Intelligent Workflow and Software for Non-Target Analysis of Complex Samples Using a Mixture of Toxic Transformation Products of Unsymmetrical Dimethylhydrazine as an Example
Abstract
:1. Introduction
2. Results
2.1. Workflow for Non-Target Analysis
2.2. Easy-to-Use Software for Non-Target Analysis
2.3. Critical Assessment of the Workflow and the Previously Discovered Compounds
2.4. The Newly Proposed Structures of UDMH Transformation Products
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. GC-MS
4.3. HPLC-MS2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hu, C.; Zhang, Y.; Zhou, Y.; Liu, Z.; Feng, X. Unsymmetrical Dimethylhydrazine and Related Compounds in the Environment: Recent Updates on Pretreatment, Analysis, and Removal Techniques. J. Hazard. Mater. 2022, 432, 128708. [Google Scholar] [CrossRef]
- Torabi Angaji, M.; Ghiaee, R. Cavitational Decontamination of Unsymmetrical Dimethylhydrazine Waste Water. J. Taiwan Inst. Chem. Eng. 2015, 49, 142–147. [Google Scholar] [CrossRef]
- Byers, M.; Byers, C. Toxic Splash: Russian Rocket Stages Dropped in Arctic Waters Raise Health, Environmental and Legal Concerns. Polar Rec. 2017, 53, 580–591. [Google Scholar] [CrossRef] [Green Version]
- Dallas, J.A.; Raval, S.; Alvarez Gaitan, J.P.; Saydam, S.; Dempster, A.G. The Environmental Impact of Emissions from Space Launches: A Comprehensive Review. J. Clean. Prod. 2020, 255, 120209. [Google Scholar] [CrossRef]
- Mach, M.H.; Baumgartner, A.M. Oxidation of Aqueous Unsymmetrical Dimethylhydrazine by Calcium Hypochlorite or Hydrogen Peroxide/Copper Sulfate. Anal. Lett. 1979, 12, 1063–1074. [Google Scholar] [CrossRef]
- Huang, D.; Liu, X.; Wang, X.; Huang, Z.; Xie, Z.; Wang, H. Investigation on the Compositions of Unsymmetrical Dimethylhydrazine Treatment with Different Oxidants Using Solid-Phase Micro-Extraction-Gas Chromatography–Mass Spectrometer. R. Soc. Open Sci. 2019, 6, 190263. [Google Scholar] [CrossRef] [Green Version]
- Carlsen, L.; Kenessov, B.N.; Batyrbekova, S.Y. A QSAR/QSTR Study on the Environmental Health Impact by the Rocket Fuel 1,1-Dimethyl Hydrazine and Its Transformation Products. Environ. Health Insights 2008, 1, 11–20. [Google Scholar] [CrossRef]
- Kenessov, B.N.; Koziel, J.A.; Grotenhuis, T.; Carlsen, L. Screening of Transformation Products in Soils Contaminated with Unsymmetrical Dimethylhydrazine Using Headspace SPME and GC–MS. Anal. Chim. Acta 2010, 674, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Kosyakov, D.S.; Ul’yanovskii, N.V.; Bogolitsyn, K.G.; Shpigun, O.A. Simultaneous Determination of 1,1-Dimethylhydrazine and Products of Its Oxidative Transformations by Liquid Chromatography–Tandem Mass Spectrometry. Int. J. Environ. Anal. Chem. 2014, 94, 1254–1263. [Google Scholar] [CrossRef]
- Rodin, I.A.; Moskvin, D.N.; Smolenkov, A.D.; Shpigun, O.A. Transformations of Asymmetric Dimethylhydrazine in Soils. Russ. J. Phys. Chem. A 2008, 82, 911–915. [Google Scholar] [CrossRef]
- Ul’yanovskii, N.V.; Kosyakov, D.S.; Popov, M.S.; Shavrina, I.S.; Ivakhnov, A.D.; Kenessov, B.; Lebedev, A.T. Rapid Quantification and Screening of Nitrogen-Containing Rocket Fuel Transformation Products by Vortex Assisted Liquid-Liquid Microextraction and Gas Chromatography–High-Resolution Orbitrap Mass Spectrometry. Microchem. J. 2021, 171, 106821. [Google Scholar] [CrossRef]
- Kenessov, B.; Alimzhanova, M.; Sailaukhanuly, Y.; Baimatova, N.; Abilev, M.; Batyrbekova, S.; Carlsen, L.; Tulegenov, A.; Nauryzbayev, M. Transformation Products of 1,1-Dimethylhydrazine and Their Distribution in Soils of Fall Places of Rocket Carriers in Central Kazakhstan. Sci. Total Environ. 2012, 427–428, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Kosyakov, D.S.; Ul’yanovskii, N.V.; Pikovskoi, I.I.; Kenessov, B.; Bakaikina, N.V.; Zhubatov, Z.; Lebedev, A.T. Effects of Oxidant and Catalyst on the Transformation Products of Rocket Fuel 1,1-Dimethylhydrazine in Water and Soil. Chemosphere 2019, 228, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Ul’yanovskii, N.V.; Kosyakov, D.S.; Pikovskoi, I.I.; Khabarov, Y.G. Characterisation of Oxidation Products of 1,1-Dimethylhydrazine by High-Resolution Orbitrap Mass Spectrometry. Chemosphere 2017, 174, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Buryak, A.K.; Serdyuk, T.M.; Ul’yanov, A.V. Investigation of the Reaction Products of Unsymmetrical Dimethylhydrazine with Potassium Permanganate by Gas Chromatography-Mass Spectrometry. Theor. Found. Chem. Eng. 2011, 45, 550–555. [Google Scholar] [CrossRef]
- Milyushkin, A.L.; Birin, K.P.; Matyushin, D.D.; Semeikin, A.V.; Iartsev, S.D.; Karnaeva, A.E.; Uleanov, A.V.; Buryak, A.K. Isomeric Derivatives of Triazoles as New Toxic Decomposition Products of 1,1-Dimethylhydrazine. Chemosphere 2019, 217, 95–99. [Google Scholar] [CrossRef]
- Sholokhova, A.Y.; Grinevich, O.I.; Matyushin, D.D.; Buryak, A.K. Machine Learning-Assisted Non-Target Analysis of a Highly Complex Mixture of Possible Toxic Unsymmetrical Dimethylhydrazine Transformation Products with Chromatography-Mass Spectrometry. Chemosphere 2022, 307, 135764. [Google Scholar] [CrossRef]
- Karnaeva, A.E.; Milyushkin, A.L.; Khesina, Z.B.; Buryak, A.K. 1-Methyl-1H-1,2,4-Triazole as the Main Marker of 1,1-Dimethylhydrazine Exposure in Plants. Environ. Sci. Pollut. Res. 2022, 29, 64225–64231. [Google Scholar] [CrossRef]
- Liao, Q.; Feng, C.; Wang, L. Biodegradation of Unsymmetrical Dimethylhydrazine in Solution and Soil by Bacteria Isolated from Activated Sludge. Appl. Sci. 2016, 6, 95. [Google Scholar] [CrossRef] [Green Version]
- Zhakupbekova, A.; Baimatova, N.; Psillakis, E.; Kenessov, B. Quantification of Trace Transformation Products of Rocket Fuel Unsymmetrical Dimethylhydrazine in Sand Using Vacuum-Assisted Headspace Solid-Phase Microextraction. Environ. Sci. Pollut. Res. 2022, 29, 33645–33656. [Google Scholar] [CrossRef]
- Hung, H.-W.; Lin, T.-F.; Chiu, C.-H.; Chang, Y.-C.; Hsieh, T.-Y. Trace Analysis of N-Nitrosamines in Water Using Solid-Phase Microextraction Coupled with Gas Chromatograph–Tandem Mass Spectrometry. Water Air Soil Pollut. 2010, 213, 459–469. [Google Scholar] [CrossRef]
- Mu, X.; Wang, X.; Zhang, Y.; Liu, B.; Yang, J. Major Products and Their Formation and Transformation Mechanism through Degrading UDMH Wastewater via DBD Low Temperature Plasma. Environ. Technol. 2021, 42, 2709–2720. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Guo, L.; Jin, H.; Kou, J.; Zhang, D.; Wang, R. Gasification of Unsymmetrical Dimethylhydrazine in Supercritical Water: Reaction Pathway and Kinetics. Int. J. Hydrogen Energy 2018, 43, 8644–8654. [Google Scholar] [CrossRef]
- Brubaker, K.L.; Bonilla, J.V.; Boparai, A.S. Products of the Hypochlorite Oxidation of Hydrazine Fuels. Available online: https://apps.dtic.mil/sti/pdfs/ADA213557.pdf (accessed on 1 April 2023).
- Lee, W.; Na, S.; Seo, C.; Son, H.; Lee, Y. Chlorination of N,N-Dimethylhydrazine Compounds: Reaction Kinetics, Mechanisms, and Implications for Controlling N-Nitrosodimethylamine Formation during Ozonation. Environ. Sci. Water Res. Technol. 2020, 6, 2567–2579. [Google Scholar] [CrossRef]
- Fu, Y.; Luo, S.; Zhang, M.; Liu, D.; Sun, B.; Liu, Z.; Wang, D.; Wang, X.; Rong, M. Chemical Kinetics of Unsymmetrical Dimethylhydrazine (UDMH) Degradation in Wastewater by ·OH Radical. Plasma Chem. Plasma Process 2022, 42, 363–375. [Google Scholar] [CrossRef]
- Luo, S.; Fu, Y.; Zhang, M.; Liu, Y.; Wang, D.; Zhang, J.; Liu, D.; Rong, M. Theoretical Study on the Degradation Pathways of Unsymmetrical Dimethylhydrazine by Aqueous O3. Plasma Chem. Plasma Process 2023, 43, 81–97. [Google Scholar] [CrossRef]
- Huang, Y.; Jia, Y.; Zuo, L.; Huo, Y.; Zhang, Y.; Hou, L. Comparison of VUV/H2O2 and VUV/PMS (Peroxymonosulfate) for the Degradation of Unsymmetrical Dimethylhydrazine in Water. J. Water Process Eng. 2022, 49, 102970. [Google Scholar] [CrossRef]
- Iartsev, S.D.; Pytskii, I.S.; Karnaeva, A.E.; Buryak, A.K. Surface-Assisted Laser Desorption/Ionization Mass Spectrometry for the Detection of Low-Molecular-Weight and Oligomeric Products of 1,1-Dimethylhydrazine Transformation on the Surfaces of Construction Materials. Russ. J. Phys. Chem. B 2017, 11, 680–683. [Google Scholar] [CrossRef]
- Matyushin, D.D.; Sholokhova, A.Y.; Buryak, A.K. Deep Learning Based Prediction of Gas Chromatographic Retention Indices for a Wide Variety of Polar and Mid-Polar Liquid Stationary Phases. Int. J. Mol. Sci. 2021, 22, 9194. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Singer, H.P.; Slobodnik, J.; Ipolyi, I.M.; Oswald, P.; Krauss, M.; Schulze, T.; Haglund, P.; Letzel, T.; Grosse, S.; et al. Non-Target Screening with High-Resolution Mass Spectrometry: Critical Review Using a Collaborative Trial on Water Analysis. Anal. Bioanal. Chem. 2015, 407, 6237–6255. [Google Scholar] [CrossRef]
- Vinaixa, M.; Schymanski, E.L.; Neumann, S.; Navarro, M.; Salek, R.M.; Yanes, O. Mass Spectral Databases for LC/MS- and GC/MS-Based Metabolomics: State of the Field and Future Prospects. TrAC Trends Anal. Chem. 2016, 78, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Allen, F.; Pon, A.; Greiner, R.; Wishart, D. Computational Prediction of Electron Ionization Mass Spectra to Assist in GC/MS Compound Identification. Anal. Chem. 2016, 88, 7689–7697. [Google Scholar] [CrossRef] [PubMed]
- Allen, F.; Pon, A.; Wilson, M.; Greiner, R.; Wishart, D. CFM-ID: A Web Server for Annotation, Spectrum Prediction and Metabolite Identification from Tandem Mass Spectra. Nucleic Acids Res. 2014, 42, W94–W99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Liigand, J.; Tian, S.; Arndt, D.; Greiner, R.; Wishart, D.S. CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. Anal. Chem. 2021, 93, 11692–11700. [Google Scholar] [CrossRef]
- Matyushin, D.D.; Buryak, A.K. Gas Chromatographic Retention Index Prediction Using Multimodal Machine Learning. IEEE Access 2020, 8, 223140–223155. [Google Scholar] [CrossRef]
- Matyushin, D.D.; Sholokhova, A.Y.; Buryak, A.K. Deep Learning Driven GC-MS Library Search and Its Application for Metabolomics. Anal. Chem. 2020, 92, 11818–11825. [Google Scholar] [CrossRef]
- Mansouri, K.; Grulke, C.M.; Judson, R.S.; Williams, A.J. OPERA Models for Predicting Physicochemical Properties and Environmental Fate Endpoints. J. Cheminform. 2018, 10, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansouri, K.; Karmaus, A.L.; Fitzpatrick, J.; Patlewicz, G.; Pradeep, P.; Alberga, D.; Alepee, N.; Allen, T.E.H.; Allen, D.; Alves, V.M.; et al. CATMoS: Collaborative Acute Toxicity Modeling Suite. Environ. Health Perspect. 2021, 129, 047013. [Google Scholar] [CrossRef]
- Fedorova, E.S.; Matyushin, D.D.; Plyushchenko, I.V.; Stavrianidi, A.N.; Buryak, A.K. Deep Learning for Retention Time Prediction in Reversed-Phase Liquid Chromatography. J. Chromatogr. A 2022, 1664, 462792. [Google Scholar] [CrossRef]
- Yang, Q.; Ji, H.; Lu, H.; Zhang, Z. Prediction of Liquid Chromatographic Retention Time with Graph Neural Networks to Assist in Small Molecule Identification. Anal. Chem. 2021, 93, 2200–2206. [Google Scholar] [CrossRef]
- Ju, R.; Liu, X.; Zheng, F.; Lu, X.; Xu, G.; Lin, X. Deep Neural Network Pretrained by Weighted Autoencoders and Transfer Learning for Retention Time Prediction of Small Molecules. Anal. Chem. 2021, 93, 15651–15658. [Google Scholar] [CrossRef]
- Bouwmeester, R.; Martens, L.; Degroeve, S. Generalized Calibration Across Liquid Chromatography Setups for Generic Prediction of Small-Molecule Retention Times. Anal. Chem. 2020, 92, 6571–6578. [Google Scholar] [CrossRef] [PubMed]
- Lapthorn, C.; Pullen, F.; Chowdhry, B.Z. Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS) of Small Molecules: Separating and Assigning Structures to Ions. Mass Spectrom. Rev. 2013, 32, 43–71. [Google Scholar] [CrossRef] [Green Version]
- Plante, P.-L.; Francovic-Fontaine, É.; May, J.C.; McLean, J.A.; Baker, E.S.; Laviolette, F.; Marchand, M.; Corbeil, J. Predicting Ion Mobility Collision Cross-Sections Using a Deep Neural Network: DeepCCS. Anal. Chem. 2019, 91, 5191–5199. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Luo, M.; Chen, X.; Yin, Y.; Xiong, X.; Wang, R.; Zhu, Z.-J. Ion Mobility Collision Cross-Section Atlas for Known and Unknown Metabolite Annotation in Untargeted Metabolomics. Nat. Commun. 2020, 11, 4334. [Google Scholar] [CrossRef]
- Samukhina, Y.V.; Matyushin, D.D.; Grinevich, O.I.; Buryak, A.K. A Deep Convolutional Neural Network for Prediction of Peptide Collision Cross Sections in Ion Mobility Spectrometry. Biomolecules 2021, 11, 1904. [Google Scholar] [CrossRef] [PubMed]
- Bijlsma, L.; Bade, R.; Celma, A.; Mullin, L.; Cleland, G.; Stead, S.; Hernandez, F.; Sancho, J.V. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 2017, 89, 6583–6589. [Google Scholar] [CrossRef] [PubMed]
Methods Used | Sample | Year | Reference |
---|---|---|---|
GC-MS, several standard samples of the most common UDMH oxidation products | Synthetic model mixture | 1979 | Mach et al. [5] |
HPLC-MS, GC-MS, standard samples, for 4 of 12 compounds: preparative isolation and NMR | Contaminated soil | 2008 | Rodin et al. [10] |
GC-MS, low resolution, NIST 05 library search | Contaminated soil | 2010 | Carlsen et al. [8] |
GC-MS, low resolution, library search | Synthetic model mixture | 2011 | Buryak et al. [15] |
GC-MS, low resolution, NIST library search | Contaminated soil | 2012 | Kenessov et al. [12] |
HPLC-MS2, low resolution, standard samples | Contaminated soil | 2014 | Kosyakov et al. [9] |
HRMS, electrospray ion source, no chromatographic separation | Synthetic model mixture | 2017 | Ul’yanovskii et al. [14] |
HPLC-HRMS, MS2, preparative HPLC, NMR (5 compounds) | UDMH-containing wash water after uncontrolled storage | 2019 | Milyushkin et al. [16] |
HRMS, electrospray ion source, no chromatographic separation | Contaminated soil and synthetic model mixtures | 2019 | Kosyakov et al. [13] |
GC-MS, several standard samples of the most common UDMH oxidation products | Synthetic model mixture | 2019 | Huang et al. [6] |
GC-HRMS, library search in the NIST 17 database (low-resolution GC-MS database) | Contaminated soil | 2021 | Ul’yanovskii et al. [11] |
GC-MS with two ion sources, HPLC-HRMS, machine learning for prediction of mass spectra and retention, NIST 17 database | UDMH-containing wash water after uncontrolled storage | 2022 | Sholokhova et al. [17] |
GC-MS, low resolution, NIST 17 library search, some compounds are detected with quite low confidence | Plant samples contaminated with UDMH | 2022 | Karnaeva et al. [18] |
N | RT, min | MW | Structure | RI | Predicted RI |
---|---|---|---|---|---|
1 * | 4.75 | 82 | 1119 | 1163 | |
2 * | 6.44 | 96 | ( [17]) | 1215 | 1273 |
3 | 9.02 | 97 | or | 1362 | 1427 or 1410 |
4 | 9.72 | 126 | ( [17]) | 1406 | 1500 |
5 * | 10.24 | 83 | or | 1440 | 1463 or 1354 |
6 | 10.71 | 97 | 1470 | 1526 | |
7 * | 12.52 | 96 | ( or [17]) | 1591 | 1680 (NIST) |
8 | 14.00 | 126 | 1704 | 1730 | |
9 * | 14.52 | 82 | 1739 | 1690 (NIST) | |
10 * | 15.33 | 130 | 1801 | 1754 | |
11 * | 16.95 | 121 | 1932 | 1886 | |
12 | 18.25 | 152 | ( [17]) | 2041 | 1963 |
13 | 18.35 | 127 | 2050 | 2146 | |
14 * | 18.80 | 166 | or (absents in the NIST 17 database) | 2090 | 2147 or 2079 |
15 | 18.82 | 152 | 2092 | 2031 | |
16 | 21.20 | 112 | 2312 | 2246 | |
17 | 21.28 | 153 | 2320 | 2261 | |
18 | 22.67 | 153 | 2456 | 2390 | |
19 | 22.87 | 153 | 2476 | 2397 | |
20 | 24.71 | 153 | 2670 | 2629 | |
21 | 27.66 | 169 | ( [17]) | 3005 | 2927 |
22 * | - | 102 | Not detected | ||
23 * | “solvent cut” | 85 | Not detected | ||
24 * | - | 73 | Not detected |
Polar Stationary Phase | Non-Polar Stationary Phase | ||||||
---|---|---|---|---|---|---|---|
N | RT, min | Structure | RI | Predicted RI | RI | Predicted RI | EPA Category |
I | 13.65 | or | 1681 | 1615 | 1177 | 1131 | II |
II | 18.11 | 2030 | 2077 | 1295 | 1275 | III | |
III | 19.74 | 2175 | 2255 | 1427 | 1387 | III | |
IV | 25.82 | 2792 | 2768 | 1841 | 1821 | II | |
V | 26.34 | 2851 | 2879 | 1983 | 1944 | II | |
VI | 28.75 | 3132 | 3027 | 2010 | 1994 | II | |
VII | 29.43 | or | 3201 | 3240 | 1733 | 1726 | II |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sholokhova, A.Y.; Matyushin, D.D.; Grinevich, O.I.; Borovikova, S.A.; Buryak, A.K. Intelligent Workflow and Software for Non-Target Analysis of Complex Samples Using a Mixture of Toxic Transformation Products of Unsymmetrical Dimethylhydrazine as an Example. Molecules 2023, 28, 3409. https://doi.org/10.3390/molecules28083409
Sholokhova AY, Matyushin DD, Grinevich OI, Borovikova SA, Buryak AK. Intelligent Workflow and Software for Non-Target Analysis of Complex Samples Using a Mixture of Toxic Transformation Products of Unsymmetrical Dimethylhydrazine as an Example. Molecules. 2023; 28(8):3409. https://doi.org/10.3390/molecules28083409
Chicago/Turabian StyleSholokhova, Anastasia Yu., Dmitriy D. Matyushin, Oksana I. Grinevich, Svetlana A. Borovikova, and Aleksey K. Buryak. 2023. "Intelligent Workflow and Software for Non-Target Analysis of Complex Samples Using a Mixture of Toxic Transformation Products of Unsymmetrical Dimethylhydrazine as an Example" Molecules 28, no. 8: 3409. https://doi.org/10.3390/molecules28083409
APA StyleSholokhova, A. Y., Matyushin, D. D., Grinevich, O. I., Borovikova, S. A., & Buryak, A. K. (2023). Intelligent Workflow and Software for Non-Target Analysis of Complex Samples Using a Mixture of Toxic Transformation Products of Unsymmetrical Dimethylhydrazine as an Example. Molecules, 28(8), 3409. https://doi.org/10.3390/molecules28083409