Development of Analytical Methods to Analyze Pesticide Residues
1. Introduction
2. Results
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- El Sherif, D.F.; Soliman, N.H.; Alshallash, K.S.; Ahmed, N.; Ibrahim, M.A.R.; Al-Shammery, K.A.; Al-Khalaf, A.A. The Binary Mixtures fo Lambda-Cyhalothrin, Chlorfenapyr, and Abamectin, against the House Fly Larvae, Musca domestica L. Molecules 2022, 27, 3084. [Google Scholar] [PubMed]
- Celeiro, M.; Vazquez, L.; Nurerk, P.; Kabir, A.; Furton, K.G.; Dagnac, T.; Llompart, M. Fabric phase sorptive extraction for the determination of 17 multiclass fungicides in environmental water by gas chromatography-tandem mass spectrometry. J. Sep. Sci. 2020, 43, 1817–1829. [Google Scholar] [PubMed]
- Villaverde, J.J.; Sevilla-Morán, B.; López-Goti, C.; Calvo, L.; Alonso-Prados, J.L.; Sandín-España, P. Photolysis of clethodim herbicide and a formulation in aquatic environments: Fate and ecotoxicity assessment of photoproducts by QSAR models. Sci. Total Environ. 2018, 615, 643–651. [Google Scholar] [PubMed]
- Veloo, K.V.; Ibrahim, N.A.S. Analytical Extraction Methods and Sorbents´ Development for Simultaneous Determination of Organophosphorus Pesticides’ Residues in Food and Water Samples: A Review. Molecules 2021, 26, 5495. [Google Scholar] [CrossRef] [PubMed]
- Celeiro, M.; Facorro, R.; Dagnac, T.; Llompart, M. Simultaneous determination of trace levels of multiclass fungicides in natural waters by solid-phase microextraction-gas chromatography-tandem mass spectrometry. Anal. Chim. Acta 2018, 1020, 51–61. [Google Scholar] [PubMed]
- Sergazina, M.; Vazquez, L.; Llompart, M.; Dagnac, T. Occurrence of Fungicides in Vineyard and the Surrounding Environment. Molecules 2021, 26, 6152. [Google Scholar] [CrossRef] [PubMed]
- Maragou, N.C.; Balayiannis, G.; Karanasios, E.; Markellou, E.; Liapis, K. Targeted Multiresidue Method for the Analysis of Different Classes of Pesticides in Agro-Food Industrial Sludge by Liquid Chromatography Tandem Mass Spectrometry. Molecules 2021, 26, 6888. [Google Scholar] [CrossRef] [PubMed]
- Hayar, S.; Zeitoun, R.; Maestroni, B.M. Validation of a Rapid Multiresidue Method for the Determination of Pesticide Residues in Vine Leaves. Comparison of the Results According to the Different Conservation Methods. Molecules 2021, 26, 1176. [Google Scholar] [CrossRef] [PubMed]
- Sandín-España, P.; Mateo-Miranda, M.; López-Goti, C.; Seris-Barrallo, E.; Alonso-Prados, J.L. Analysis of Pesticide Residues by QuEChERS Method and LC-MS/MS for a New Extrapolation of Maximum Residue Levels in Persimmon Minor Crop. Molecules 2022, 27, 1517. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Lim, D.J.; Kim, I.S. Simultaneous Analysis of Fenpropimorph and Fenpropimorph Acid in Six Different Livestock Productos Using a Single-Sample Preparation Method Followed by Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2021, 26, 5791. [Google Scholar] [CrossRef] [PubMed]
- Rathod, H.N.; Mallappa, B.; Sidramappa, P.M.; Vennapusa, C.S.R.; Kamin, P.; Nidoni, U.R.; Desai, B.R.; Rao, S.N.; Mariappan, P. Determination of 77 Multiclass Pesticide and Their Metabolites in Capsicum and Tomato Using GC-MS/MS and LC-MS/MS. Molecules 2021, 26, 1837. [Google Scholar] [CrossRef] [PubMed]
- Sandín-España, P.; Sevilla-Morán, B. Pesticide degradation in water. In Pesticides: Evaluation of Environmental Pollution; CRC Press Taylor & Francis (USA): Boca Raton, FL, USA, 2012; pp. 79–130. ISBN 978-1-4398-3624-8. [Google Scholar]
- Won, E.J.; Yun, H.Y.; Lee, D.H.; Shin, K.H. Application of Compound-Specific Isotope Analysis in Environmental Forensic and Strategic Management Avenue for Pesticide Residues. Molecules 2021, 26, 4412. [Google Scholar] [CrossRef] [PubMed]
- Nakhjavan, B.; Bland, J.; Khosravifard, M. Optimization of a Multiresidue Analysis of 65 Pesticides in Surface Water Using Solid-Phase Extraction by LC-MS/MS. Molecules 2021, 26, 6627. [Google Scholar] [CrossRef] [PubMed]
- Vera-Herrera, L.; Sadutto, D.; Picó, Y. Non-occupational Exposure to Pesticides: Experimental Approaches and Analytical Techniques (from 2019). Molecules 2021, 26, 3688. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandín-España, P.; Dagnac, T. Development of Analytical Methods to Analyze Pesticide Residues. Molecules 2023, 28, 3074. https://doi.org/10.3390/molecules28073074
Sandín-España P, Dagnac T. Development of Analytical Methods to Analyze Pesticide Residues. Molecules. 2023; 28(7):3074. https://doi.org/10.3390/molecules28073074
Chicago/Turabian StyleSandín-España, Pilar, and Thierry Dagnac. 2023. "Development of Analytical Methods to Analyze Pesticide Residues" Molecules 28, no. 7: 3074. https://doi.org/10.3390/molecules28073074
APA StyleSandín-España, P., & Dagnac, T. (2023). Development of Analytical Methods to Analyze Pesticide Residues. Molecules, 28(7), 3074. https://doi.org/10.3390/molecules28073074