Chemical Evaluation, Phytotoxic Potential, and In Silico Study of Essential Oils from Leaves of Guatteria schomburgkiana Mart. and Xylopia frutescens Aubl. (Annonaceae) from the Brazilian Amazon
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield and Phytochemical Profile of Essential Oils
2.2. Herbicidal Activity of Essential Oils
2.3. Molecular Docking
2.4. In Silico ADMET Study
3. Materials and Methods
3.1. Collection and Processing of Botanical Material
3.2. Obtaining Essential Oils by Hydrodistillation
3.3. Yield of Essential Oils
3.4. Chemical Evaluation of Essential Oils
3.5. Phytotoxic Protocols
3.6. Molecular Docking Studies
3.7. In Silico ADMET Study
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Li, F.; Ye, Z.; Huang, Z.; Chen, X.; Sun, W.; Gao, W.; Zhang, S.; Cao, F.; Wang, J.; Hu, Z.; et al. New α-Pyrone Derivatives with Herbicidal Activity from the Endophytic Fungus Alternaria Brassicicola. Bioorg. Chem. 2021, 117, 105452. [Google Scholar] [CrossRef]
- Gan, D.; Liu, J.-Q.; Yang, Y.-J.; Wang, C.-Y.; Zhu, L.; Li, C.-Z.; Cai, L.; Ding, Z.-T. Phytotoxic Meroterpenoids with Herbicidal Activities from the Phytopathogenic Fungus Pseudopestalotiopsis Theae. Phytochemistry 2023, 206, 113522. [Google Scholar] [CrossRef]
- Cascaes, M.M.; De Moraes, Â.A.B.; Cruz, J.N.; Franco, C.d.J.P.; Silva, R.C.E.; do Nascimento, L.D.; Ferreira, O.O.; dos Anjos, T.O.; de Oliveira, M.S.; Guilhon, G.M.S.P.; et al. Phytochemical Profile, Antioxidant Potential and Toxicity Evaluation of the Essential Oils from Duguetia and Xylopia Species (Annonaceae) from the Brazilian Amazon. Antioxidants 2022, 11, 1709. [Google Scholar] [CrossRef]
- Cascaes, M.M.; Silva, S.G.; Cruz, J.N.; Santana de Oliveira, M.; Oliveira, J.; de Moraes, A.A.B.; da Costa, F.A.M.; da Costa, K.S.; Diniz do Nascimento, L.; Helena de Aguiar Andrade, E. First Report on the Annona Exsucca DC. Essential Oil and in Silico Identification of Potential Biological Targets of Its Major Compounds. Nat. Prod. Res. 2022, 36, 4009–4012. [Google Scholar] [CrossRef]
- Ferraz, R.P.C.; Cardoso, G.M.B.; Da Silva, T.B.; Fontes, J.E.D.N.; Prata, A.P.D.N.; Carvalho, A.A.; Moraes, M.O.; Pessoa, C.; Costa, E.V.; Bezerra, D.P. Antitumour Properties of the Leaf Essential Oil of Xylopia Frutescens Aubl. (Annonaceae). Food Chem. 2013, 141, 542–547. [Google Scholar] [CrossRef] [Green Version]
- De Alencar, D.C.; Pinheiro, M.L.B.; Pereira, J.L.D.S.; De Carvalho, J.E.; Campos, F.R.; Serain, A.F.; Tirico, R.B.; Hernández-Tasco, A.J.; Costa, E.V.; Salvador, M.J. Chemical Composition of the Essential Oil from the Leaves of Anaxagorea brevipes (Annonaceae) and Evaluation of Its Bioactivity. Nat. Prod. Res. 2016, 30, 1088–1092. [Google Scholar] [CrossRef]
- Pineda-Ramírez, N.; Calzada, F.; Alquisiras-Burgos, I.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Ortiz-Plata, A.; Pinzón Estrada, E.; Torres, I.; Aguilera, P. Antioxidant Properties and Protective Effects of Some Species of the Annonaceae, Lamiaceae, and Geraniaceae Families against Neuronal Damage Induced by Excitotoxicity and Cerebral Ischemia. Antioxidants 2020, 9, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yovo, M.; Alitonou, G.A.; Yedomonhan, H.; Tchobo, F.; Dedome, O.; Sessou, P.; Avlessi, F.; Menu, C.; Sohounhloué, D. First Report on Chemical Composition and Antimicrobial Activity of Artabotrys velutinus Scott-Elliot Extracts against Some Clinical Strains in Benin. Am. J. Appl. Chem 2016, 4, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Oulebsir, C.; Mefti-Korteby, H.; Djazouli, Z.-E.; Zebib, B.; Merah, O. Essential Oil of Citrus aurantium L. Leaves: Composition, Antioxidant Activity, Elastase and Collagenase Inhibition. Agronomy 2022, 12, 1466. [Google Scholar] [CrossRef]
- Salinas, M.; Calva, J.; Cartuche, L.; Valarezo, E.; Armijos, C. Chemical Composition, Enantiomeric Distribution and Anticholinesterase and Antioxidant Activity of the Essential Oil of Diplosthephium juniperinum. Plants 2022, 11, 1188. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Y.; Guo, L.; Jiang, H.; Ji, Q. In Vitro Evaluation of Antioxidant and Antimicrobial Activities of Melaleuca Alternifolia Essential Oil. BioMed Res. Int. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- do Nascimento, L.D.; Silva, S.G.; Cascaes, M.M.; da Costa, K.S.; Figueiredo, P.L.B.; Costa, C.M.L.; Helena de Aguiar Andrade, E.; de Faria, L.J.G. Drying Effects on Chemical Composition and Antioxidant Activity of Lippia thymoides Essential Oil, a Natural Source of Thymol. Molecules 2021, 26, 2621. [Google Scholar] [CrossRef] [PubMed]
- Ramos da Silva, L.R.; Ferreira, O.O.; Cruz, J.N.; de Jesus Pereira Franco, C.; Oliveira dos Anjos, T.; Cascaes, M.M.; Almeida da Costa, W.; Helena de Aguiar Andrade, E.; Santana de Oliveira, M. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid.-Based Complement. Altern. Med. 2021, 2021, 6748052. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, O.O.; Cruz, J.N.; de Moraes, Â.A.B.; de Jesus Pereira Franco, C.; Lima, R.R.; dos Anjos, T.O.; Siqueira, G.M.; do Nascimento, L.D.; Cascaes, M.M.; de Oliveira, M.S.; et al. Essential Oil of the Plants Growing in the Brazilian Amazon: Chemical Composition, Antioxidants, and Biological Applications. Molecules 2022, 27, 4373. [Google Scholar] [CrossRef] [PubMed]
- Maia, J.G.S.; Helena de Aguiar Andrade, E. Database of the Amazon Aromatic Plants and Their Essential Oils. Quim. Nova 2009, 32, 595–622. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. LC-MS/MS Characterization of Phenolic Metabolites and Their Antioxidant Activities from Australian Native Plants. Metabolites 2022, 12, 1016. [Google Scholar] [CrossRef]
- Hussain, M.I.; Reigosa, M.J. Secondary Metabolites, Ferulic Acid and p-Hydroxybenzoic Acid Induced Toxic Effects on Photosynthetic Process in Rumex Acetosa L. Biomolecules 2021, 11, 233. [Google Scholar] [CrossRef]
- Rout, S.; Tambe, S.; Deshmukh, R.K.; Mali, S.; Cruz, J.; Srivastav, P.P.; Amin, P.D.; Gaikwad, K.K.; Helena de Aguiar Andrade, E.; de Oliveira, M.S. Recent Trends in the Application of Essential Oils: The next Generation of Food Preservation and Food Packaging. Trends Food Sci. Technol. 2022, 129, 421–439. [Google Scholar] [CrossRef]
- De Oliveira, M.S. Essential Oils: Applications and Trends in Food Science and Technology, 1st ed.; Santana de Oliveira, M., Ed.; Springer: Cham, Switzerland, 2022; ISBN 978-3-030-99475-4. [Google Scholar] [CrossRef]
- Pinto, F.T.; Ribeiro, W.S.; Corrêa, M.J.C.; Lopes Júnior, M.L.; Guilhon, G.M.S.P.; Santos, L.S.; Ripardo Filho, H.S.; Souza Filho, A.P.S.; Araujo, R.N.M. Phytotoxic Activity of Dihydrochalcones Obtained by Bioreduction of Chalcones Promoted by the Endophytic Fungus Aspergillus Flavus. Rev. Virtual Quim. 2020, 12, 1369–1380. [Google Scholar] [CrossRef]
- Jorge, N.d.C.; Guedes, L.M.; Aguilera, N.; Becerra, J.; Isaias, R.M.d.S. Allelopathic Potential of the Extracts of Non-Galled Stems and Globoid Stem Galls of Eremanthus erythropappus (DC) McLeish (Asteraceae). Biochem. Syst. Ecol. 2022, 100, 104379. [Google Scholar] [CrossRef]
- de Carvalho, A.Q.; Carvalho, N.M.; Vieira, G.P.; dos Santos, A.C.; Franco, G.L.; Pott, A.; Barros, C.S.L.; Lemos, R.A.A. Intoxicação Espontânea Por Senna Obtusifolia Em Bovinos No Pantanal Sul-Mato-Grossense. Pesqui. Veterinária Bras. 2014, 34, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Verdeguer, M.; Sánchez-Moreiras, A.M.; Araniti, F. Phytotoxic Effects and Mechanism of Action of Essential Oils and Terpenoids. Plants 2020, 9, 1571. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.D.; Ferreira, O.O.; Cruz, J.N.; Varela, E.L.; de Moraes, Â.A.; Nascimento, L.D.; Cascaes, M.M.; Souza Filho, A.P.; Lima, R.R.; Percário, S.; et al. Phytochemical Profile and Herbicidal (Phytotoxic), Antioxidants Potential of Essential Oils from Calycolpus Goteanus (Myrtaceae) Specimens, and in Silico Study. Molecules 2022, 27, 4678. [Google Scholar] [CrossRef] [PubMed]
- Caputo, L.; Smeriglio, A.; Trombetta, D.; Cornara, L.; Trevena, G.; Valussi, M.; Fratianni, F.; De Feo, V.; Nazzaro, F. Chemical Composition and Biological Activities of the Essential Oils of Leptospermum Petersonii and Eucalyptus Gunnii. Front. Microbiol. 2020, 11, 409. [Google Scholar] [CrossRef] [Green Version]
- Lobão, A.Q.; Erkens, R.H.J.; Guatteria in Flora e Funga Do Brasil. Jardim Botânico Do Rio de Janeiro. 2022; p. 110373. Available online: https://Floradobrasil.Jbrj.Gov.Br/FB110373 (accessed on 29 December 2022).
- Lobão, A.Q.; de Mello-Silva, R.; Forzza, R.C. Guatteria (Annonaceae) Da Floresta Atlântica Brasileira. Rodriguésia 2012, 63, 1039–1064. [Google Scholar] [CrossRef] [Green Version]
- de Souza Araújo, M.; Araújo da Silva, F.M.; Ferreira Koolen, H.H.; Costa, E.V. Isoquinoline-Derived Alkaloids from the Bark of Guatteria olivacea (Annonaceae). Biochem. Syst. Ecol. 2020, 92, 104105. [Google Scholar] [CrossRef]
- Viana, B.L.; de Farias, W.W.; do Nascimento, L.M.; Paulo, F.V.d.L.; Coêlho, C.B.; Falcão, C.J.L.M.; da Silva, W.R. Produção de Mudas de Xylopia Frutescens Aubl.a Partir Da Técnica de Repicagem de Plântulas Da Regeneração Natural. Rev. Arrudea-A Rev. Jard. Botânico Recife 2016, 1, 34–46. [Google Scholar] [CrossRef]
- Silva, L.E.; Reis, R.A.; Moura, E.A.; Amaral, W.; Sousa, P.T., Jr. Plantas Do Gênero Xylopia: Composição Química e Potencial Farmacológico. Rev. Bras. Plantas Med. 2015, 17, 814–826. [Google Scholar] [CrossRef] [Green Version]
- De Souza, I.L.L.; Correia, A.C.d.C.; Araujo, L.C.d.C.; Vasconcelos, L.H.C.; Silva, M.d.C.C.; Costa, V.C.d.O.; Tavares, J.F.; Paredes-Gamero, E.J.; Cavalcante, F.d.A.; da Silva, B.A. Essential Oil from Xylopia frutescens Aubl. Reduces Cytosolic Calcium Levels on Guinea Pig Ileum: Mechanism Underlying Its Spasmolytic Potential. BMC Complement. Altern. Med. 2015, 15, 327. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Publishing Corporation, Ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 1932633219. [Google Scholar]
- Trigo, J.R.; Oliveira, J.; Helena de Aguiar Andrade, E.; Zoghbi, M.G.B. Óleos Essenciais de Espécies de Annonaceae Que Ocorrem No Pará: Guatteria Schomburgkiana Mart. e Pseudoxandra Cuspidata Maas. Rev. Bras. Plantas Med. 2007, 9, 113–116. [Google Scholar]
- Shakri, N.M.; Salleh, W.M.N.H.W.; Khamis, S.; Ali, N.A.M.; Nadri, M.H. Composition of the Essential Oils of Three Malaysian Xylopia Species (Annonaceae). Zeitschrift für Naturforsch. C 2020, 75, 479–484. [Google Scholar] [CrossRef] [PubMed]
- da Silva Júnior, O.S.; de Jesus Pereira Franco, C.; de Moraes, Â.A.B.; Pastorea, M.; Cascaes, M.M.; Nascimento, L.D.; de Oliveira, M.S. Chemical Variability of Volatile Concentrate from Two Ipomoea L. Species within a Seasonal Gradient. Nat. Prod. Res. 2022, 37, 2070618. [Google Scholar] [CrossRef]
- Ramos, Y.J.; de Brito Machado, D.; de Queiroz, G.A.; Guimarães, E.F.; e Defaveri, A.C.A.; de Lima Moreira, D. Chemical Composition of the Essential Oils of Circadian Rhythm and of Different Vegetative Parts from Piper mollicomum Kunth-A Medicinal Plant from Brazil. Biochem. Syst. Ecol. 2020, 92, 104116. [Google Scholar] [CrossRef]
- Salem, N.; Kefi, S.; Tabben, O.; Ayed, A.; Jallouli, S.; Feres, N.; Hammami, M.; Khammassi, S.; Hrigua, I.; Nefisi, S.; et al. Variation in Chemical Composition of Eucalyptus globulus Essential Oil under Phenological Stages and Evidence Synergism with Antimicrobial Standards. Ind. Crops Prod. 2018, 124, 115–125. [Google Scholar] [CrossRef]
- Souza da Silva Júnior, O.; de Jesus Pereira Franco, C.; Barbosa de Moraes, A.A.; Cruz, J.N.; Santana da Costa, K.; Diniz do Nascimento, L.; Helena de Aguiar Andrade, E. In Silico Analyses of Toxicity of the Major Constituents of Essential Oils from Two Ipomoea L. Species. Toxicon 2021, 195, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Rajca Ferreira, A.K.; Lourenço, F.R.; Young, M.C.M.; Lima, M.E.L.; Cordeiro, I.; Suffredini, I.B.; Lopes, P.S.; Moreno, P.R.H. Chemical Composition and Biological Activities of Guatteria elliptica R. E. Fries (Annonaceae) Essential Oils. J. Essent. Oil Res. 2018, 30, 69–76. [Google Scholar] [CrossRef]
- Costa, R.G.A.; Anunciação, T.A.d.; Araujo, M.d.S.; Souza, C.A.; Dias, R.B.; Sales, C.B.S.; Rocha, C.A.G.; Soares, M.B.P.; Silva, F.M.A.d.; Koolen, H.H.F.; et al. In Vitro and in Vivo Growth Inhibition of Human Acute Promyelocytic Leukemia HL-60 Cells by Guatteria Megalophylla Diels (Annonaceae) Leaf Essential Oil. Biomed. Pharmacother. 2020, 122, 109713. [Google Scholar] [CrossRef]
- Maia, J.G.S.; Helena de Aguiar Andrade, E.; Carreira, L.M.M.; Oliveira, J.; Araújo, J.S. Essential Oils of the Amazon Guatteria and Guatteriopsis Species. Flavour Fragr. J. 2005, 20, 478–480. [Google Scholar] [CrossRef]
- Santos, A.R.; Benghi, T.G.S.; Nepel, A.; Marques, F.A.; Lobão, A.Q.; Duarte, M.C.T.; Ruiz, A.L.T.G.; Carvalho, J.E.; Maia, B.H.L.N.S. In Vitro Antiproliferative and Antibacterial Activities of Essential Oils from Four Species of Guatteria. Chem. Biodivers. 2017, 14, e1700097. [Google Scholar] [CrossRef]
- Costa, E.V.; Alencar Menezes, L.R.; Dutra, L.M.; Pinheiro, M.L.B.; Lavor, É.M.; Silva, M.G.; Alves, C. dos S.C.; Almeida, J.R.G.S.; da Silva, F.M.A.; Koolen, H.H.F.; et al. A Novel Eudesmol Derivative from the Leaf Essential Oil of Guatteria friesiana (Annonaceae) and Evaluation of the Antinociceptive Activity. Zeitschrift für Naturforsch. C 2022, 2022, 59. [Google Scholar] [CrossRef]
- Geetha, V.; Chakravarthula, S.N. Chemical Composition and Anti-Inflammatory Activity of Boswellia ovalifoliolata Essential Oils from Leaf and Bark. J. For. Res. 2018, 29, 373–381. [Google Scholar] [CrossRef]
- Dzul-Beh, A.d.J.; García-Sosa, K.; Uc-Cachón, A.H.; Bórquez, J.; Loyola, L.A.; Barrios-García, H.B.; Peña-Rodríguez, L.M.; Molina-Salinas, G.M. In Vitro Growth Inhibition and Bactericidal Activity of Spathulenol against Drug-Resistant Clinical Isolates of Mycobacterium tuberculosis. Rev. Bras. Farmacogn. 2019, 29, 798–800. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Ashmawy, N.A.; Elansary, H.O.; El-Settawy, A.A. Chemotyping of Diverse Eucalyptus Species Grown in Egypt and Antioxidant and Antibacterial Activities of Its Respective Essential Oils. Nat. Prod. Res. 2015, 29, 681–685. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Drenaggi, E.; Desneux, N.; Maggi, F. Phytol, (E)-Nerolidol and Spathulenol from Stevia Rebaudiana Leaf Essential Oil as Effective and Eco-Friendly Botanical Insecticides against Metopolophium dirhodum. Ind. Crops Prod. 2020, 155, 112844. [Google Scholar] [CrossRef]
- do Nascimento, K.F.; Moreira, F.M.F.; Alencar Santos, J.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; Vieira, M.d.C.; Góis Ruiz, A.L.T.; Ann Foglio, M.; de Carvalho, J.E.; et al. Antioxidant, Anti-Inflammatory, Antiproliferative and Antimycobacterial Activities of the Essential Oil of Psidium guineense Sw. and Spathulenol. J. Ethnopharmacol. 2018, 210, 351–358. [Google Scholar] [CrossRef]
- Manjima, R.B.; Ramya, S.; Kavithaa, K.; Paulpandi, M.; Saranya, T.; Winster, S.B.H.; Balachandar, V.; Arul, N. Spathulenol Attenuates 6-Hydroxydopamine Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells. Gene Rep. 2021, 25, 101396. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Myslivečková, Z.; Szotáková, B.; Špičáková, A.; Lněničková, K.; Ambrož, M.; Kubíček, V.; Krasulová, K.; Anzenbacher, P.; Skálová, L. The Inhibitory Effects of β-Caryophyllene, β-Caryophyllene Oxide and α-Humulene on the Activities of the Main Drug-Metabolizing Enzymes in Rat and Human Liver in Vitro. Chem. Biol. Interact. 2017, 278, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Limam, H.; Ben Jemaa, M.; Tammar, S.; Ksibi, N.; Khammassi, S.; Jallouli, S.; Del Re, G.; Msaada, K. Variation in Chemical Profile of Leaves Essential Oils from Thirteen tunisian Eucalyptus Species and Evaluation of Their Antioxidant and Antibacterial Properties. Ind. Crops Prod. 2020, 158, 112964. [Google Scholar] [CrossRef]
- Gyrdymova, Y.V.; Rubtsova, S.A. Caryophyllene and Caryophyllene Oxide: A Variety of Chemical Transformations and Biological Activities. Chem. Pap. 2021, 76, 1–39. [Google Scholar] [CrossRef]
- Chavan, M.J.; Wakte, P.S.; Shinde, D.B. Analgesic and Anti-Inflammatory Activity of Caryophyllene Oxide from Annona Squamosa L. Bark. Phytomedicine 2010, 17, 149–151. [Google Scholar] [CrossRef]
- Dougnon, G.; Ito, M. Essential Oil from the Leaves of Chromolaena odorata, and Sesquiterpene Caryophyllene Oxide Induce Sedative Activity in Mice. Pharmaceuticals 2021, 14, 651. [Google Scholar] [CrossRef] [PubMed]
- Saab, A.M.; Gambari, R.; Sacchetti, G.; Guerrini, A.; Lampronti, I.; Tacchini, M.; El Samrani, A.; Medawar, S.; Makhlouf, H.; Tannoury, M. Phytochemical and Pharmacological Properties of Essential Oils from Cedrus Species. Nat. Prod. Res. 2018, 32, 1415–1427. [Google Scholar] [CrossRef]
- Monzote, L.; Geroldinger, G.; Tonner, M.; Scull, R.; De Sarkar, S.; Bergmann, S.; Bacher, M.; Staniek, K.; Chatterjee, M.; Rosenau, T. Interaction of Ascaridole, Carvacrol, and Caryophyllene Oxide from Essential Oil of Chenopodium ambrosioides L. with Mitochondria in Leishmania and Other Eukaryotes. Phyther. Res. 2018, 32, 1729–1740. [Google Scholar] [CrossRef] [Green Version]
- Narangerel, T.; Bonikowski, R.; Jastrząbek, K.; Kunicka-Styczyńska, A.; Plucińska, A.; Śmigielski, K.; Majak, I.; Bartos, A.; Leszczyńska, J. Chemical and Biological Characteristics of Oxytropis Pseudoglandulosa Plant of Mongolian Origin. Molecules 2021, 26, 7573. [Google Scholar] [CrossRef] [PubMed]
- Abrão, F.Y.; da Costa, H.M.; de Sousa Fiuza, T.; Ramada, M.H.S.; dos Santos, A.H.; Romano, C.A.; da Cunha, L.C.; de Oliveira Neto, J.R.; Borges, L.L.; Ferreira, H.D. Volatile Oils from Psidium guineense Swartz Leaves: Chemical Seasonality, Antimicrobial, and Larvicidal Activities. S. Afr. J. Bot. 2022, 149, 79–86. [Google Scholar] [CrossRef]
- Neghliz-Benabdelkader, H.; Benabdelkader, T.; Halladj, F.; Jullien, F. Characterization of the Chemical Diversity in Essential Oils from Vegetative and Reproductive Organs of Ammodaucus leucotrichus Subsp. Leucotrichus Coss. & Dur. Growing in Algeria. J. Essent. Oil Bear. Plants 2021, 24, 75–85. [Google Scholar]
- El-Kalamouni, C.; Venskutonis, P.R.; Zebib, B.; Merah, O.; Raynaud, C.; Talou, T. Antioxidant and Antimicrobial Activities of the Essential Oil of Achillea Millefolium L. Grown in France. Medicines 2017, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Sitarek, P.; Rijo, P.; Garcia, C.; Skała, E.; Kalemba, D.; Białas, A.J.; Szemraj, J.; Pytel, D.; Toma, M.; Wysokińska, H.; et al. Antibacterial, Anti-Inflammatory, Antioxidant, and Antiproliferative Properties of Essential Oils from Hairy and Normal Roots of Leonurus sibiricus L. and Their Chemical Composition. Oxid. Med. Cell. Longev. 2017, 2017, 7384061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheljazkov, V.D.; Kacaniova, M.; Dincheva, I.; Radoukova, T.; Semerdjieva, I.B.; Astatkie, T.; Schlegel, V. Essential Oil Composition, Antioxidant and Antimicrobial Activity of the Galbuli of Six Juniper Species. Ind. Crops Prod. 2018, 124, 449–458. [Google Scholar] [CrossRef]
- Nascimento, A.M.D.; Maia, T.D.S.; Soares, T.E.S.; Menezes, L.R.A.; Scher, R.; Costa, E.V.; Cavalcanti, S.C.H.; La Corte, R. Repellency and Larvicidal Activity of Essential Oils from Xylopia laevigata, Xylopia frutescens, Lippia pedunculosa, and Their Individual Compounds against Aedes Aegypti Linnaeus. Neotrop. Entomol. 2017, 46, 223–230. [Google Scholar] [CrossRef]
- Tegang, A.S.; Beumo, T.M.N.; Dongmo, P.M.J.; Ngoune, L.T. Essential Oil of Xylopia aethiopica from Cameroon: Chemical Composition, Antiradical and in Vitro Antifungal Activity against Some Mycotoxigenic Fungi. J. King Saud Univ. 2018, 30, 466–471. [Google Scholar] [CrossRef]
- Kouame, B.A.; Mamyrbekova-Bekro, J.A.; Nemlin, J.; Yves-Alain, B. Chemical Composition and Antioxidant Activities of Essential Oils of Xylopia aethiopica (Dunal) a. Rich. Eur. J. Sci. Res. 2009, 37, 311–318. [Google Scholar]
- Costa, E.V.; Da Silva, T.B.; D’Souza Costa, C.O.; Soares, M.B.P.; Bezerra, D.P. Chemical Composition of the Essential Oil from the Fresh Fruits of Xylopia laevigata and Its Cytotoxic Evaluation. Nat. Prod. Commun. 2016, 11, 417–418. [Google Scholar] [CrossRef] [Green Version]
- Maia, J.G.S.; Helena de Aguiar Andrade, E.; Carla, A.; Silva, M.; Oliveira, J.; Carreira, L.M.M.; Araújo, J.S. Leaf Volatile Oils from Four Brazilian Xylopia Species. Flavour Fragr. J. 2005, 20, 474–477. [Google Scholar] [CrossRef]
- Peres, M.C.; de Souza Costa, G.C.; dos Reis, L.E.L.; da Silva, L.D.; Peixoto, M.F.; Alves, C.C.F.; Forim, M.R.; Quintela, E.D.; Araújo, W.L.; de Melo Cazal, C. In Natura and Nanoencapsulated Essential Oils from Xylopia aromatica Reduce Oviposition of Bemisia tabaci in Phaseolus vulgaris. J. Pest Sci. 2020, 93, 807–821. [Google Scholar] [CrossRef]
- Winnacker, M. Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers. Angew. Chem. Int. Ed. 2018, 57, 14362–14371. [Google Scholar] [CrossRef] [PubMed]
- Felipe, C.F.B.; Albuquerque, A.M.S.; de Pontes, J.L.X.; de Melo, J.Í.V.; Rodrigues, T.C.M.L.; de Sousa, A.M.P.; Monteiro, Á.B.; Ribeiro, A.E.d.S.; Lopes, J.P.; de Menezes, I.R.A.; et al. Comparative Study of Alpha- and Beta-Pinene Effect on PTZ-Induced Convulsions in Mice. Fundam. Clin. Pharmacol. 2019, 33, 181–190. [Google Scholar] [CrossRef]
- Kim, D.-S.; Lee, H.-J.; Jeon, Y.-D.; Han, Y.-H.; Kee, J.-Y.; Kim, H.-J.; Shin, H.-J.; Kang, J.; Lee, B.S.; Kim, S.-H. Alpha-Pinene Exhibits Anti-Inflammatory Activity through the Suppression of MAPKs and the NF-ΚB Pathway in Mouse Peritoneal Macrophages. Am. J. Chin. Med. 2015, 43, 731–742. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; LD Jayaweera, S.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- Vespermann, K.A.C.; Paulino, B.N.; Barcelos, M.; Pessôa, M.G.; Pastore, G.M.; Molina, G. Biotransformation of α- and β-Pinene into Flavor Compounds. Appl. Microbiol. Biotechnol. 2017, 101, 1805–1817. [Google Scholar] [CrossRef] [PubMed]
- Zamyad, M.; Abbasnejad, M.; Esmaeili-Mahani, S.; Mostafavi, A.; Sheibani, V. The Anticonvulsant Effects of Ducrosia Anethifolia (Boiss) Essential Oil Are Produced by Its Main Component Alpha-Pinene in Rats. Arq. Neuropsiquiatr. 2019, 77, 106–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Guo, S.; Liu, X.; Gao, X. Synergistic Antitumor Effect of α-Pinene and β-Pinene with Paclitaxel against Non-Small-Cell Lung Carcinoma (NSCLC). Drug Res. 2014, 65, 214–218. [Google Scholar] [CrossRef]
- Aydin, E.; Türkez, H.; Geyikoğlu, F. Antioxidative, Anticancer and Genotoxic Properties of α-Pinene on N2a Neuroblastoma Cells. Biology 2013, 68, 1004–1009. [Google Scholar] [CrossRef]
- Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. Β-caryophyllene and Β-caryophyllene Oxide—Natural Compounds of Anticancer and Analgesic Properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef] [PubMed]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene a Sesquiterpene with Countless. Appl. Sci. 2019, 9, 5420–5438. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Sanchez-Moreiras, A.M.; Abel, C.; Sohrabi, R.; Lee, S.; Gershenzon, J.; Tholl, D. The Major Volatile Organic Compound Emitted from Arabidopsis Thaliana Flowers, the Sesquiterpene (E)-β-caryophyllene, Is a Defense against a Bacterial Pathogen. New Phytol. 2012, 193, 997–1008. [Google Scholar] [CrossRef]
- Franco, C.d.J.P.; Ferreira, O.O.; Antônio Barbosa de Moraes, Â.; Varela, E.L.P.; do Nascimento, L.D.; Percário, S.; de Oliveira, M.S.; de Aguiar Andrade, E.H. Chemical Composition and Antioxidant Activity of Essential Oils from Eugenia patrisii Vahl, E. punicifolia (Kunth) DC., and Myrcia tomentosa (Aubl.) DC., Leaf of Family Myrtaceae. Molecules 2021, 26, 3292. [Google Scholar] [CrossRef]
- Lu, J.J.; Dang, Y.Y.; Huang, M.; Xu, W.S.; Chen, X.P.; Wang, Y.T. Anti-Cancer Properties of Terpenoids Isolated from Rhizoma Curcumae—A Review. J. Ethnopharmacol. 2012, 143, 406–411. [Google Scholar] [CrossRef]
- Fabri, N.T.; Gatto, L.J.; Furusho, A.S.; Garcia, M.J.B.; Marques, F.d.A.; Miguel, M.D.; Montrucchio, D.P.; Zanin, S.M.W.; Miguel, O.G.; Gaspari Dias, J.d.F. Composition, Antioxidant Properties, and Biological Activities of the Essential Oil Extracted from Ocotea diospyrifolia (Meisn.) Mez. Braz. J. Pharm. Sci. 2019, 55, 1–8. [Google Scholar] [CrossRef]
- de Oliveira, M.S.; da Costa, W.A.; Pereira, D.S.; Botelho, J.R.S.; de Alencar Menezes, T.O.; Helena de Aguiar Andrade, E.; da Silva, S.H.M.; da Silva Sousa Filho, A.P.; de Carvalho, R.N. Chemical Composition and Phytotoxic Activity of Clove (Syzygium aromaticum) Essential Oil Obtained with Supercritical CO2. J. Supercrit. Fluids 2016, 118, 185–193. [Google Scholar] [CrossRef]
- Ni, Y.; Yang, H.; Zhang, H.; He, Q.; Huang, S.; Qin, M.; Chai, S.; Gao, H.; Ma, Y. Analysis of Four Sulfonylurea Herbicides in Cereals Using Modified Quick, Easy, Cheap, Effective, Rugged, and Safe Sample Preparation Method Coupled with Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2018, 1537, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, R.; Liu, H.; Zhang, Z.; Shi, X.; Sun, A.; Chen, J. Highly-Selective Complex Matrices Removal via a Modified QuEChERS for Determination of Triazine Herbicide Residues and Risk Assessment in Bivalves. Food Chem. 2021, 347, 129030. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Guo, C.; Chen, Q.; Zhao, T.; Chen, X.; Du, Y.; Du, H.; Miao, Y.; Liu, D. Artemisia argyi Essential Oil Exerts Herbicidal Activity by Inhibiting Photosynthesis and Causing Oxidative Damage. Ind. Crops Prod. 2023, 194, 116258. [Google Scholar] [CrossRef]
- Yoshida, N.C.; Saffran, F.P.; Lima, W.G.; Freire, T.V.; de Siqueira, J.M.; Garcez, W.S. Chemical Characterization and Bioherbicidal Potential of the Essential Oil from the Leaves of Unonopsis guatterioides (A.DC.) R.E.Fr. (Annonaceae). Nat. Prod. Res. 2019, 33, 3312–3316. [Google Scholar] [CrossRef] [PubMed]
- El-Gawad, A.A.; Elshamy, A.; El Gendy, A.E.-N.; Gaara, A.; Assaeed, A. Volatiles Profiling, Allelopathic Activity, and Antioxidant Potentiality of Xanthium Strumarium Leaves Essential Oil from Egypt: Evidence from Chemometrics Analysis. Molecules 2019, 24, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd-ElGawad, A.M.; El Gendy, A.E.-N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Omer, E.A.; Dar, B.A.; Al-Taisan, W.A.; Elshamy, A.I. Essential Oil Enriched with Oxygenated Constituents from Invasive Plant Argemone ochroleuca Exhibited Potent Phytotoxic Effects. Plants 2020, 9, 998. [Google Scholar] [CrossRef]
- Ibáñez, M.D.; Blázquez, M.A. Phytotoxic Effects of Commercial Essential Oils on Selected Vegetable Crops: Cucumber and Tomato. Sustain. Chem. Pharm. 2020, 15, 100209. [Google Scholar] [CrossRef]
- Almeida, A.C.M.; do Nascimento, R.A.; Amador, I.C.B.; de Sousa Santos, T.C.; Martelli, M.C.; de Faria, L.J.G.; da Paixão Ribeiro, N.F. Chemically Activated Red Mud: Assessing Structural Modifications and Optimizing Adsorption Properties for Hexavalent Chromium. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127325. [Google Scholar] [CrossRef]
- Caesar, L.K.; Cech, N.B. Synergy and Antagonism in Natural Product Extracts: When 1 + 1 Does Not Equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef] [Green Version]
- Badalamenti, N.; Bruno, M.; Schicchi, R.; Geraci, A.; Leporini, M.; Gervasi, L.; Tundis, R.; Loizzo, M.R. Chemical Compositions and Antioxidant Activities of Essential Oils, and Their Combinations, Obtained from Flavedo By-Product of Seven Cultivars of Sicilian Citrus aurantium L. Molecules 2022, 27, 1580. [Google Scholar] [CrossRef]
- Pavela, R. Acute, Synergistic and Antagonistic Effects of Some Aromatic Compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) Larvae. Ind. Crops Prod. 2014, 60, 247–258. [Google Scholar] [CrossRef]
- Galán-Pérez, J.A.; Gámiz, B.; Pavlovic, I.; Celis, R. Enantiomer-Selective Characterization of the Adsorption, Dissipation, and Phytotoxicity of the Plant Monoterpene Pulegone in Soils. Plants 2022, 11, 1296. [Google Scholar] [CrossRef]
- Fernandes-Silva, C.C.; Lima, C.A.; Negri, G.; Salatino, M.L.F.; Salatino, A.; Mayworm, M.A.S. Composition of the Volatile Fraction of a Sample of Brazilian Green Propolic and Its Phytotoxic Activity. J. Sci. Food Agric. 2015, 95, 3091–3095. [Google Scholar] [CrossRef] [PubMed]
- Cândido, A.C.S.; Scalon, S.P.Q.; Silva, C.B.; Simionatto, E.; Morel, A.F.; Stüker, C.Z.; Matos, M.F.C.; Peres, M.T.L.P. Chemical Composition and Phytotoxicity of Essential Oils of Croton doctoris S. Moore (Euphorbiaceae). Braz. J. Biol. 2022, 82, e231957. [Google Scholar] [CrossRef] [PubMed]
- Chowhan, N.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Phytotoxic Effects of β-Pinene on Early Growth and Associated Biochemical Changes in Rice. Acta Physiol. Plant. 2011, 33, 2369–2376. [Google Scholar] [CrossRef]
- Caputo, L.; Trotta, M.; Romaniello, A.; De Feo, V. Chemical Composition and Phytotoxic Activity of Rosmarinus officinalis Essential Oil. Nat. Prod. Commun. 2018, 13, 1367–1370. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Antioxidant, Alpha-Glucosidase Inhibition Activities, In Silico Molecular Docking and Pharmacokinetics Study of Phenolic Compounds from Native Australian Fruits and Spices. Antioxidants 2023, 12, 254. [Google Scholar] [CrossRef]
- Lipinski, C. Poor Aqueous Solubility—An Industry Wide Problem in Drug Discovery. Am. Pharm. Rev. 2002, 5, 82–85. [Google Scholar]
- Egan, W.J. Predicting ADME Properties in Drug Discovery. In Drug Design: Structure- and Ligand-Based Approaches; Cambridge University Press: New York, NY, USA, 2010; pp. 165–177. [Google Scholar]
- Pollastri, M.P. Overview on the Rule of Five. Curr. Protoc. Pharmacol. 2010, 49, 9–12. [Google Scholar] [CrossRef]
- Hughes, J.; Rees, S.; Kalindjian, S.; Philpott, K. Principles of Early Drug Discovery. Br. J. Pharmacol. 2011, 162, 1239–1249. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, S.; Agrwal, A.; Kasana, V.; Tandon, S.; Boulaamane, Y.; Maurady, A. Β-amino Carbonyl Derivatives: Synthesis, Molecular Docking, ADMET, Molecular Dynamic and Herbicidal Studies. ChemistrySelect 2022, 7, e202201572. [Google Scholar] [CrossRef]
- Do Mesquita, K.S.M.; Feitosa, B. de S.; Cruz, J.N.; Ferreira, O.O.; Franco, C. de J.P.; Cascaes, M.M.; Oliveira, M.S. de; Andrade, E.H. de A. Chemical Composition and Preliminary Toxicity Evaluation of the Essential Oil from Peperomia circinnata Link Var. Circinnata. (Piperaceae) in Artemia Salina Leach. Molecules 2021, 26, 7359. [Google Scholar] [CrossRef]
- de Cássia Rodrigues Batista, C.; de Oliveira, M.S.; Araújo, M.E.; Rodrigues, A.M.C.; Botelho, J.R.S.; da Silva Souza Filho, A.P.; Machado, N.T.; Carvalho, R.N. Supercritical CO2 Extraction of Açaí (Euterpe oleracea) Berry Oil: Global Yield, Fatty Acids, Allelopathic Activities, and Determination of Phenolic and Anthocyanins Total Compounds in the Residual Pulp. J. Supercrit. Fluids 2016, 107, 364–369. [Google Scholar] [CrossRef]
- Gurgel, E.S.C.; de Oliveira, M.S.; Souza, M.C.; da Silva, S.G.; de Mendonça, M.S.; Souza Filho, A.P. da S. Chemical Compositions and Herbicidal (Phytotoxic) Activity of Essential Oils of Three Copaifera Species (Leguminosae-Caesalpinoideae) from Amazon-Brazil. Ind. Crops Prod. 2019, 142, 111850. [Google Scholar] [CrossRef]
- Souza Filho, A.P.D.S.; De Vasconcelos, M.A.M.; Zoghbi, M.D.G.B.; Cunha, R.L. Efeitos Potencialmente Alelopáticos Dos Óleos Essenciais de Piper hispidinervium C. DC. e Pogostemon heyneanus Benth Sobre Plantas Daninhas. Acta Amaz. 2009, 39, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Ji, Z.; Wei, S.; Ji, Z. Design, Synthesis and Herbicidal Activity of 5-Cyclopropyl-N-Phenylisoxazole-4-Carboxamides. J. Mol. Struct. 2020, 1220, 128628. [Google Scholar] [CrossRef]
- Karakoti, H.; Mahawer, S.K.; Tewari, M.; Kumar, R.; Prakash, O.; de Oliveira, M.S.; Rawat, D.S. Phytochemical Profile, In Vitro Bioactivity Evaluation, In Silico Molecular Docking and ADMET Study of Essential Oils of Three Vitex Species Grown in Tarai Region of Uttarakhand. Antioxidants 2022, 11, 1911. [Google Scholar] [CrossRef]
- Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. In Chemical Biology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 243–250. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
Species | Gsch | Xfru | |||
---|---|---|---|---|---|
Yield (%) | 0.31 | 1.06 | |||
RT | RIL | RIC | Chemical Constituent | Area (%) * | |
6.375 | 924 | 927 | α-Thujene | 2.21 | |
6.667 | 932 | 938 | α-Pinene | 18.90 | |
7.692 | 969 | 970 | Sabinene | 0.14 | |
8.158 | 974 | 986 | β-Pinene | 35.73 | |
8.333 | 988 | 991 | Myrcene | 0.27 | |
8.825 | 1002 | 1006 | α-Phellandrene | 0.35 | |
9.258 | 1014 | 1017 | α-Terpinene | 0.15 | |
9.542 | 1020 | 1029 | p-Cymene | 0.77 | 0.31 |
9.750 | 1025 | 1029 | Sylvestrene | 1.42 | |
9.833 | 1026 | 1031 | 1,8-Cineole | 1.73 | |
9.542 | 1044 | 1052 | (E)-β-Cymene | 0.18 | |
9.750 | 1054 | 1057 | γ-Terpinene | 0.30 | |
9.833 | 1065 | 1065 | cis-Sabinene hydrate | 0.03 | |
12.517 | 1086 | 1088 | Terpinolene | 0.13 | |
12.667 | 1095 | 1105 | Linalool | 0.59 | |
13.242 | 1100 | 1108 | n-Nonanal | 0.03 | |
13.650 | 1112 | 1116 | trans-Thujone | 0.02 | |
14.267 | 1126 | 1125 | α-Campholenal | 0.12 | |
14.500 | 1139 | 1139 | trans-Pinocarveol | 0.90 | |
14.658 | 1137 | 1144 | cis-Verbenol | 0.41 | |
15.283 | 1140 | 1148 | trans-Verbenol | 0.03 | |
15.442 | 1160 | 1162 | Pinocarvone | 0.48 | |
15.950 | 1166 | 1172 | p-Mentha-1,5-dien-8-ol | 0.15 | |
16.575 | 1174 | 1183 | Terpinen-4-ol | 0.42 | |
16.850 | 1183 | 1192 | Cryptone | 1.73 | |
17.367 | 1186 | 1196 | α-Terpineol | 0.30 | |
17.750 | 1194 | 1202 | Myrthenol | 1.44 | |
19.383 | 1204 | 1215 | Verbenone | 0.18 | |
23.367 | 1215 | 1224 | trans-Carveol | 0.06 | |
23.742 | 1238 | 1245 | Cumin aldehyde | 0.17 | |
24.917 | 1249 | 1254 | Geraniol | 0.42 | |
25.150 | 1279 | 1281 | Felandral | 0.43 | |
26.050 | 1335 | 1342 | δ-Elemene | 6.55 | |
26.842 | 1346 | 1346 | α-Terpinyl acetate | 1.67 | |
27.258 | 1348 | 1359 | α-Cubebene | 0.02 | |
28.417 | 1369 | 1377 | Cyclosativene | 0.37 | |
28.633 | 1373 | 1381 | α-Ylangene | 0.73 | |
28.950 | 1379 | 1383 | Geranyl acetate | 0.06 | |
29.608 | 1374 | 1386 | α-Copaene | 1.62 | 11 |
30.233 | 1387 | 1395 | β-Bourbonene | 0.19 | |
30.475 | 1389 | 1402 | β-Elemene | 0.36 | |
30.575 | 1403 | 1413 | Methyl eugenol | 0.40 | 0.18 |
30.942 | 1417 | 1434 | (E)-Caryophyllene | 3.72 | 42 |
31.083 | 1430 | 1442 | β-Copaene | 0,34 | 0.11 |
31.825 | 1434 | 1444 | γ-Elemene | 0.94 | |
31.942 | 1439 | 1451 | Aromadendrene | 0.69 | 15 |
32.342 | 1454 | 1456 | Isogermacrene D | 0.05 | |
32.800 | 1445 | 1461 | Myltayl-4(12)-ene | 3 | |
32.992 | 1452 | 1466 | α-Humulene | 0.46 | |
33.375 | 1458 | 1471 | allo-Aromadendrene | 0.11 | 4 |
33.900 | 1478 | 1480 | γ-Muurolene | 0.78 | |
34.108 | 1484 | 1496 | Germacrene D | 5.26 | 279 |
34.208 | 1492 | 1501 | cis-β-Guayene | 0.61 | |
34.383 | 1500 | 1509 | α-Muurolene | 1.69 | |
34.517 | 1500 | 1514 | Bicyclogermacrene | 1.79 | 11.07 |
34.650 | 1509 | 1518 | α-Bulnesene | 1.87 | |
35.400 | 1513 | 1528 | γ-Cadinene | 0.71 | |
35.508 | 1522 | 1537 | δ-Cadinene | 2.39 | 0.17 |
35.708 | 1545 | 1540 | Selina-3,7(11)-diene | 0.51 | |
35.858 | 1544 | 1555 | α-Calacorene | 0.37 | |
35.992 | 1562 | 1562 | epi-Longipinanol | 0.01 | |
36.833 | 1577 | 1579 | Spathulenol | 15.42 | 7.37 |
37.008 | 1582 | 1592 | Caryophyllene oxide | 9.65 | |
37.167 | 1590 | 1592 | Globulol | 1.07 | |
37.467 | 1592 | 1598 | Viridiflorol | 0.39 | |
37.750 | 1596 | 1063 | Fokienol | 11.7 | |
37.925 | 1600 | 1606 | Rosifoliol | 3.61 | 0.13 |
38.050 | 1608 | 1625 | Humulene epoxide II | 1.77 | |
38.342 | 1608 | 1629 | β-Atlantol | 0.48 | |
38.617 | 1618 | 1632 | Junenol | 0.31 | |
38.842 | 1629 | 1634 | Eremoligenol | 0.40 | |
38.950 | 1630 | 1634 | Muurola-4,10(14)-dien-1-β-ol | 6.49 | |
40.017 | 1639 | 1636 | Epoxide-allo-aromadendrene | 0.05 | |
40.108 | 1652 | 1669 | α-Cadinol | 0.22 | |
40.208 | 1674 | 1673 | Allo-himachalol | 0.04 | |
41.042 | 1676 | 1676 | Guaia-3,10(14)-dien-11-ol | 0.04 | |
Hydrocarbon monoterpenes | 0.77 | 58.70 | |||
Oxygenated monoterpenes | 0.43 | 6.59 | |||
Hydrocarbon sesquiterpenes | 25.15 | 21.87 | |||
Oxygenated sesquiterpenes | 53.75 | 9.72 | |||
Phenylpropanoids | 3.97 | 0.90 | |||
Hydrocarbons | 1.45 | ||||
Total | 84.13 | 99.23 |
X. frutescens | Mean (%) |
Germination (Mimosa pudica) | 86.67 ± 5.77 b |
Radicle (M. pudica) | 55.22 ± 2.72 a |
Hypocotyl (M. pudica) | 71.12 ± 3.80 b |
Germination (Senna obtusifolia) | 13.33 ± 5.77 c |
Radicle (S. obtusifolia) | 60.43 ± 4.63 a |
Hypocotyl (S. obtusifolia) | 51.38 ± 1.05 a |
G. schomburgkiana | Mean (%) |
Germination (Mimosa pudica) | 86.67 ± 5.77 a |
Radicle (M. pudica) | 50.00 ± 1.17 a |
Hypocotyl (M. pudica) | 70.95 ± 4.37 b |
Germination (Senna obtusifolia) | 13.33 ± 5.77 c |
Radicle (S. obtusifolia) | 46.05 ± 4.97 a |
Hypocotyl (S. obtusifolia) | 51.13 ± 4.50 a |
S. No. | Compounds (PubChem CID) | Binding Energy (−kcal/mol) |
---|---|---|
α-Pinene (6654) | −5.4 | |
β-Pinene (14896) | −5.5 | |
δ-Elemene (12309449) | −6.4 | |
Germacrene D (5317570) | −7.1 | |
Bicyclogermacrene (13894537) | −7.6 | |
δ-Cadinene (441005) | −7.8 | |
Spathulenol (92231) | −7.2 | |
Caryophyllene oxide (1742210) | −7.4 | |
Fokienol (5352449) | −5.2 | |
Muurola-4,10(14)-dien-1-β-ol (6429100) | −7.0 | |
Sulcotrione (91760) | −7.6 |
Entry | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
TPSA* (Å2) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.23 | 12.53 | 20.23 | 20.23 |
Consensus * Log Po/w | 3.44 | 3.42 | 4.49 | 4.30 | 4.15 | 4.12 | 3.26 | 3.68 | 4.72 | 3.37 |
Mol wt (g/mol) | 136.23 | 136.23 | 204.35 | 204.35 | 204.35 | 204.35 | 220.35 | 220.35 | 248.4 | 220.35 |
nRB | 0 | 0 | 3 | 1 | 0 | 1 | 0 | 0 | 9 | 1 |
nOHA | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
nWIND | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
WLOGP | 3.00 | 3.00 | 4.75 | 4.89 | 4.73 | 4.73 | 3.26 | 3.94 | 4.95 | 3.70 |
Water solubility | Soluble | Soluble | Soluble | Soluble | Soluble | Soluble | Soluble | Soluble | Soluble | Soluble |
GI absorption ** | Low | Low | Low | Low | Low | Low | High | High | High | High |
BBB permeant ** | Yes | Yes | No | No | No | No | Yes | Yes | Yes | Yes |
P-gp substrate ** | No | No | No | No | No | No | No | No | No | No |
CYP1A2 inhibitor ** | No | No | No | No | No | No | No | No | Yes | No |
CYP2C19 inhibitor ** | No | No | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes |
CYP2C9 inhibitor ** | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | No |
CYP2D6 inhibitor ** | No | No | No | No | No | No | No | No | No | No |
CYP3A4 inhibitor ** | No | No | No | No | No | No | No | No | No | No |
Log Kp (cm/s) (skin permeation) | −3.95 | −4.18 | −3.80 | −4.18 | −4.61 | −4.85 | −5.44 | −5.12 | −3.88 | −5.48 |
Lipinski *** | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Lipinski violation | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
Bioavailability score *** | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Compounds | α-Pinene | β-Pinene | δ-Elemene | Germacrene D | Bicyclogermacrene D | δ-Cadinene | Spathulenol | Caryophyllene oxide | Fokienol | Muurola-4,10(14)-dien-1-β-ol |
---|---|---|---|---|---|---|---|---|---|---|
Hepatotoxicity | No | No | No | No | No | No | No | No | No | No |
Carcinogenicity | No | No | No | No | No | No | No | No | No | No |
Cytotoxicity | No | No | No | No | No | No | No | No | No | No |
Immunotoxicity | No | No | No | Yes | No | No | No | Yes | No | No |
Mutagenicity | No | No | No | No | No | No | No | No | No | No |
Predicted LD50 (mg/kg) | 3700 | 4700 | 5300 | 5300 | 5300 | 4390 | 3900 | 5000 | 5000 | 1016 |
Toxicity class | V | V | V | V | V | V | V | V | V | IV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Moraes, Â.A.B.; Cascaes, M.M.; do Nascimento, L.D.; de Jesus Pereira Franco, C.; Ferreira, O.O.; Anjos, T.O.d.; Karakoti, H.; Kumar, R.; da Silva Souza-Filho, A.P.; de Oliveira, M.S.; et al. Chemical Evaluation, Phytotoxic Potential, and In Silico Study of Essential Oils from Leaves of Guatteria schomburgkiana Mart. and Xylopia frutescens Aubl. (Annonaceae) from the Brazilian Amazon. Molecules 2023, 28, 2633. https://doi.org/10.3390/molecules28062633
de Moraes ÂAB, Cascaes MM, do Nascimento LD, de Jesus Pereira Franco C, Ferreira OO, Anjos TOd, Karakoti H, Kumar R, da Silva Souza-Filho AP, de Oliveira MS, et al. Chemical Evaluation, Phytotoxic Potential, and In Silico Study of Essential Oils from Leaves of Guatteria schomburgkiana Mart. and Xylopia frutescens Aubl. (Annonaceae) from the Brazilian Amazon. Molecules. 2023; 28(6):2633. https://doi.org/10.3390/molecules28062633
Chicago/Turabian Stylede Moraes, Ângelo Antônio Barbosa, Márcia Moraes Cascaes, Lidiane Diniz do Nascimento, Celeste de Jesus Pereira Franco, Oberdan Oliveira Ferreira, Tainá Oliveira dos Anjos, Himani Karakoti, Ravendra Kumar, Antônio Pedro da Silva Souza-Filho, Mozaniel Santana de Oliveira, and et al. 2023. "Chemical Evaluation, Phytotoxic Potential, and In Silico Study of Essential Oils from Leaves of Guatteria schomburgkiana Mart. and Xylopia frutescens Aubl. (Annonaceae) from the Brazilian Amazon" Molecules 28, no. 6: 2633. https://doi.org/10.3390/molecules28062633
APA Stylede Moraes, Â. A. B., Cascaes, M. M., do Nascimento, L. D., de Jesus Pereira Franco, C., Ferreira, O. O., Anjos, T. O. d., Karakoti, H., Kumar, R., da Silva Souza-Filho, A. P., de Oliveira, M. S., & de Aguiar Andrade, E. H. (2023). Chemical Evaluation, Phytotoxic Potential, and In Silico Study of Essential Oils from Leaves of Guatteria schomburgkiana Mart. and Xylopia frutescens Aubl. (Annonaceae) from the Brazilian Amazon. Molecules, 28(6), 2633. https://doi.org/10.3390/molecules28062633