramad) of Unani medicine in conjunctivitis. J. Ethnopharmacol. 2002, 83, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Rocha, K.M.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Larrosa-Pérez, M.; Moreno-Jiménez, M.R. Phenolic acids and flavonoids in acetonic extract from quince (Cydonia oblonga Mill.): Nutraceuticals with antioxidant and anti-inflammatory potential. Molecules 2022, 27, 2462. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Joshi, V.K.; Rana, J.C. Nutritional composition and processed products of Quince (Cydonia oblonga Mill.). Indian J. Nat. Prod. Resour. 2011, 2, 354–357. [Google Scholar]
- Silva, B.M.; Andrade, P.B.; Ferreres, F.; Seabra, R.M.; Beatriz, M.; Oliveira, M.B.P.P.; Ferreira, M.A. Composition of quince (Cydonia oblonga Miller) seeds: Phenolics, organic acids and free amino acids. Nat. Prod. Res. 2005, 19, 275–281. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Martins, R.C.; Valentão, P.; Ferreres, F.; Seabra, R.M.; Ferreira, M.A. Quince (Cydonia oblonga Miller) fruit characterization using principal component analysis. J. Agric. Food Chem. 2005, 53, 111–122. [Google Scholar] [CrossRef]
- Rop, O.; Balík, J.; Řezníček, V.; Juríková, T.; Škardová, P.; Salaš, P.; Kramářová, D. Chemical characteristics of fruits of some selected quince (Cydonia oblonga Mill.) cultivars. Czech J. Food Sci. 2011, 29, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Fattouch, S.; Caboni, P.; Coroneo, V.; Tuberoso, C.I.G.; Angioni, A.; Dessi, S.; Marzouki, N.; Cabras, P. Antimicrobial activity of Tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J. Agric. Food Chem. 2007, 55, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Djilali, A.B.; Mehraz, R.; Bouacem, K.; Benseddik, A.; Moualek, I.; Nabiev, M.; Benzara, A. Bioactive substances of Cydonia oblonga fruit: Insecticidal effect of tannins on Tribuliumm confusum. Int. J. Fruit Sci. 2021, 21, 721–731. [Google Scholar] [CrossRef]
- Kumari, A.; Dhaliwal, Y.S.; Sandal, A.; Badyal, J. Quality evaluation of Cydonia oblonga (Quince) fruit and its value added products. Indian J. Agric. Biochem. 2013, 26, 61–65. [Google Scholar]
- Silva, B.M.; Andrade, P.B.; Ferreres, F.; Domingues, A.L.; Seabra, R.M.; Ferreira, M.A. Phenolic profile of quince fruit (Cydonia oblonga Miller) (pulp and peel). J. Agric. Food Chem. 2002, 50, 4615–4618. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Mendes, G.C.; Seabra, R.M.; Ferreira, M.A. Study of the organic acids composition of quince (Cydonia oblonga Miller) fruit and jam. J. Agric. Food Chem. 2002, 50, 2313–2317. [Google Scholar] [CrossRef]
- Bikić, S.; Bukurov, M.; Babić, M.; Pavkov, I.; Radojčin, M. Rheological behavior of quince (Cydonia oblonga) puree. J. Process. Energy Agric. 2012, 16, 155–161. [Google Scholar]
- Silva, B.M.; Andrade, P.B.; Gonçalves, A.C.; Seabra, R.M.; Oliveira, M.B.; Ferreira, M.A. Influence of jam processing upon the contents of phenolics, organic acids and free amino acids in quince fruit (Cydonia oblonga Miller). Eur. Food Res. Technol. 2004, 218, 385–389. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Martins, R.C.; Seabra, R.M.; Ferreira, M.A. Principal component analysis as tool of characterization of quince (Cydonia oblonga Miller) jam. Food Chem. 2006, 94, 504–512. [Google Scholar] [CrossRef]
- Sood, S.; Bhardwaj, M. Nutritional evaluation of quince fruit and its products. J. Krishi Vigyan. 2015, 3, 67–69. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Teleszko, M.; Sokół-Łętowska, A. Composition and quantification of major polyphenolic compounds, antioxidant activity and colour properties of quince and mixed quince jams. Int. J. Food Sci. Nutr. 2013, 64, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Teleszko, M.; Oszmiański, J. Antioxidant property and storage stability of quince juice phenolic compounds. Food Chem. 2014, 152, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Carbonell-Barrachina, A.A.; Szychowski, P.J.; Vásquez, M.V.; Hernández, F.; Wojdyło, A. Technological aspects as the main impact on quality of quince liquors. Food Chem. 2015, 167, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Curi, P.N.; Coutinho, G.; Matos, M.; Pio, R.; Albergaria, F.C.; Souza, V.R. Characterization and marmelade processing potential of quince cultivars cultivated in tropical regions. Rev. Bras. Frutic. 2018, 40, e986. [Google Scholar] [CrossRef] [Green Version]
- Curi, P.N.; Tavares, A.B.; de Almeida, A.B.; Pio, R.; de Souza, V.R. Influence of subtropical region strawberry cultivars on jelly characteristics. J. Food Sci. 2016, 81, 1515–1520. [Google Scholar] [CrossRef]
- Curi, P.N.; Nogueira, P.V.; de Almeida, A.B.; Carvalho, C.S.; Pio, R.; Pasqual, M.; de Souza, V.R. Processing potential of jellies from subtropical loquat cultivars. Food Sci. Technol. 2017, 37, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Mir, S.A.; Wani, S.M.; Wani, T.A.; Ahmad, M.; Gani, A.; Masoodi, F.A.; Nazir, A. Comparative evaluation of the proximate composition and antioxidant properties of processed products of quince (Cydonia oblonga Miller). Int. Food Res. J. 2016, 23, 816–821. [Google Scholar]
- Najman, K.; Adrian, S.; Hallmann, E.; Sadowska, A.; Buczak, K.; Waszkiewicz-Robak, B.; Szterk, A. Effect of various drying methods on physicochemical and bioactive properties of quince fruit (Cydonia oblonga Mill.). Agriculture 2023, 13, 446. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Barroca, M.J. Quantification of browning kinetics and colour change for quince (Cydonia oblonga Mill.) exposed to atmospheric conditions. Agric. Eng. Int. CIGR J. 2014, 16, 285–298. [Google Scholar]
- Maskan, M. Kinetics of colour change of kiwifruits during hot air and microwave drying. J. Food Eng. 2001, 48, 169–175. [Google Scholar] [CrossRef]
- Maskan, M. Production of pomegranate (Punica granatum L.) juice concentrate by various heating methods: Colour degradation and kinetics. J. Food Eng. 2006, 72, 218–224. [Google Scholar] [CrossRef]
- Suh, H.J.; Noh, D.O.; Kang, S.S.; Kim, J.M.; Lee, S.W. Thermal kinetics of color degradation of mulberry fruit extract. Food/Nahrung 2003, 47, 132–135. [Google Scholar] [CrossRef]
- Batista, K.A.; Batista, G.L.A.; Alves, G.L.; Fernandes, K.F. Extraction, partial purification and characterization of polyphenol oxidase from Solanum lycocarpum fruits. J. Mol. Catal. B Enzym. 2014, 102, 211–217. [Google Scholar] [CrossRef]
- Kim, J.; Pälijärvi, M.; Karonen, M.; Salminen, J.P. Oxidatively active plant phenolics detected by UHPLC-DAD-MS after enzymatic and alkaline oxidation. J. Chem. Ecol. 2018, 44, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.B.; Gautam, S. Polyphonel oxidases: Biochemical and molecular characterization, distribution, role and its control. Enzym. Eng. 2016, 5, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Marszałek, K.; Krzyżanowska, J.; Woźniak, Ł.; Skąpska, S. Kinetic modelling of tissue enzymes inactivation and degradation of pigments and polyphenols in cloudy carrot and celery juices under supercritical carbon dioxide. J. Supercrit. Fluids 2016, 17, 26–32. [Google Scholar] [CrossRef]
- Marszałek, K.; Woźniak, Ł.; Barba, F.J.; Skąpska, S.; Lorenzo, J.M.; Zambon, A.; Spilimbergo, S. Enzymatic, physicochemical, nutritional and phytochemical profile changes of apple (Golden Delicious, L.) juice under supercritical carbon dioxide and long-term cold storage. Food Chem. 2018, 268, 279–286. [Google Scholar] [CrossRef]
- Moon, K.M.; Kwon, E.B.; Lee, B.; Kim, C.Y. Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules 2020, 25, 2754. [Google Scholar] [CrossRef]
- Iglesias, I.; Echeverría, G.; Lopez, M.L. Fruit color development, anthocyanin content, standard quality, volatile compound emissions and consumer acceptability of several ‘Fuji’ apple strains. Sci. Hortic. 2012, 137, 138–147. [Google Scholar] [CrossRef]
- Nordey, T.; Léchaudel, M.; Génard, M.; Joas, J. Spatial and temporal variations in mango colour, acidity, and sweetness in relation to temperature and ethylene gradients within the fruit. J. Plant Physiol. 2014, 171, 1555–1563. [Google Scholar] [CrossRef]
- Nuncio-Jáuregui, N.; Calín-Sánchez, A.; Carbonell-Barrachina, A.; Hernández, F. Changes in quality parameters, proline, antioxidant activity and color of pomegranate (Punica granatum L.) as affected by fruit position within tree, cultivar and ripening stage. Sci. Hortic. 2014, 165, 181–189. [Google Scholar] [CrossRef]
- Campeanu, G.; Neata, G.; Darjanschi, G. Chemical composition of the fruits of several apple cultivars growth as biological crop. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 161–164. [Google Scholar] [CrossRef]
- Al-Zughbi, I.; Krayem, M. Quince fruit Cydonia oblonga Mill nutritional composition, antioxidative properties, health benefits and consumers preferences towards some industrial quince products: A review. Food Chem. 2022, 393, 133362. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Guisado, I.; Hernández, F.; Melgarejo, P.; Legua, P.; Martínez, R.; Martínez, J.J. Chemical, morphological and organoleptical characterisation of five Spanish quince tree clones (Cydonia oblonga Miller). Sci. Hortic. 2009, 122, 491–496. [Google Scholar] [CrossRef]
- Rasheed, M.; Hussain, I.; Rafiq, S.; Hayat, I.; Qayyum, A.; Ishaq, S.; Awan, M.S. Chemical composition and antioxidant activity of quince fruit pulp collected from different locations. Int. J. Food Prop. 2018, 21, 2320–2327. [Google Scholar] [CrossRef] [Green Version]
- Erkmen, O.; Bozoglu, T.F. Food preservation by reducing water activity. In Food Microbiology: Principles into Practice; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Rahman, M.S.; Labuza, T.P. Water activity and food preservation. In Handbook of Food Preservation, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- Anvar, A.; Nasehi, B.; Noshad, M.; Barzegar, H. Improvement of physicochemical and nutritional quality of sponge cake fortified with microwave-air dried quince pomace. Iran Food Sci. Technol. Res. J. 2019, 15, 69–78. [Google Scholar]
- Salehi, F.; Kashaninejad, M. The effect of quince powder on rheological properties of batter and physico-chemical and sensory properties of sponge cake. J. Food Biosci. Technol. 2017, 7, 1–8. [Google Scholar]
- Trigueros, L.; Pérez-Alvarez, J.A.; Viuda-Martos, M.; Sendra, E. Production of low-fat yogurt with quince (Cydonia oblonga Mill.) scalding water. LWT-Food Sci. Technol. 2011, 44, 1388–1395. [Google Scholar] [CrossRef]
- Gheisari, H.R.; Abhari, K.H. Drying method effects on the antioxidant activity of quince (Cydonia oblonga Miller) tea. Acta Sci. Pol. Technol. Aliment. 2014, 13, 129–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, K.T.; Wong, T.Y.; Wei, C.; Huang, C.W.; Lin, Y. Tannins and human health: A review. Crit. Rev. Food. Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef]
- Radebe, N.; Rode, K.; Pizzi, A.; Giovando, S.; Pasch, H. MALDI-TOF-CID for the microstructre elucidation of polymeric hydrolysable tannins. J. Appl. Polym. Sci. 2013, 128, 97107. [Google Scholar] [CrossRef]
- Hagerman, E.E.; Rice, M.E.; Ritchard, N.T. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (4->8) catechin (procyanidin). J. Agric. Food Chem. 1998, 46, 2590–2595. [Google Scholar] [CrossRef]
- Van Acker, S.A.B.E.; van Balen, G.P.; van den Berg, D.J.; Bast, A.; van der Vijgh, W.J.F. Influence of iron chelation on the antioxidant activity of flavonoids. Biochem. Pharmacol. 1998, 56, 935–943. [Google Scholar] [CrossRef]
- Schofield, P.; Mbugua, D.M.; Pell, A.N. Analysis of condensed tannins: A review. Anim. Feed Sci. Technol. 2001, 91, 21–40. [Google Scholar] [CrossRef]
- Burr, M.L. Explaining the French paradox. J. R. Soc. Health. 1995, 115, 217–219. [Google Scholar] [CrossRef]
- Funatogawa, K.; Hayashi, S.; Shimomura, H.; Yoshida, T.; Hatano, T.; Ito, H.; Hirai, Y. Antibacterial activity of hydrolyzable tannins derived from medicinal plants against Helicobacter pylori. Microbiol. Immunol. 2004, 48, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Fiori, G.M.L.; Fachin, A.L.; Correa, V.S.C.; Bertoni, B.W.; Giuliatti, S.; Amui, S.F.; Franca, S.d.C.; Pereira, A.M.S. Antimicrobial activity and rates of tannins in Stryphnodendron adstringens Mart. accessions collected in the Brazilian Cerrado. Am. J. Plant Sci. 2013, 4, 2193–2198. [Google Scholar] [CrossRef] [Green Version]
- Foo, L.Y.; Lu, Y.; McNabb, W.C.; Waghorn, G.C.; Ulyatt, M.J. Proanthocyanidins from Lotus pedunculatus. Phytochemistry 1997, 45, 1689–1696. [Google Scholar] [CrossRef]
- Slabbert, N.E. Complexation of condensed tannins with metal ions. Plant Polyphen. 1992, 59, 421–436. [Google Scholar] [CrossRef]
- Yang, L.L.; Wang, C.C.; Yea, K.-Y.; Yoshida, T.; Hatano, T.; Okada, T. Antitumor activity of ellagitannins on tumor cell lines. In Plant Polyphenols, 2nd ed.; Gross, G.G., Hemingway, R.W., Yoshida, T., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 1999; pp. 615–628. [Google Scholar]
- Singleton, V.L.; Kratzer, F.H. Toxicity and related physiological activity of phenolic substances of plant origin. J. Agric. Food. Chem. 1969, 17, 497–512. [Google Scholar] [CrossRef]
- Ponder, A.; Hallmann, E. Comparative evaluation of the nutritional value and the content of bioactive compounds in the fruit of individual species of chaenomeles and quince. World Sci. News 2017, 73, 101–108. [Google Scholar]
- Zhao, C.; Liu, Y.; Lai, S.; Cao, H.; Guan, Y.; Cheang, W.S.; Liu, B.; Zhao, K.; Miao, S.; Riviere, C.; et al. Effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals. Trends Food Sci. Technol. 2019, 85, 55–56. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, S.; Schlich, E. Impact of different cooking methods on food quality: Retention of lipophilic vitamins in fresh and frozen vegetables. J. Food Eng. 2006, 77, 327–333. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A.; Ciska, E.; Pawlak-Lemańska, K.; Chmielewski, J.; Borkowski, T.; Tyrakowska, B. Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit. Contam. 2006, 23, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Borges, C.V.; Minatel, I.O.; Amorim, E.P.; Belin, M.A.F.; Gomez-Gomez, H.A.; Correa, C.R.; Lima, G.P.P. Ripening and cooking processes influence the carotenoid content in bananas and plantains (Musa spp.). Food Res. Int. 2019, 124, 129–136. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. Effect of different cooking methods on polyphenols, carotenoids and antioxidant activities of selected edible leaves. Antioxidants 2018, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- Ponder, A.; Kulik, K.; Hallmann, E. Occurrence and determination of carotenoids and polyphenols in different paprika powders from organic and conventional production. Molecules 2021, 26, 2980. [Google Scholar] [CrossRef]
- Burmeister, A.; Bondiek, S.; Apel, L.; KŸhne, C.; Hillebrand, S.; Fleischmann, P. Comparison of carotenoid and anthocyanin profiles of raw and boiled Solanum tuberosum and Solanum phureja tubers. J. Food Compost Anal. 2011, 24, 865–872. [Google Scholar] [CrossRef]
- De Sa, M.C.; Rodriguez-Amaya, D.B. Carotenoid composition of cooked green vegetables from restaurants. Food Chem. 2003, 83, 595–600. [Google Scholar] [CrossRef]
- Stojanović, B.T.; Mitić, S.M.; Stojanović, G.S.; Mitić, M.N.; Kostić, D.A.; Paunović, D.D.; Arsić, B.B.; Pavlović, A.N. Phenolic profiles and metal ions analyses of pulp and peel of fruits and seeds of quince (Cydonia oblonga Mill.). Food Chem. 2017, 232, 466–475. [Google Scholar] [CrossRef]
- Essafi-Benkhadir, K.; Refai, A.; Riahi, I.; Fattouch, S.; Karoui, H.; Essafi, M. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-_B, p38MAPK and Akt inhibition. Biochem. Biophys. Res. Commun. 2012, 418, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Wolniak, M.; Wojdyło, A.; Wawer, I. Comparative study of polyphenolic content and antiradical activity of cloudy and clear apple juices. J. Sci. Food Agric. 2007, 87, 573–579. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Bober, I. The effect of addition of chokeberry, flowering quince fruits and rhubarb juice to strawberry jams on their polyphenol content, antioxidant activity and colour. Eur. Food Res. Technol. 2008, 227, 1043–1051. [Google Scholar] [CrossRef]
- Miglio, C.; Chiavaro, E.; Visconti, A.; Fogliano, V.; Pellegrini, N. Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J. Agric. Food Chem. 2008, 56, 139–147. [Google Scholar] [CrossRef]
- Pellegrini, N.; Chiavaro, E.; Gardana, C.; Mazzeo, T.; Contino, D.; Gallo, M.; Riso, P.; Fogliano, V.; Porrini, M. Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen Brassica vegetables. J. Agric. Food Chem. 2010, 58, 4310–4321. [Google Scholar] [CrossRef] [PubMed]
- Blessington, T.; Nzaramba, M.N.; Scheuring, D.C.; Hale, A.L.; Reddivari, L.; Miller, J.C. Cooking methods and storage treatments of potato: Effects on carotenoids, antioxidant activity, and phenolics. Am. J. Potato Res. 2010, 87, 479–491. [Google Scholar] [CrossRef]
- Padayachee, A.; Day, L.; Howell, K.; Gidley, M.J. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2017, 57, 59–81. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, Y.D. Insoluble-bound phenolics in food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef]
- Ahmed, M.; Eun, J.B. Flavonoids in fruits and vegetables after thermal and nonthermal processing: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 3159–3188. [Google Scholar] [CrossRef]
- Ruiz-Rodriguez, A.; Marín, F.R.; Ocańa, A.; Soler-Rivas, C. Effect of domestic processing on bioactive compounds. Phytochem. Rev. 2008, 7, 345–384. [Google Scholar] [CrossRef]
- Hidalgo, F.J.; Zamora, R. Food processing antioxidants. Adv. Food Nutr. Res. 2017, 81, 31–64. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Swain, S.; Singh, D.; Salim, K.; Nayak, D.; Roy, S.D. Changes in phytochemicals, anti-nutrients and antioxidant activity in leafy vegetables by microwave boiling with normal and 5% NaCl solution. Food Chem. 2015, 176, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Henle, T. Protein-bound advanced glycation end products (AGEs) as bioactive amino acid derivatives in foods. Amino Acids 2005, 29, 313–322. [Google Scholar] [CrossRef] [PubMed]
- AOAC. International Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Polish Standard PN-EN 12143:2000; Determination of the Content of Soluble Substances—Refractometric Method. Polish Committee for Standardization, Department of Standardization Publishing: Warsaw, Poland, 2000.
- Polish Standard PN-EN 12147:2000; Fruit and Vegetable Juices—Determination of Titratable Acidity. Polish Committee for Standardization, Department of Standardization Publishing: Warsaw, Poland, 2000.
- Ciszewska, R.; Przeszlakowska, N.; Sykut, A.; Szynal, J. A Guide to Practicing Plant Biochemistry; Agricultural University in Lublin: Lublin, Poland, 1975; pp. 126–129. [Google Scholar]
- Hallmann, E.; Kazimierczak, R.; Marszałe, K.; Drela, N.; Kiernozek, E.; Toomik, P.; Matt, D.; Luik, A.; Rembiałkowska, E. The nutritive value of organic and conventional white cabbage (Brassica oleracea L. var. capitata) and anti-apoptotic activity in gastric adenocarcinoma cells of sauerkraut juice produced therof. J. Agric. Food Chem. 2017, 65, 8171–8183. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
Color Parameter | Fresh | Cooked | Fried | Juice |
---|---|---|---|---|
L* (lightness) | 82.11 ± 3.48 c | 71.93 ± 0.11 b | 73.74 ± 1.27 b | 56.47 ± 0.76 a |
a* (redness) | 11.54 ± 0.59 b | 7.43 ± 0.01 a | 10.68 ± 0.62 b | 13.99 ± 0.02 c |
b* (yellowness) | 58.76 ± 2.01 d | 45.23 ± 0.15 b | 51.62 ± 1.11 c | 41.61 ± 0.04 a |
BI (browning index) | 124.84 ± 15.08 b | 89.78 ± 0.31 a | 120.60 ± 7.73 b | 155.36 ± 2.92 c |
Parameter | Fresh | Cooked | Fried | Juice |
---|---|---|---|---|
Dry matter (%) | 18.60 ± 0.16 c | 15.29 ± 0.38 a | 21.90 ± 0.00 d | 16.92 ± 0.07 b |
Moisture (%) | 81.40 ± 0.16 b | 84.71 ± 0.38 c | 78.10 ± 0.00 a | 83.08 ± 0.07 b |
Water activity (aw) | 0.98 ± 0.00 a | 0.99 ± 0.00 a | 0.98 ± 0.00 a | 0.97 ± 0.00 a |
°Brix (%) | 12.50 ± 0.50 a | 12.00 ± 0.50 a | 16.83 ± 0.58 c | 15.17 ± 0.29 b |
pH | 4.19 ± 0.03 c | 3.78 ± 0.01 a | 3.73 ± 0.01 a | 3.93 ± 0.01 b |
Total acidity (g/100 g) | 0.26 ± 0.00 a | 0.37 ± 0.01 b | 0.55 ± 0.03 c | 0.40 ± 0.02 b |
Carotenoids | Fresh | Cooked | Fried | Juice |
---|---|---|---|---|
Lutein (mg/100 g) | 3.55 ± 0.06 a | 13.16 ± 0.08 c | 13.84 ± 0.06 c | 8.41 ± 0.09 b |
Zeaxanthin (mg/100 g) | 1.39 ± 0.00 a | 5.56 ± 0.00 b | 5.56 ± 0.00 b | 5.56 ± 0.00 b |
Chlorophyll a (mg/100 g) | 14.22 ± 0.13 a | 47.90 ± 0.47 c | 48.99 ± 0.61 c | 37.72 ± 0.21 b |
Chlorophyll b (mg/100 g) | 12.22 ± 0.16 a | 43.93 ± 0.83 c | 43.34 ± 0.78 c | 35.87 ± 0.43 b |
β-carotene (mg/100 g) | 13.61 ± 0.00 a | 54.38 ± 0.01 b | 54.38 ± 0.01 b | 54.33 ± 0.00 b |
Phenolic Compounds | Fresh | Cooked | Fried | Juice |
---|---|---|---|---|
Selected flavonoids | ||||
Catechin (mg/100 g) | 3.33 ± 0.09 a | 11.82 ± 0.25 d | 10.59 ± 0.03 c | 7.94 ± 0.21 b |
Epigallocatechin (mg/100 g) | 8.04 ± 0.05 a | 30.15 ± 0.74 c | 37.00 ± 0.78 d | 13.63 ± 0.81 b |
Rutoside-3-O-quercetin (mg/100 g) | 4.60 ± 0.26 a | 17.88 ± 0.81 c | 16.41 ± 0.76 b | 16.20 ± 0.83 b |
Quercetin (mg/100 g) | 0.95 ± 0.01 a | 3.48 ± 0.10 c | 3.50 ± 0.12 c | 2.30 ± 0.07 b |
Selected phenolic acids | ||||
Gallic acid (mg/100 g) | 1.10 ± 0.02 a | 15.71 ± 0.12 d | 14.68 ± 0.07 c | 5.63 ± 0.11 b |
Chlorogenic acid (mg/100 g) | 14.47 ± 0.14 a | 205.74 ± 1.12 c | 209.58 ± 2.32 c | 48.27 ± 1.57 b |
Caffeic acid (mg/100 g) | 0.61 ± 0.00 a | 9.86 ± 0.10 d | 2.91 ± 0.06 b | 4.02 ± 0.04 c |
p-coumaric (mg/100 g) | 0.39 ± 0.00 a | 6.67 ± 0.22 b | 6.31 ± 0.41 b | 6.17 ± 0.17 b |
Ferulic acid (mg/100 g) | 0.31 ± 0.00 a | 4.99 ± 0.08 c | 2.01 ± 0.07 b | 2.08 ± 0.08 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najman, K.; Adrian, S.; Sadowska, A.; Świąder, K.; Hallmann, E.; Buczak, K.; Waszkiewicz-Robak, B.; Szterk, A. Changes in Physicochemical and Bioactive Properties of Quince (Cydonia oblonga Mill.) and Its Products. Molecules 2023, 28, 3066. https://doi.org/10.3390/molecules28073066
Najman K, Adrian S, Sadowska A, Świąder K, Hallmann E, Buczak K, Waszkiewicz-Robak B, Szterk A. Changes in Physicochemical and Bioactive Properties of Quince (Cydonia oblonga Mill.) and Its Products. Molecules. 2023; 28(7):3066. https://doi.org/10.3390/molecules28073066
Chicago/Turabian StyleNajman, Katarzyna, Sylwia Adrian, Anna Sadowska, Katarzyna Świąder, Ewelina Hallmann, Krzysztof Buczak, Bożena Waszkiewicz-Robak, and Arkadiusz Szterk. 2023. "Changes in Physicochemical and Bioactive Properties of Quince (Cydonia oblonga Mill.) and Its Products" Molecules 28, no. 7: 3066. https://doi.org/10.3390/molecules28073066
APA StyleNajman, K., Adrian, S., Sadowska, A., Świąder, K., Hallmann, E., Buczak, K., Waszkiewicz-Robak, B., & Szterk, A. (2023). Changes in Physicochemical and Bioactive Properties of Quince (Cydonia oblonga Mill.) and Its Products. Molecules, 28(7), 3066. https://doi.org/10.3390/molecules28073066