Quantitative Structure–Retention Relationship Analysis of Polycyclic Aromatic Compounds in Ultra-High Performance Chromatography
Abstract
:1. Introduction
2. Results and Discussion
2.1. Variable Selection by Genetic Algorithm
2.2. QSRR-ANN Model
2.3. QSRR-PLS Model
3. Materials and Methods
3.1. Chemicals and Reagent
3.2. UHPLC-DAD Conditions and Design of Experiments
3.3. Computation of Molecular Descriptors
3.4. Multivariate Calibration
3.4.1. Artificial Neural Network
3.4.2. Partial Least Squares Regression (PLS-R)
3.4.3. Variable Selection Tools
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Purcaro, G.; Moret, S.; Conte, L.S. Overview on Polycyclic Aromatic Hydrocarbons: Occurrence, Legislation and Innovative Determination in Foods. Talanta 2013, 105, 292–305. [Google Scholar] [CrossRef] [PubMed]
- Arey, J.; Callcott, D.; Colmsjo, A.; Harvey, R.G.; Herod, A.A.; Howsam, M. The Handbook of Environmental Chemistry; Neilson, A.H., Ed.; Springer: Berlin/Heidelberg, Germany, 1982; Volume 27, ISBN 9783642082863. [Google Scholar]
- Paris, A.; Ledauphin, J.; Poinot, P.; Gaillard, J.-L. Polycyclic Aromatic Hydrocarbons in Fruits and Vegetables: Origin, Analysis, and Occurrence. Environ. Pollut. 2018, 234, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Zemanek, M.G.; Pollard, S.J.T.; Kenefick, S.L.; Hrudey, S.E. Multi-Phase Partitioning and Co-Solvent Effects for Polynuclear Aromatic Hydrocarbons (PAH) in Authentic Petroleum- and Creosote-Contaminated Soils. Environ. Pollut. 1997, 98, 239–252. [Google Scholar] [CrossRef]
- Bhargava, A.; Dlugogorski, B.Z.; Kennedy, E.M. Emission of Polyaromatic Hydrocarbons, Polychlorinated Biphenyls and Polychlorinated Dibenzo-p-Dioxins and Furans from Fires of Wood Chips. Fire Saf. J. 2002, 37, 659–672. [Google Scholar] [CrossRef]
- Chen, B.H.; Chen, Y.C. Formation of Polycyclic Aromatic Hydrocarbons in the Smoke from Heated Model Lipids and Food Lipids. J. Agric. Food Chem. 2001, 49, 5238–5243. [Google Scholar] [CrossRef] [PubMed]
- Jelonek, Z.; Drobniak, A.; Mastalerz, M.; Jelonek, I. Emissions during Grilling with Wood Pellets and Chips. Atmos. Environ. X 2021, 12, 100140. [Google Scholar] [CrossRef]
- Haritash, A.K.; Kaushik, C.P. Biodegradation Aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef]
- Samanta, S.K.; Singh, O.V.; Jain, R.K. Polycyclic Aromatic Hydrocarbons: Environmental Pollution and Bioremediation. Trends Biotechnol. 2002, 20, 243–248. [Google Scholar] [CrossRef]
- Cerniglia, C.E. Biodegradation of Polycyclic Aromatic Hydrocarbons. Biodegradation 1992, 3, 351–368. [Google Scholar] [CrossRef]
- Bamforth, S.M.; Singleton, I. Bioremediation of Polycyclic Aromatic Hydrocarbons: Current Knowledge and Future Directions. J. Chem. Technol. Biotechnol. 2005, 80, 723–736. [Google Scholar] [CrossRef]
- Alegbeleye, O.O.; Opeolu, B.O.; Jackson, V.A. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. Environ. Manag. 2017, 60, 758–783. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation(EU) No 835/2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Polycyclic Aromatic Hydrocarbons in Foodstuffs. Off. J. Eur. Union 2011, L 215, 4–8. [Google Scholar]
- Chu, M.M.L.; Chen, W.C. The Evaluation and Estimation of Potential Carcinogenic Risk of Polynuclear Aromatic Hydrocarbons (PAH); EPA: Washington, DC, USA, 1985.
- EPA Office of the Federal Registration (OFR). Appendix A: Priority Pollutants, Fed Reg. 47; OFR: Washington, DC, USA, 1982.
- Poster, D.L.; Schantz, M.M.; Sander, L.C.; Wise, S.A. Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) in Environmental Samples: A Critical Review of Gas Chromatographic (GC) Methods. Anal. Bioanal. Chem. 2006, 386, 859–881. [Google Scholar] [CrossRef] [PubMed]
- Campo, L.; Rossella, F.; Fustinoni, S. Development of a Gas Chromatography/Mass Spectrometry Method to Quantify Several Urinary Monohydroxy Metabolites of Polycyclic Aromatic Hydrocarbons in Occupationally Exposed Subjects. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 875, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Touhami, I.; Haddag, H.; Didi, M.; Messadi, D. Contribution of Modified Harary Index to Predict Kováts Retention Indices for a Set of PAHs. Chromatographia 2016, 79, 1023–1032. [Google Scholar] [CrossRef]
- Mahani, M.; Shaikhghomi, H. Comparison of Multiple Linear Regression, Partial Least Squares and Artificial Neural Network for Quantitative Structure Retention Relationships of Some Polycyclic Aromatic Hydrocarbons. Anal. Methods 2012, 4, 3381–3385. [Google Scholar] [CrossRef]
- Gieleciak, R.; Hager, D.; Heshka, N.E. Application of a Quantitative Structure Retention Relationship Approach for the Prediction of the Two-Dimensional Gas Chromatography Retention Times of Polycyclic Aromatic Sulfur Heterocycle Compounds. J. Chromatogr. A 2016, 1437, 191–202. [Google Scholar] [CrossRef]
- D’Archivio, A.A.; Maggi, M.A.; Ruggieri, F. Artificial Neural Network Prediction of Multilinear Gradient Retention in Reversed-Phase HPLC: Comprehensive QSRR-Based Models Combining Categorical or Structural Solute Descriptors and Gradient Profile Parameters. Anal. Bioanal. Chem. 2015, 407, 1181–1190. [Google Scholar] [CrossRef]
- D’Archivio, A.A.; Maggi, M.A.; Ruggieri, F. Prediction of the Retention of S-Triazines in Reversed-Phase High-Performance Liquid Chromatography under Linear Gradient-Elution Conditions. J. Sep. Sci. 2014, 37, 1930–1936. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Wang, C.; Song, D.; Hu, C. Identification of Impurities in Macrolides by Liquid Chromatography–Mass Spectrometric Detection and Prediction of Retention Times of Impurities by Constructing Quantitative Structure–Retention Relationship (QSRR). J. Pharm. Biomed. Anal. 2017, 145, 262–272. [Google Scholar] [CrossRef]
- Kaliszan, R. QSRR: Quantitative Structure-(Chromatographic) Retention Relationships. Chem. Rev. 2007, 107, 3212–3246. [Google Scholar] [CrossRef] [PubMed]
- Kaliszan, R. Retention Data from Affinity High-Performance Liquid Chromatography in View of Chemometrics. J. Chromatogr. B Biomed. Appl. 1998, 715, 229–244. [Google Scholar] [CrossRef] [PubMed]
- Bride, E.; Heinisch, S.; Bonnefille, B.; Guillemain, C.; Margoum, C. Suspect Screening of Environmental Contaminants by UHPLC-HRMS and Transposable Quantitative Structure-Retention Relationship Modelling. J. Hazard. Mater. 2021, 409, 124652. [Google Scholar] [CrossRef]
- Karande, P.; Gallagher, B.; Han, T.Y.J. A Strategic Approach to Machine Learning for Material Science: How to Tackle Real-World Challenges and Avoid Pitfalls. Chem. Mater. 2022, 34, 7650–7665. [Google Scholar] [CrossRef]
- D’Archivio, A.A.; Maggi, M.A.; Ruggieri, F. Modelling of UPLC Behaviour of Acylcarnitines by Quantitative Structure-Retention Relationships. J. Pharm. Biomed. Anal. 2014, 96, 224–230. [Google Scholar] [CrossRef]
- Cirera-Domènech, E.; Estrada-Tejedor, R.; Broto-Puig, F.; Teixidó, J.; Gassiot-Matas, M.; Comellas, L.; Lliberia, J.L.; Méndez, A.; Paz-Estivill, S.; Delgado-Ortiz, M.R. Quantitative Structure-Retention Relationships Applied to Liquid Chromatography Gradient Elution Method for the Determination of Carbonyl-2,4-Dinitrophenylhydrazone Compounds. J. Chromatogr. A 2013, 1276, 65–77. [Google Scholar] [CrossRef]
- Souihi, A.; Mohai, M.P.; Palm, E.; Malm, L.; Kruve, A. MultiConditionRT: Predicting Liquid Chromatography Retention Time for Emerging Contaminants for a Wide Range of Eluent Compositions and Stationary Phases. J. Chromatogr. A 2022, 1666, 462867. [Google Scholar] [CrossRef]
- D’Archivio, A.A.; Maggi, M.A.; Ruggieri, F. Investigation by Response Surface Methodology of Extraction of Caffeine, Gallic Acid and Selected Catechins from Tea Using Water-Ethanol Mixtures. Food Anal. Methods 2016, 9, 2773–2779. [Google Scholar] [CrossRef]
- D’Archivio, A.A.; Maggi, M.A.; Mazzeo, P.; Ruggieri, F. Quantitative Structure-Retention Relationships of Pesticides in Reversed-Phase High-Performance Liquid Chromatography Based on WHIM and GETAWAY Molecular Descriptors. Anal. Chim. Acta 2008, 628, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, P.; Thompson, R.A.; O’Brien, T.P. A Retention Model for Polar Selectivity in Reversed Phase Chromatography as a Function of Mobile Phase Organic Modifier Type. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 1345–1356. [Google Scholar] [CrossRef]
- Lee, S.K.; Polyakova, Y.; Row, K.H. Evaluation of Predictive Retention Factors for Phenolic Compounds with QSPR Equations. J. Liq. Chromatogr. Relat. Technol. 2004, 27, 629–639. [Google Scholar] [CrossRef]
- Moon, T.; Chi, M.W.; Park, S.J.; Yoon, C.N. Prediction of HPLC Retention Time Using Multiple Linear Regression: Using One and Two Descriptors. J. Liq. Chromatogr. Relat. Technol. 2003, 26, 2987–3002. [Google Scholar] [CrossRef]
- Xia, Y.; Guo, Y.; Wang, H.; Wang, Q.; Zuo, Y. Quantitative Structure-Retention Relationships of Benzoylphenylureas on Polystyrene-Octadecene-Encapsulated Zirconia Stationary Phase in Reversed-Phase High Performance Liquid Chromatography. J. Sep. Sci. 2005, 28, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Ledesma, E.B.; Wornat, M.J. QSRR Prediction of Chromatographic Retention of Ethynyl-Substituted PAH from Semiempirically Computed Solute Descriptors. Anal. Chem. 2000, 72, 5437–5443. [Google Scholar] [CrossRef]
- Taraji, M.; Haddad, P.R.; Amos, R.I.J.; Talebi, M.; Szucs, R.; Dolan, J.W.; Pohl, C.A. Prediction of Retention in Hydrophilic Interaction Liquid Chromatography Using Solute Molecular Descriptors Based on Chemical Structures. J. Chromatogr. A 2017, 1486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Purcaro, G.; Moret, S.; Bučar-Miklavčič, M.; Conte, L.S. Ultra-High Performance Liquid Chromatographic Method for the Determination of Polycyclic Aromatic Hydrocarbons in a Passive Environmental Sampler. J. Sep. Sci. 2012, 35, 922–928. [Google Scholar] [CrossRef]
- Hua, L.; Guo, S.; Wang, Y.; Sun, H.; Zhao, H. Simultaneous Determination of Multiple Isomeric Hydroxylated Polycyclic Aromatic Hydrocarbons in Urine by Using Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1184, 122983. [Google Scholar] [CrossRef]
- Correia, F.O.; Silva, D.S.; Costa, S.S.L.; Silva, I.K.V.; da Silva, D.R.; Alves, J.d.P.H.; Garcia, C.A.B.; Maranhão, T.d.A.; Passos, E.A.; Araujo, R.G.O. Optimization of Microwave Digestion and Inductively Coupled Plasma-Based Methods to Characterize Cassava, Corn and Wheat Flours Using Chemometrics. Microchem. J. 2017, 135, 190–198. [Google Scholar] [CrossRef]
- Xu, T. Rapid Determination of Trace Polycyclic Aromatic Hydrocarbons in Particulate Matter Using Accelerated Solvent Extraction Followed by Ultra High Performance Liquid Chromatography with Fluorescence Detection. J. Sep. Sci. 2016, 39, 1892–1899. [Google Scholar] [CrossRef]
- Lung, S.C.C.; Liu, C.H. Fast Analysis of 29 Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs with Ultra-High Performance Liquid Chromatography-Atmospheric Pressure Photoionization-Tandem Mass Spectrometry. Sci. Rep. 2015, 5, 12992. [Google Scholar] [CrossRef] [Green Version]
- Talete srl, DRAGON (Software for Molecular Descriptor Calculation), Version 6.0. 2010. Available online: http://www.talete.mi.it/ (accessed on 31 March 2023).
- Goldberg, D.E. Genetic Algorithms in Search Optimization and Machine Learning; Addison-Wesley: Berkeley, CA, USA, 1989. [Google Scholar]
- Leardi, R. Genetic Algorithms in Chemometrics and Chemistry: A Review. J. Chemom. 2001, 15, 559–569. [Google Scholar] [CrossRef]
- Lucasius, C.B.; Kateman, G. Understanding and Using Genetic Algorithms Part 1. Concepts, Properties and Context. Chemom. Intell. Lab. Syst. 1993, 19, 1–33. [Google Scholar] [CrossRef]
- Lucasius, C.B.; Kateman, G. Understanding and Using Genetic Algorithms Part 2. Representation, Configuration and Hybridization. Chemom. Intell. Lab. Syst. 1994, 25, 99–145. [Google Scholar] [CrossRef]
- Helland, I.S. Some Theoretical Aspects of Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2001, 58, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A Review of Variable Selection Methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- D’Archivio, A.A.; Giannitto, A.; Maggi, M.A.; Ruggieri, F. Cross-Column Retention Prediction in Reversed-Phase High-Performance Liquid Chromatography by Artificial Neural Network Modelling. Anal. Chim. Acta 2012, 717, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Ciura, K.; Kovačević, S.; Pastewska, M.; Kapica, H.; Kornela, M.; Sawicki, W. Prediction of the Chromatographic Hydrophobicity Index with Immobilized Artificial Membrane Chromatography Using Simple Molecular Descriptors and Artificial Neural Networks. J. Chromatogr. A 2021, 1660, 462666. [Google Scholar] [CrossRef] [PubMed]
- Luna, A.S.; Lima, E.R.A. Applications of Artificial Neural Networks in Chemistry and Chemical Engineering; Gayle Cain; Nova Science: Hauppauge, NY, USA, 2017; ISBN 9781634859790. [Google Scholar]
- Rezic, I.; Rolich, T. Artificial Neural Networks in Chromatography and Spectroscopy; Nelson, R.W., Ed.; Nova Science: Hauppauge, NY, USA, 2011; ISBN 9781613242865. [Google Scholar]
- Hu, Q.; Sun, Y.; Yuan, P.; Lei, H.; Zhong, H.; Wang, Y.; Tang, H. Quantitative Structure-Retention Relationship for Reliable Metabolite Identification and Quantification in Metabolomics Using Ion-Pair Reversed-Phase Chromatography Coupled with Tandem Mass Spectrometry. Talanta 2022, 238, 123059. [Google Scholar] [CrossRef] [PubMed]
- Forina, M.; Lanteri, S.; Armanino, C.; Casolino, C.; Casale, M. V-PARVUS 2010. Available online: http://www.parvus.unige.it (accessed on 30 March 2022).
- Snee, R.D. Validation of Regression Models: Methods and Examples. Technometrics 1977, 19, 415–428. [Google Scholar] [CrossRef]
- Mohamadi, F.; Richards, N.G.J.; Guida, W.C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W.C. Macromodel—An Integrated Software System for Modeling Organic and Bioorganic Molecules Using Molecular Mechanics. J. Comput. Chem. 1990, 11, 440–467. [Google Scholar] [CrossRef]
- Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Mannhold, R., Kubinyi, H.T.H., Eds.; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
- Cartwright, H. Using Artificial Intelligence in Chemistry and Biology; Taylor & Francis: Boca Raton, FL, USA, 2008; ISBN 9780849384127. [Google Scholar]
- Wold, S.; Martens, H.; Wold, H. The Multivariate Calibration Problem in Chemistry Solved by the PLS Method; Kågström, B., Ruhe, A., Eds.; Matrix Pencils. Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1983; Volume 973. [Google Scholar]
- Marini, F.; Roncaglioni, A.; Novič, M. Variable Selection and Interpretation in Structure—Affinity Correlation Modeling of Estrogen Receptor Binders. J. Chem. Inf. Model. 2005, 45, 1507–1519. [Google Scholar] [CrossRef]
- Andersen, C.M.; Bro, R. Variable Selection in Regression-a Tutorial. J. Chemom. 2010, 24, 728–737. [Google Scholar] [CrossRef]
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the Variable Importance in Projection (VIP) and of the Selectivity Ratio (SR) Methods for Variable Selection and Interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Roger, J.M.; Palagos, B.; Bertrand, D.; Fernandez-Ahumada, E. CovSel: Variable Selection for Highly Multivariate and Multi-Response Calibration. Application to IR Spectroscopy. Chemom. Intell. Lab. Syst. 2011, 106, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Biancolillo, A.; Marini, F.; Roger, J.M. SO-CovSel: A Novel Method for Variable Selection in a Multiblock Framework. J. Chemom. 2020, 34, e3120. [Google Scholar] [CrossRef]
- Leardi, R. Experimental Design in Chemistry: A Tutorial. Anal. Chim. Acta 2009, 652, 161–172. [Google Scholar] [CrossRef]
- Leardi, R. Genetic Algorithm-PLS as a Tool for Wavelength Selection in Spectral Data Sets. In Nature Inspired Methods in Chemometrics: Genetic Algorithms and Artificial Neural Networks; Leardi, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 23, pp. 169–196. [Google Scholar]
- Shaffer, R.E.; Small, G.W.; Arnold, M.A. Genetic Algorithm-Based Protocol for Coupling Digital Filtering and Partial Least-Squares Regression: Application to the near-Infrared Analysis of Glucose in Biological Matrices. Anal. Chem. 1996, 68, 2663–2675. [Google Scholar] [CrossRef] [PubMed]
- Wehrens, R.; Buydens, L.M.C. Evolutionary Optimisation: A Tutorial. TrAC-Trends Anal. Chem. 1998, 17, 193–203. [Google Scholar] [CrossRef]
GA Parameter | Selected Option |
---|---|
Initial population size | 100 chromosomes |
Regression method | Multilinear regression |
Response to maximize | Cross-validated % explained variance |
Maximum number of descriptors selected in the same chromosome | 5–7 |
Probability of mutation (%) | 0.1 |
Elitism (%) | 2 |
Number of GA runs | 50 |
Stop condition | Maximum number of cycles in each GA run = 10 Maximum number of cycles without response improvement = 5 |
Molecular Descriptor | Meaning |
---|---|
MW | Molecular weight |
Mor07u | 3D-MoRSE descriptor/unweighted |
RDF030m | Radial distribution function-030/weighted by mass |
RDF 090u | Radial distribution function-090/unweighted |
nR10 | Ring descriptors |
nCIR | Ring descriptors |
Model | Preprocessing | RMSECV | R2cv | RMSEP |
---|---|---|---|---|
PLS | Mean-centering | 0.303 | 0.952 | 0.435 |
PLS | Autoscaling | 0.252 | 0.967 | 0.601 |
PLS + VIP | Autoscaling | 0.322 | 0.945 | 0.541 |
PLS + CovSel | Autoscaling | 0.246 | 0.968 | 0.433 |
PLS + GA | Autoscaling | 0.271 | 0.961 | 0.362 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggieri, F.; Biancolillo, A.; D’Archivio, A.A.; Di Donato, F.; Foschi, M.; Maggi, M.A.; Quattrociocchi, C. Quantitative Structure–Retention Relationship Analysis of Polycyclic Aromatic Compounds in Ultra-High Performance Chromatography. Molecules 2023, 28, 3218. https://doi.org/10.3390/molecules28073218
Ruggieri F, Biancolillo A, D’Archivio AA, Di Donato F, Foschi M, Maggi MA, Quattrociocchi C. Quantitative Structure–Retention Relationship Analysis of Polycyclic Aromatic Compounds in Ultra-High Performance Chromatography. Molecules. 2023; 28(7):3218. https://doi.org/10.3390/molecules28073218
Chicago/Turabian StyleRuggieri, Fabrizio, Alessandra Biancolillo, Angelo Antonio D’Archivio, Francesca Di Donato, Martina Foschi, Maria Anna Maggi, and Claudia Quattrociocchi. 2023. "Quantitative Structure–Retention Relationship Analysis of Polycyclic Aromatic Compounds in Ultra-High Performance Chromatography" Molecules 28, no. 7: 3218. https://doi.org/10.3390/molecules28073218
APA StyleRuggieri, F., Biancolillo, A., D’Archivio, A. A., Di Donato, F., Foschi, M., Maggi, M. A., & Quattrociocchi, C. (2023). Quantitative Structure–Retention Relationship Analysis of Polycyclic Aromatic Compounds in Ultra-High Performance Chromatography. Molecules, 28(7), 3218. https://doi.org/10.3390/molecules28073218