Survey of Recent Advances in Molecular Fluorophores, Unconjugated Polymers, and Emerging Functional Materials Designed for Electrofluorochromic Use
Abstract
:1. Overview
2. Requisite Performance Criteria of Electrofluorochromes
3. Fluorescence Deactivation Modes
4. Molecular Electrofluorochromes
4.1. Covalently Coupled Electroactive Fluorophores
4.2. Consolidated Redox-Active Fluorophores
4.2.1. Redox-Active Organic Fluorophores
4.2.2. POMS Redox-Active Fluorophores
4.3. Understanding Design Principles of Molecular Electrofluorochromes
5. Electrofluorochromic Polymers
5.1. TPA-Containing Electrofluorochromic Unconjugated Polymers
5.1.1. Polysilsesquioxanes and Polyimides
5.1.2. Polyamides
5.2. In Situ Polymerization of Electrofluorochromic Polymers
5.3. Electrofluorochromic Polymers Other Than TPA
5.4. Understanding Design Principles of Electrofluorochromic Polymers
6. Covalent Organic Frameworks
7. Perspective and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.; Kim, E.; Clavier, G.; Audebert, P. New tetrazine-based fluoroelectrochromic window; modulation of the fluorescence through applied potential. Chem. Commun. 2006, 34, 3612–3614. [Google Scholar] [CrossRef] [PubMed]
- Montilla, F.; Mallavia, R. In situ electrochemical fluorescence studies of ppv. J. Phys. Chem. B 2006, 110, 25791–25796. [Google Scholar] [CrossRef] [PubMed]
- Audebert, P.; Miomandre, F. Electrofluorochromism: From molecular systems to set-up and display. Chem. Sci. 2013, 4, 575–584. [Google Scholar] [CrossRef]
- Gu, C.; Jia, A.-B.; Zhang, Y.-M.; Zhang, S.X.-A. Emerging electrochromic materials and devices for future displays. Chem. Rev. 2022, 122, 14679–14721. [Google Scholar] [CrossRef] [PubMed]
- Shchegolkov, A.V.; Jang, S.-H.; Shchegolkov, A.V.; Rodionov, Y.V.; Sukhova, A.O.; Lipkin, M.S. A brief overview of electrochromic materials and related devices: A nanostructured materials perspective. Nanomaterials 2021, 11, 2376. [Google Scholar] [CrossRef]
- Rai, V.; Singh, R.S.; Blackwood, D.J.; Zhili, D. A review on recent advances in electrochromic devices: A material approach. Adv. Eng. Mater. 2020, 22, 2000082. [Google Scholar] [CrossRef]
- Lee, S.J.; Choi, D.S.; Kang, S.H.; Yang, W.S.; Nahm, S.; Han, S.H.; Kim, T. Vo2/wo3-based hybrid smart windows with thermochromic and electrochromic properties. ACS Sustain. Chem. Eng. 2019, 7, 7111–7117. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Yu, W.W.; Elezzabi, A.Y. Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light Sci. Appl. 2020, 9, 121. [Google Scholar] [CrossRef]
- Song, R.; Li, G.; Zhang, Y.; Rao, B.; Xiong, S.; He, G. Novel electrochromic materials based on chalcogenoviologens for smart windows, e-price tag and flexible display with improved reversibility and stability. Chem. Eng. J. 2021, 422, 130057. [Google Scholar] [CrossRef]
- Khandelwal, H.; Schenning, A.P.H.J.; Debije, M.G. Infrared regulating smart window based on organic materials. Adv. Energy Mater. 2017, 7, 1602209. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Tsai, C.-Y.; Li, L.-J.; Liaw, D.-J. Colorless-to-colorful switching electrochromic polyimides with very high contrast ratio. Nat. Commun. 2019, 10, 1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koyuncu, S.; Koyuncu, F.B. A new ito-compatible side chain-functionalized multielectrochromic polymer for use in adaptive camouflage-like electrochromic devices. React. Funct. Polym. 2018, 131, 174–180. [Google Scholar] [CrossRef]
- Li, M.; Yassin, O.A.; Baczkowski, M.L.; Zhang, X.; Daniels, R.; Deshmukh, A.A.; Zhu, Y.; Otley, M.T.; Sotzing, G.A. Colorless to black electrochromic devices using subtractive color mixing of two electrochromes: A conjugated polymer with a small organic molecule. Org. Electron. 2020, 84, 105748. [Google Scholar] [CrossRef]
- Kim, K.-W.; Lee, J.K.; Tang, X.; Lee, Y.; Yeo, J.; Moon, H.C.; Lee, S.W.; Kim, S.H. Novel triphenylamine containing poly-viologen for voltage-tunable multi-color electrochromic device. Dyes Pigm. 2021, 190, 109321. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, Q.; Luo, X.; Ma, H.; Zheng, W.; Yu, J.; Zhang, Z.; Zhang, K.; Qu, K.; Yang, R.; et al. Low-cost fabrication of high-performance fluorinated polythiophene-based Vis–NIR electrochromic devices toward deformable display and camouflage. Chem. Mater. 2022, 34, 9923–9933. [Google Scholar] [CrossRef]
- Kim, Y.; Park, C.; Im, S.; Kim, J.H. Design of intrinsically stretchable and highly conductive polymers for fully stretchable electrochromic devices. Sci. Rep. 2020, 10, 16488. [Google Scholar] [CrossRef] [PubMed]
- Linderhed, U.; Petsagkourakis, I.; Ersman, P.A.; Beni, V.; Tybrandt, K. Fully screen printed stretchable electrochromic displays. Flex. Print. Electron. 2021, 6, 045014. [Google Scholar] [CrossRef]
- Pan, T.; Liu, S.; Zhang, L.; Xie, W. Flexible organic optoelectronic devices on paper. iScience 2022, 25, 103782. [Google Scholar] [CrossRef]
- Li, W.; Bai, T.; Fu, G.; Zhang, Q.; Liu, J.; Wang, H.; Sun, Y.; Yan, H. Progress and challenges in flexible electrochromic devices. Sol. Energy Mater. Sol. Cells 2022, 240, 111709. [Google Scholar] [CrossRef]
- Chaudhary, A.; Pathak, D.K.; Mishra, S.; Yogi, P.; Sagdeo, P.R.; Kumar, R. Enhancing viologen’s electrochromism by incorporating thiophene: A step toward all-organic flexible device. Phys. Status Solidi A 2019, 216, 1800680. [Google Scholar] [CrossRef]
- Che, B.; Zhou, D.; Li, H.; He, C.; Liu, E.; Lu, X. A highly bendable transparent electrode for organic electrochromic devices. Org. Electron. 2019, 66, 86–93. [Google Scholar] [CrossRef]
- Ahmad, F.H.; Hassan, Z.; Lim, W.F. Investigation on structural, morphological, optical, and current-voltage characteristics of polyfluorene with dissimilar composition spin coated on ito. Optik 2021, 242, 167034. [Google Scholar] [CrossRef]
- Iacob, M.; Verma, A.; Buchner, T.; Sheima, Y.; Katzschmann, R.; Opris, D.M. Slot-die coating of an on-the-shelf polymer with increased dielectric permittivity for stack actuators. ACS Appl. Polym. Mater. 2022, 4, 150–157. [Google Scholar] [CrossRef]
- Sohn, S.; Kim, S.; Shim, J.W.; Jung, S.K.; Jung, S. Printed organic light-emitting diodes on fabric with roll-to-roll sputtered ito anode and poly(vinyl alcohol) planarization layer. ACS Appl. Mater. Interfaces 2021, 13, 28521–28528. [Google Scholar] [CrossRef]
- Sung, Y.-M.; Tsao, C.-S.; Lin, H.-K.; Cha, H.-C.; Huang, Y.-C. Scale-up fabrication and characteristic study of oligomer-like small-molecule solar cells by ambient halogen-free sheet-to-sheet and roll-to-roll slot-die coating. Sol. Energy 2022, 231, 536–545. [Google Scholar] [CrossRef]
- Macher, S.; Schott, M.; Sassi, M.; Facchinetti, I.; Ruffo, R.; Patriarca, G.; Beverina, L.; Posset, U.; Giffin, G.A.; Löbmann, P. New roll-to-roll processable pedot-based polymer with colorless bleached state for flexible electrochromic devices. Adv. Funct. Mater. 2020, 30, 1906254. [Google Scholar] [CrossRef]
- Koivuluoto, H. A review of thermally sprayed polymer coatings. J. Therm. Spray Technol. 2022, 31, 1750–1764. [Google Scholar] [CrossRef]
- Aziz, F.; Ismail, A.F. Spray coating methods for polymer solar cells fabrication: A review. Mater. Sci. Semicond. Process. 2015, 39, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Ciocca, M.; Giannakou, P.; Mariani, P.; Cinà, L.; Di Carlo, A.; Tas, M.O.; Asari, H.; Marcozzi, S.; Camaioni, A.; Shkunov, M.; et al. Colour-sensitive conjugated polymer inkjet-printed pixelated artificial retina model studied via a bio-hybrid photovoltaic device. Sci. Rep. 2020, 10, 21457. [Google Scholar] [CrossRef] [PubMed]
- Sumaiya, S.; Kardel, K.; El-Shahat, A. Organic solar cell by inkjet printing—An overview. Technologies 2017, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.; Cheng, X.; Layani, M.; Tan, A.W.M.; Li, S.; Eh, A.L.-S.; Gao, D.; Magdassi, S.; Lee, P.S. Direct inkjet-patterning of energy efficient flexible electrochromics. Nano Energy 2018, 49, 147–154. [Google Scholar] [CrossRef]
- Jensen, J.; Krebs, F.C. From the bottom up–flexible solid-state electrochromic devices. Adv. Mater. 2014, 26, 7231–7234. [Google Scholar] [CrossRef] [Green Version]
- Meng, H. Organic Electronics for Electrochromic Materials and Devices; Wiley: Hoboken, NJ, USA, 2021; p. 528. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, X.; Zhang, P.; Liu, Y.; Qi, H.; Zhang, P.; Kaiser, U.; Reineke, S.; Dong, R.; Feng, X. Viologen-immobilized 2D polymer film enabling highly efficient electrochromic device for solar-powered smart window. Adv. Mater. 2022, 34, 2106073. [Google Scholar] [CrossRef]
- Corrente, G.A.; Beneduci, A. Overview on the recent progress on electrofluorochromic materials and devices: A critical synopsis. Adv. Opt. Mater. 2020, 8, 2000887. [Google Scholar] [CrossRef]
- Miomandre, F. How molecular electrochemistry may shine light by designing electrofluorochromic compounds. Curr. Opin. Electrochem. 2020, 24, 56–62. [Google Scholar] [CrossRef]
- Yen, H.-J.; Liou, G.-S. Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications. Prog. Polym. Sci. 2019, 89, 250–287. [Google Scholar] [CrossRef]
- Al-Kutubi, H.; Zafarani, H.R.; Rassaei, L.; Mathwig, K. Electrofluorochromic systems: Molecules and materials exhibiting redox-switchable fluorescence. Eur. Polym. J. 2016, 83, 478–498. [Google Scholar] [CrossRef]
- Guille-Collignon, M.; Delacotte, J.; Lemaître, F.; Labbé, E.; Buriez, O. Electrochemical fluorescence switch of organic fluorescent or fluorogenic molecules. Chem. Rec. 2021, 21, 2193–2202. [Google Scholar] [CrossRef]
- Nakamura, K.; Kanazawa, K.; Kobayashi, N. Electrochemical photoluminescence modulation of functional materials and their electrochemical devices. J. Photochem. Photobiol. A 2022, 50, 100486. [Google Scholar] [CrossRef]
- Pilicode, N.; Naik, P.; Nimith, K.M.; Acharya, M.; Satyanarayan, M.N.; Adhikari, A.V. New cyanopyridine based conjugated polymers carrying auxiliary electron donors: From molecular design to blue emissive pleds. Dyes Pigm. 2020, 174, 108046. [Google Scholar] [CrossRef]
- Ito, S.; Ito, Y.; Kazuo, T.; Chujo, Y. Near-infrared-emissive π-conjugated polymers based on five-coordinated silicon formazanate complexes. Polymer 2022, 239, 124463. [Google Scholar] [CrossRef]
- Creamer, A.; Wood, C.S.; Howes, P.D.; Casey, A.; Cong, S.; Marsh, A.V.; Godin, R.; Panidi, J.; Anthopoulos, T.D.; Burgess, C.H.; et al. Post-polymerisation functionalisation of conjugated polymer backbones and its application in multi-functional emissive nanoparticles. Nat. Commun. 2018, 9, 3237. [Google Scholar] [CrossRef] [Green Version]
- Chua, M.H.; Zhu, Q.; Shah, K.W.; Xu, J.W. Electroluminochromic materials: From molecules to polymers. Polymers 2019, 11, 98. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Chen, Y.; Liang, Z. Electroluminochromic materials and devices. Adv. Funct. Mater. 2016, 26, 2783–2799. [Google Scholar] [CrossRef]
- Gierschner, J.; Shi, J.; Milián-Medina, B.; Roca-Sanjuán, D.; Varghese, S.; Park, S. Luminescence in crystalline organic materials: From molecules to molecular solids. Adv. Opt. Mater. 2021, 9, 2002251. [Google Scholar] [CrossRef]
- Chen, S.; Yu, Y.-L.; Wang, J.-H. Inner filter effect-based fluorescent sensing systems: A review. Anal. Chim. Acta 2018, 999, 13–26. [Google Scholar] [CrossRef]
- Suzuki, S.; Sasaki, S.; Sairi, A.S.; Iwai, R.; Tang, B.Z.; Konishi, G.I. Principles of aggregation-induced emission: Design of deactivation pathways for advanced AIEgens and applications. Angew. Chem. 2020, 132, 9940–9951. [Google Scholar] [CrossRef]
- Zhang, F.; Xie, H.; Guo, B.; Zhu, C.; Xu, J. AIE-active macromolecules: Designs, performances, and applications. Polym. Chem. 2022, 13, 8–43. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, B.; Gao, Y.; Liu, C.; Li, G.; Rao, B.; Chu, D.; Yan, N.; Zhang, M.; He, G. Efficient photoinduced electron transfer from pyrene-o-carborane heterojunction to selenoviologen for enhanced photocatalytic hydrogen evolution and reduction of alkynes. Adv. Sci. 2022, 9, 2101652. [Google Scholar] [CrossRef] [PubMed]
- Al-Suwaidan, I.A.; Alanazi, A.M.; El-Azab, A.S.; Al-Obaid, A.M.; ElTahir, K.E.H.; Maarouf, A.R.; Abu El-Enin, M.A.; Abdel-Aziz, A.A.M. Molecular design, synthesis and biological evaluation of cyclic imides bearing benzenesulfonamide fragment as potential cox-2 inhibitors. Part 2. Bioorg. Med. Chem. Lett. 2013, 23, 2601–2605. [Google Scholar] [CrossRef]
- Yang, S.; Lin, Y.; Sun, J.; Li, C.; Zhang, Y.; Zhang, C. Integrated electrochromic and electrofluorochromic properties from polyaniline-like polymers with triphenylacrylonitrile as side groups. Electrochim. Acta 2022, 421, 140443. [Google Scholar] [CrossRef]
- Capodilupo, A.-L.; Manni, F.; Corrente, G.A.; Accorsi, G.; Fabiano, E.; Cardone, A.; Giannuzzi, R.; Beneduci, A.; Gigli, G. Arylamino-fluorene derivatives: Optically induced electron transfer investigation, redox-controlled modulation of absorption and fluorescence. Dyes Pigm. 2020, 177, 108325. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Fang, X.; Zhang, J.; Liu, H.; Ma, J.; An, Q.; Hou, C.; Zhao, H.; Sun, Z.; et al. Novel electrofluorochromic materials based on asymmetric D-A-D′ type indolocarbazole-imidazole-triarylamine derivatives. Dyes Pigm. 2021, 193, 109516. [Google Scholar] [CrossRef]
- Corrente, G.A.; González, D.A.; Aktas, E.; Capodilupo, A.L.; Mazzone, G.; Ruighi, F.; Accorsi, G.; Imbardelli, D.; Rodriguez-Seco, C.; Martinez-Ferrero, E.; et al. Vis–NIR electrochromism and NIR–green electroluminochromism in dual functional benzothiadiazole-arylamine mixed-valence compounds. Adv. Opt. Mater. 2022, 11, 2201506. [Google Scholar] [CrossRef]
- Su, K.; Sun, N.; Tian, X.; Li, X.; Chao, D.; Wang, D.; Zhou, H.; Chen, C. Novel polyamides with pendant p-phenylenediamine and α-/β-substituted naphthalene: Synthesis, characteristics, and effects of substitution sites on electro-switchable optical behaviors. Mater. Today Chem. 2021, 22, 100536. [Google Scholar] [CrossRef]
- Turro, N.J.; Ramamurthy, V.; Scaiano, J.C. Energy transfer and electron transfer. In Principles of Molecular Photochemistry: An Introduction; University Science Books: Sausalito, CA, USA, 2009. [Google Scholar]
- Li, C.; Yan, Q.; Liu, H.; Liu, B. Enhancing electrofluorochromic efficiency through c30h31n6+ sensitized layer-by-layer polyoxometalate films. Appl. Surf. Sci. 2020, 503, 144321. [Google Scholar] [CrossRef]
- Fu, Z.; Ma, Z.; Yu, T.; Bi, L. A first blue fluorescence composite film based on graphitic carbon nitride nanosheets/polyoxometalate for application in reversible electroluminescence switching. J. Mater. Chem. C 2019, 7, 3253–3262. [Google Scholar] [CrossRef]
- Qu, S.; Ou, Z.; Savsatli, Y.; Yao, L.; Cao, Y.; Montoto, E.C.; Yu, H.; Hui, J.; Li, B.; Soares, J.A.N.T.; et al. Visualizing energy transfer between redox-active colloids. arXiv 2022, arXiv:2204.00195. [Google Scholar] [CrossRef]
- Sahoo, S.K. Fluorescent chemosensors containing redox-active ferrocene: A review. Dalton Trans. 2021, 50, 11681–11700. [Google Scholar] [CrossRef] [PubMed]
- Miomandre, F.; Audebert, P. 1,2,4,5-tetrazines: An intriguing heterocycles family with outstanding characteristics in the field of luminescence and electrochemistry. J. Photochem. Photobiol. A 2020, 44, 100372. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, M.; Zhu, Y.N.; Perepichka, I.F.; Xing, X.; Liu, Y.M.; Yan, C.Y.; Meng, H. Multicolored cathodically coloring electrochromism and electrofluorochromism in regioisomeric star-shaped carbazole dibenzofurans. ACS Appl. Mater. Interfaces 2020, 12, 24156–24164. [Google Scholar] [CrossRef]
- Kim, S.; You, Y. Highly reversible electrofluorochromism from electrochemically decoupled but electronically coupled molecular dyads. Adv. Opt. Mater. 2019, 7, 1900201. [Google Scholar] [CrossRef]
- Yang, J.F.; Li, M.; Kang, L.H.; Zhu, W.H. A luminescence molecular switch via modulation of PET and ICT processes in dcm system. Sci. China Chem. 2017, 60, 607–613. [Google Scholar] [CrossRef]
- Corrente, G.A.; Fabiano, E.; La Deda, M.; Manni, F.; Gigli, G.; Chidichimo, G.; Capodilupo, A.L.; Beneduci, A. High-performance electrofluorochromic switching devices using a novel arylamine-fluorene redox-active fluorophore. ACS Appl. Mater. Interfaces 2019, 11, 12202–12208. [Google Scholar] [CrossRef] [PubMed]
- Connelly, N.G.; Geiger, W.E. Chemical redox agents for organometallic chemistry. Chem. Rev. 1996, 96, 877–910. [Google Scholar] [CrossRef]
- Elvington, M.C.; Brewer, K.J. Electrochemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons: Blacksburg, VA, USA, 2011. [Google Scholar] [CrossRef]
- Yano, M.; Tamada, K.; Nakai, M.; Mitsudo, K.; Kashiwagi, Y. Near-infrared absorbing molecule based on triphenylamine radical cation with extended homoaryl π-system. Colorants 2022, 1, 226–235. [Google Scholar] [CrossRef]
- Yano, M.; Inada, Y.; Hayashi, Y.; Yajima, T.; Mitsudo, K.; Kashiwagi, Y. Photo- and redox-active benzofuran-appended triphenylamine and near-infrared absorption of its radical cation. Chem. Lett. 2020, 49, 685–688. [Google Scholar] [CrossRef]
- Sindt, A.J.; DeHaven, B.A.; McEachern, D.F.; Dissanayake, D.M.M.M.; Smith, M.D.; Vannucci, A.K.; Shimizu, L.S. UV-irradiation of self-assembled triphenylamines affords persistent and regenerable radicals. Chem. Sci. 2019, 10, 2670–2677. [Google Scholar] [CrossRef] [Green Version]
- Wałęsa-Chorab, M.; Yao, C.; Tuner, G.; Skene, W.G. Electrochemical and solvent-mediated visible-to-near-infrared spectroscopic switching of benzoselenadiazole fluorophores. Chem. Eur. J. 2020, 26, 17416–17427. [Google Scholar] [CrossRef]
- Justin Thomas, K.R.; Lin, J.T.; Velusamy, M.; Tao, Y.-T.; Chuen, C.-H. Color tuning in benzo [1,2,5]thiadiazole-based small molecules by amino conjugation/deconjugation: Bright red-light-emitting diodes. Adv. Funct. Mater. 2004, 14, 83–90. [Google Scholar] [CrossRef]
- Wałęsa-Chorab, M.; Skene, W.G. Visible-to-NIR electrochromic device prepared from a thermally polymerizable electroactive organic monomer. ACS Appl. Mater. Interfaces 2017, 9, 21524–21531. [Google Scholar] [CrossRef] [PubMed]
- Muras, K.; Kubicki, M.; Wałęsa-Chorab, M. Benzochalcodiazole-based donor-acceptor-donor non-symmetric small molecules as dual-functioning electrochromic and electrofluorochromic materials. Dyes Pigm. 2023, 212, 111098. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, W.; Zhou, Z.; Liu, K.; Gao, M.; Tang, B.Z. Red-to-NIR emissive radical cations derived from simple pyrroles. Mater. Horiz. 2021, 8, 3082–3087. [Google Scholar] [CrossRef]
- Tretyakov, E.V.; Ovcharenko, V.I.; Terent’ev, A.O.; Krylov, I.B.; Magdesieva, T.V.; Mazhukin, D.G.; Gritsan, N.P. Conjugated nitroxides. Russ. Chem. Rev. 2022, 91, RCR5025. [Google Scholar] [CrossRef]
- Likhtenshtein, G.I. Fluorophore–nitroxide (profluorescent nitroxide) probes. In Nitroxides: Brief History, Fundamentals, and Recent Developments; Likhtenshtein, G.I., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 119–160. [Google Scholar] [CrossRef]
- Balijapalli, U.; Nagata, R.; Yamada, N.; Nakanotani, H.; Tanaka, M.; D’Aléo, A.; Placide, V.; Mamada, M.; Tsuchiya, Y.; Adachi, C. Highly efficient near-infrared electrofluorescence from a thermally activated delayed fluorescence molecule. Angew. Chem., Int. Ed. 2021, 60, 8477–8482. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yao, M.; Zhou, C.; Liu, H.; Zhang, S.-T.; Yang, B. Deep-red electro-fluorescence based on an excimer emission with hot-exciton channels. J. Mater. Chem. C 2022, 10, 4579–4583. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, Z.; Xu, Y.; Liang, J.; Lin, C.; Wei, J.; Wang, Y. Achieving efficient blue delayed electrofluorescence by shielding acceptors with carbazole units. ACS Appl. Mater. Interfaces 2019, 11, 28096–28105. [Google Scholar] [CrossRef] [PubMed]
- Adams, T.J.; Brotherton, A.R.; Molai, J.A.; Parmar, N.; Palmer, J.R.; Sandor, K.A.; Walter, M.G. Obtaining reversible, high contrast electrochromism, electrofluorochromism, and photochromism in an aqueous hydrogel device using chromogenic thiazolothiazoles. Adv. Funct. Mater. 2021, 31, 2103408. [Google Scholar] [CrossRef]
- Woodward, A.N.; Kolesar, J.M.; Hall, S.R.; Saleh, N.-A.; Jones, D.S.; Walter, M.G. Thiazolothiazole fluorophores exhibiting strong fluorescence and viologen-like reversible electrochromism. J. Am. Chem. Soc. 2017, 139, 8467–8473. [Google Scholar] [CrossRef]
- Wałęsa-Chorab, M.; Muras, K.; Filiatrault, H.L.; Skene, W.G. Suitability of alkyne donor-π-donor-π-donor scaffolds for electrofluorochromic and electrochromic use. J. Mater. Chem. C 2022, 10, 3691–3703. [Google Scholar] [CrossRef]
- Sayresmith, N.A.; Saminathan, A.; Sailer, J.K.; Patberg, S.M.; Sandor, K.; Krishnan, Y.; Walter, M.G. Photostable voltage-sensitive dyes based on simple, solvatofluorochromic, asymmetric thiazolothiazoles. J. Am. Chem. Soc. 2019, 141, 18780–18790. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, G.; Ziessel, R.; Harriman, A. The chemistry of fluorescent BODIPY dyes: Versatility unsurpassed. Angew. Chem., Int. Ed. 2008, 47, 1184–1201. [Google Scholar] [CrossRef]
- Gautam, R.; Petritis, S.J.; Tomat, E. Redox-switchable cyan fluorescence of a BODIPY analog inspired by propentdyopent pigments. Eur. J. Inorg. Chem. 2019, 2019, 68–72. [Google Scholar] [CrossRef]
- Guerret-Legras, L.; Maillot, B.; Audibert, J.F.; Dubacheva, G.V.; Galmiche, L.; Lang, P.; Miomandre, F. Electrofluorochromism of surface-confined tetrazines investigated on the monolayer scale. J. Phys. Chem. 2019, 123, 29255–29261. [Google Scholar] [CrossRef]
- Suleymanov, A.A.; Ruggi, A.; Planes, O.M.; Chauvin, A.-S.; Scopelliti, R.; Fadaei Tirani, F.; Sienkiewicz, A.; Fabrizio, A.; Corminboeuf, C.; Severin, K. Highly substituted Δ3-1,2,3-triazolines: Solid-state emitters with electrofluorochromic behavior. Chem. Eur. J. 2019, 25, 6718–6721. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Chiu, Y.-W.; Liou, G.-S. Substituent effects of AIE-active α-cyanostilbene-containing triphenylamine derivatives on electrofluorochromic behavior. Nanoscale 2019, 11, 8597–8603. [Google Scholar] [CrossRef]
- Čížková, M.; Cattiaux, L.; Mallet, J.-M.; Labbé, E.; Buriez, O. Electrochemical switching fluorescence emission in rhodamine derivatives. Electrochim. Acta 2018, 260, 589–597. [Google Scholar] [CrossRef]
- Slanina, T.; Oberschmid, T. Rhodamine 6g radical: A spectro (fluoro) electrochemical and transient spectroscopic study. ChemCatChem 2018, 10, 4182–4190. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, G.; Chen, Q.; Zheng, J.; Xu, C. Electrochromism and electrochromic devices of new extended viologen derivatives with various substituent benzene. Sol. Energy Mater. Sol. Cells 2020, 208, 110413. [Google Scholar] [CrossRef]
- Zhang, W.-j.; Lin, X.-c.; Li, F.; Huang, Z.-j.; Gong, C.-b.; Tang, Q. Multicolored electrochromic and electrofluorochromic materials containing triphenylamine and benzoates. New J. Chem. 2020, 44, 16412–16420. [Google Scholar] [CrossRef]
- Lin, H.-T.; Huang, C.-L.; Liou, G.-S. Design, synthesis, and electrofluorochromism of new triphenylamine derivatives with AIE-active pendent groups. ACS Appl. Mater. Interfaces 2019, 11, 11684–11690. [Google Scholar] [CrossRef]
- Sk, B.; Sarkar, M.; Singh, K.; Sengupta, A.; Patra, A. UV to NIR multistate electrochromism and electrofluorochromism in dibenzophenazine-arylamine derivatives. Chem. Commun. 2021, 57, 13590–13593. [Google Scholar] [CrossRef]
- Halder, S.; Roy, S.; Dixit, M.; Chakraborty, C. A terpyridine based hydrogel system for reversible transmissive-to-dark electrochromism and bright-to-quenched electrofluorochromism. Chem. Commun. 2022, 58, 8368–8371. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-T.; Lin, H.-T.; Liou, G.-S. Synthesis and characterization of novel triarylamine derivatives with dimethylamino substituents for application in optoelectronic devices. ACS Appl. Mater. Interfaces 2019, 11, 14902–14908. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Pan, M.; He, Q.; Zhou, Q.; Tang, Q.; Gong, C. Ester-functionalized pyrene derivatives: Effects of ester substituents on photophysical, electrochemical, electrochromic, and electrofluorochromic properties. Dyes Pigm. 2022, 201, 110203. [Google Scholar] [CrossRef]
- Blanchard, P.; Malacrida, C.; Cabanetos, C.; Roncali, J.; Ludwigs, S. Triphenylamine and some of its derivatives as versatile building blocks for organic electronic applications. Polym. Int. 2019, 68, 589–606. [Google Scholar] [CrossRef]
- Guven, N.; Şener Cemaloğlu, Ö.; Camurlu, P. Fast switching triphenylamine-based electrochromic polymers with fluorene core: Electrochemical synthesis and optoelectronic properties. J. Electrochem. Soc. 2022, 169, 026511. [Google Scholar] [CrossRef]
- Zou, L.; Guo, S.; Lv, H.; Chen, F.; Wei, L.; Gong, Y.; Liu, Y.; Wei, C. Molecular design for organic luminogens with efficient emission in solution and solid-state. Dyes Pigm. 2022, 198, 109958. [Google Scholar] [CrossRef]
- Belmonte-Vázquez, J.L.; Amador-Sánchez, Y.A.; Rodríguez-Cortés, L.A.; Rodríguez-Molina, B. Dual-state emission (DSE) in organic fluorophores: Design and applications. Chem. Mater. 2021, 33, 7160–7184. [Google Scholar] [CrossRef]
- Chen, J.; Tang, B.Z. Restricted intramolecular rotations: A mechanism for aggregation-induced emission. In Aggregation-Induced Emission: Fundamentals and Applications, Volumes 1 and 2; Qin, A., Tang, B.Z., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; p. 16. [Google Scholar] [CrossRef]
- Ge, S.; Wang, E.; Li, J.; Tang, B.Z. Aggregation-induced emission boosting the study of polymer science. Macromol. Rapid Commun. 2022, 43, 2200080. [Google Scholar] [CrossRef]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Y.-M.; Xie, F.; Jin, X.; Li, J.; Yang, G.; Gu, C.; Wang, Y.; Zhang, S.X.-A. A single-pixel rgb device in a colorful alphanumeric electrofluorochromic display. Adv. Mater. 2020, 32, 2003121. [Google Scholar] [CrossRef]
- Wang, M.; Cheng, Z.; Meng, X.; Gao, Y.; Yang, X.; Liu, H.; Zhang, S.-T.; Ma, H.; Yang, B. Deep blue electro-fluorescence and highly efficient chemical warfare agent sensor: Functional versatility of weak coupling hybridized locally excited and charge-transfer excited state. Dyes Pigm. 2020, 177, 108317. [Google Scholar] [CrossRef]
- Gong, Z.-L.; Li, R.; Zhong, Y.-W. Chapter 7 electroluminochromism: Classical materials and new developments. In Electrochromic Smart Materials: Fabrication and Applications; Xu, J.W., Chua, M.H., Shah, K.W., Eds.; The Royal Society of Chemistry: London, UK, 2019; pp. 192–217. [Google Scholar] [CrossRef]
- Xu, L.; Wang, B.; Gao, W.; Wu, L.; Bi, L. Study on effects of tungstophosphate structures on electrochemically induced luminescence switching behaviors of the composite films consisting of tris(1,10-phenanthroline) ruthenium. J. Mater. Chem. C 2015, 3, 1732–1737. [Google Scholar] [CrossRef]
- Nie, H.-J.; Yang, W.-W.; Shao, J.-Y.; Zhong, Y.-W. Ruthenium-tris(bipyridine) complexes with multiple redox-active amine substituents: Tuning of spin density distribution and deep-red to NIR electrochromism and electrofluorochromism. Dalton Trans. 2016, 45, 10136–10140. [Google Scholar] [CrossRef] [PubMed]
- Martín-Yerga, D.; Pérez-Junquera, A.; Hernández-Santos, D.; Fanjul-Bolado, P. Time-resolved luminescence spectroelectrochemistry at screen-printed electrodes: Following the redox-dependent fluorescence of [Ru(bpy)3]2+. Anal. Chem. 2017, 89, 10649–10654. [Google Scholar] [CrossRef]
- Miomandre, F.; Pansu, R.B.; Audibert, J.F.; Guerlin, A.; Mayer, C.R. Electrofluorochromism of a ruthenium complex investigated by time resolved tirf microscopy coupled to an electrochemical cell. Electrochem. Commun. 2012, 20, 83–87. [Google Scholar] [CrossRef]
- Li, L.; Bi, D.; Du, X.; Xing, X.; Cheng, X.; Feng, Y.; Wang, H.; Zhao, Q.; Qiu, D. Ternary electrofluorochromic behavior of the terpyridine Eu(III) complex with a bis-arylamine redox group. Inorg. Chem. Commun. 2022, 146, 110052. [Google Scholar] [CrossRef]
- Fu, T.; Wei, Y.-L.; Zhang, C.; Li, L.-K.; Liu, X.-F.; Li, H.-Y.; Zang, S.-Q. A viologen-based multifunctional Eu-MOF: Photo/electro-modulated chromism and luminescence. Chem. Commun. 2020, 56, 13093–13096. [Google Scholar] [CrossRef]
- Miomandre, F.; Stancheva, S.; Audibert, J.-F.; Brosseau, A.; Pansu, R.B.; Lepeltier, M.; Mayer, C.R. Gold and silver nanoparticles functionalized by luminescent iridium complexes: Synthesis and photophysical and electrofluorochromic properties. J. Phys. Chem. 2013, 117, 12806–12814. [Google Scholar] [CrossRef]
- Wang, X.; Kuang, J.; Wu, P.; Zong, Z.; Li, Z.; Wang, H.; Li, J.; Dai, P.; Zhang, K.Y.; Liu, S.; et al. Manipulating electroluminochromism behavior of viologen-substituted iridium(III) complexes through ligand engineering for information display and encryption. Adv. Mater. 2022, 34, 2107013. [Google Scholar] [CrossRef]
- Liu, J.; Ma, X.Y.D.; Wang, Z.; Xu, L.; Wang, F.; He, C.; Lu, X. Metal–organic framework-based flexible devices with simultaneous electrochromic and electrofluorochromic functions. ACS Appl. Electron. Mater. 2021, 3, 1489–1495. [Google Scholar] [CrossRef]
- Gao, W.; Yu, T.; Du, Y.; Wang, R.; Wu, L.; Bi, L. First orange fluorescence composite film based on sm-substituted tungstophosphate and its electrofluorochromic performance. ACS Appl. Mater. Interfaces 2016, 8, 11621–11628. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Zheng, D.; Dong, Z.; Wu, L.; Bi, L. Preparation of green luminescence composite film and study of electrofluorochromic performance. J. Electroanal. Chem. 2015, 756, 30–35. [Google Scholar] [CrossRef]
- Chua, M.H.; Png, Z.M.; Zhu, Q.; Xu, J. Synthesis of conjugated polymers via transition metal catalysed C−H bond activation. Chem. Asian J. 2021, 16, 2896–2919. [Google Scholar] [CrossRef]
- Png, Z.M.; Chua, M.H.; Zhu, Q.; Xu, J. 15—Conjugated polymers for electrochromic applications. In Conjugated Polymers for Next-Generation Applications; Kumar, V., Sharma, K., Sehgal, R., Kalia, S., Eds.; Woodhead Publishing: Sawston, UK, 2022; Volume 1, pp. 539–573. [Google Scholar] [CrossRef]
- Electrochromic Smart Materials: Fabrication and Applications; The Royal Society of Chemistry: London, UK, 2019. [CrossRef]
- Neo, W.T.; Ye, Q.; Chua, S.-J.; Xu, J. Conjugated polymer-based electrochromics: Materials, device fabrication and application prospects. J. Mater. Chem. C 2016, 4, 7364–7376. [Google Scholar] [CrossRef]
- Gunbas, G.; Toppare, L. Electrochromic conjugated polyheterocycles and derivatives-highlights from the last decade towards realization of long lived aspirations. Chem. Commun. 2012, 48, 1083–1101. [Google Scholar] [CrossRef] [PubMed]
- Amb, C.M.; Dyer, A.L.; Reynolds, J.R. Navigating the color palette of solution-processable electrochromic polymers. Chem. Mater. 2010, 23, 397–415. [Google Scholar] [CrossRef]
- Beaujuge, P.M.; Reynolds, J.R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268–320. [Google Scholar] [CrossRef]
- Argun, A.A.; Aubert, P.-H.; Thompson, B.C.; Schwendeman, I.; Gaupp, C.L.; Hwang, J.; Pinto, N.J.; Tanner, D.B.; MacDiarmid, A.G.; Reynolds, J.R. Multicolored electrochromism in polymers: Structures and devices. Chem. Mater. 2004, 16, 4401–4412. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Luscombe, C.K. Advances in applying c–h functionalization and naturally sourced building blocks in organic semiconductor synthesis. J. Mater. Chem. C 2021, 9, 16391–16409. [Google Scholar] [CrossRef]
- Bura, T.; Beaupre, S.; Legare, M.-A.; Quinn, J.; Rochette, E.; Blaskovits, J.T.; Fontaine, F.-G.; Pron, A.; Li, Y.; Leclerc, M. Direct heteroarylation polymerization: Guidelines for defect-free conjugated polymers. Chem. Sci. 2017, 8, 3913–3925. [Google Scholar] [CrossRef] [Green Version]
- Pouliot, J.-R.; Grenier, F.; Blaskovits, J.T.; Beaupré, S.; Leclerc, M. Direct (hetero)arylation polymerization: Simplicity for conjugated polymer synthesis. Chem. Rev. 2016, 116, 14225–14274. [Google Scholar] [CrossRef]
- Blaskovits, J.T.; Leclerc, M. C-H activation as a shortcut to conjugated polymer synthesis. Macromol. Rapid Commun. 2019, 40, 1800512. [Google Scholar] [CrossRef]
- Sanzone, A.; Calascibetta, A.; Monti, M.; Mattiello, S.; Sassi, M.; Corsini, F.; Griffini, G.; Sommer, M.; Beverina, L. Synthesis of conjugated polymers by sustainable suzuki polycondensation in water and under aerobic conditions. ACS Macro Lett. 2020, 9, 1167–1171. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Zhao, R.; Seferos, D.S. Precision synthesis of conjugated polymers using the kumada methodology. Acc. Chem. Res. 2021, 54, 4203–4214. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Yang, C.; Qiao, X.; Zhang, X.; Cai, W.; Chen, Y.; Wang, Y.; Zhang, W.; Lin, X.; Niu, H.; et al. Multifunctional AIE-active polymers containing tpa-tpe moiety for electrochromic, electrofluorochromic and photodetector. Dyes Pigm. 2019, 166, 340–349. [Google Scholar] [CrossRef]
- Yang, C.; Cai, W.; Zhang, X.; Gao, L.; Lu, Q.; Chen, Y.; Zhang, Z.; Zhao, P.; Niu, H.; Wang, W. Multifunctional conjugated oligomers containing novel triarylamine and fluorene units with electrochromic, electrofluorochromic, photoelectron conversion, explosive detection and memory properties. Dyes Pigm. 2019, 160, 99–108. [Google Scholar] [CrossRef]
- Han, Y.; Lin, Y.; Sun, D.; Xing, Z.; Jiang, Z.; Chen, Z. Poly(aryl amino ketone)-based materials with excellent electrochromic and electrofluorochromic behaviors. Dyes Pigm. 2019, 163, 40–47. [Google Scholar] [CrossRef]
- Zhang, W.; Niu, H.; Yang, C.; Wang, Y.; Lu, Q.; Zhang, X.; Niu, H.; Zhao, P.; Wang, W. Electrochromic and electrofluorochromic bifunctional materials for dual-mode devices based on ladder-like polysilsesquioxanes containing triarylamine electrofluorochromism. Dyes Pigm. 2020, 175, 108160. [Google Scholar] [CrossRef]
- Su, K.; Sun, N.; Tian, X.; Guo, S.; Yan, Z.; Wang, D.; Zhou, H.; Zhao, X.; Chen, C. Highly soluble polyimide bearing bulky pendant diphenylamine-pyrene for fast-response electrochromic and electrofluorochromic applications. Dyes Pigm. 2019, 171, 107668. [Google Scholar] [CrossRef]
- Sun, N.; Meng, S.; Feng, F.; Zhou, Z.; Han, T.; Wang, D.; Zhao, X.; Chen, C. Electrochromic and electrofluorochromic polyimides with fluorene-based triphenylamine. High Perform. Polym. 2017, 29, 1130–1138. [Google Scholar] [CrossRef]
- Zheng, R.; Huang, T.; Zhang, Z.; Sun, Z.; Niu, H.; Wang, C.; Wang, W. Novel polyimides containing flexible carbazole blocks with electrochromic and electrofluorescencechromic properties. RSC Adv. 2020, 10, 6992–7003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, T.; Theato, P.; Yao, H.; Liu, H.; Di, Y.; Sun, Z.; Guan, S. Colorless electrochromic/electrofluorochromic dual-functional triphenylamine-based polyimides: Effect of a tetraphenylethylene-based π-bridge on optoelectronic properties. Chem. Eng. J. 2023, 451, 138441. [Google Scholar] [CrossRef]
- Bejan, A.E.; Constantin, C.P.; Damaceanu, M.D. Evidence of diimide structure variation on overall performance of electro(fluoro)chromic devices integrating versatile triphenylamine-based polyimides. Mater. Today Chem. 2022, 26, 101100. [Google Scholar] [CrossRef]
- Sun, N.; Su, K.; Zhou, Z.; Yu, Y.; Tian, X.; Wang, D.; Zhao, X.; Zhou, H.; Chen, C. AIE-active polyamide containing diphenylamine-tpe moiety with superior electrofluorochromic performance. ACS Appl. Mater. Interfaces 2018, 10, 16105–16112. [Google Scholar] [CrossRef]
- Sun, N.; Su, K.; Zhou, Z.; Tian, X.; Jianhua, Z.; Chao, D.; Wang, D.; Lissel, F.; Zhao, X.; Chen, C. High-performance emission/color dual-switchable polymer-bearing pendant tetraphenylethylene (TPE) and triphenylamine (TPA) moieties. Macromolecules 2019, 52, 5131–5139. [Google Scholar] [CrossRef]
- Su, K.; Sun, N.; Tian, X.; Guo, S.; Yan, Z.; Wang, D.; Zhou, H.; Zhao, X.; Chen, C. High-performance blue fluorescent/electroactive polyamide bearing p-phenylenediamine and asymmetrical SBF/TPA-based units for electrochromic and electrofluorochromic multifunctional applications. J. Mater. Chem. C 2019, 7, 4644–4652. [Google Scholar] [CrossRef]
- Sun, N.; Su, K.; Zhou, Z.; Tian, X.; Wang, D.; Vilbrandt, N.; Fery, A.; Lissel, F.; Zhao, X.; Chen, C. Synergistic effect between electroactive tetraphenyl-p-phenylenediamine and AIE-active tetraphenylethylene for highly integrated electrochromic/electrofluorochromic performances. J. Mater. Chem. C 2019, 7, 9308–9315. [Google Scholar] [CrossRef]
- Sun, N.; Su, K.; Zhou, Z.; Wang, D.; Fery, A.; Lissel, F.; Zhao, X.; Chen, C. “Colorless-to-black” electrochromic and AIE-active polyamides: An effective strategy for the highest-contrast electrofluorochromism. Macromolecules 2020, 53, 10117–10127. [Google Scholar] [CrossRef]
- Su, K.; Sun, N.; Yan, Z.; Jin, S.; Li, X.; Wang, D.; Zhou, H.; Yao, J.; Chen, C. Dual-switching electrochromism and electrofluorochromism derived from diphenylamine-based polyamides with spirobifluorene/pyrene as bridged fluorescence units. ACS Appl. Mater. Interfaces 2020, 12, 22099–22107. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.-W.; Han, T.; Huang, T.-Y.; Tang, B.-Z.; Liou, G.-S. High-performance electrofluorochromic devices based on aromatic polyamides with AIE-active tetraphenylethene and electro-active triphenylamine moieties. Polym. Chem. 2018, 9, 4364–4373. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, N.; Jia, X.; Liu, X.; Wang, C.; Chao, D. Electrochromic and electrofluorochromic behavior of novel polyurea bearing oligoaniline and triphenylamine units. Polymer 2018, 134, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Jia, X.; Berda, E.B.; Wang, C.; Chao, D. Advanced electrochromic/electrofluorochromic poly(amic acid) toward the colorimetric/fluorometric dual-determination of glycosuria. Mater. Today Chem. 2021, 21, 100497. [Google Scholar] [CrossRef]
- Li, X.; Su, K.; Zeng, Q.; Wang, D.; Zhao, X.; Chen, C. Highly stable electrochromism and electrofluorochromism derived from a bi-functional polyamide containing conjugated bis(diphenylamine-spirodifluorene) moieties. Dyes Pigm. 2022, 199, 110072. [Google Scholar] [CrossRef]
- Pietsch, M.; Rödlmeier, T.; Schlisske, S.; Zimmermann, J.; Romero-Nieto, C.; Hernandez-Sosa, G. Inkjet-printed polymer-based electrochromic and electrofluorochromic dual-mode displays. J. Mater. Chem. C 2019, 7, 7121–7127. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Wang, K.; Wu, H.; Qin, A.; Tang, B.Z. Simultaneously achieving high capacity storage and multilevel anti-counterfeiting using electrochromic and electrofluorochromic dual-functional AIE polymers. Chem. Sci. 2021, 12, 7058–7065. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, M.; Casado, N.; Mecerreyes, D.; Hernandez-Sosa, G. Inkjet-printed dual-mode electrochromic and electroluminescent displays incorporating ecofriendly materials. ACS Appl. Mater. Interfaces 2022, 14, 43568–43575. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, Y.; Zhou, M.; Berda, E.B.; Chao, D. Electrochromic/electrofluorochromic poly(urea-urethane) bearing oligoaniline and tetraphenylethylene groups: Synthesis, characterization, and H2O2 visualized determination. Dyes Pigm. 2021, 194, 109594. [Google Scholar] [CrossRef]
- Cosnier, S.; Karyakin, A. Electropolymerization: Concepts, Materials and Applications; Wiley-VCH Verlag GmbH & Co. KGaA Federal Republic of Germany: Weinheim, Germany, 2010; p. 280. [Google Scholar] [CrossRef]
- Ma, H.; Chen, Y.; Li, X.; Li, B. Advanced applications and challenges of electropolymerized conjugated microporous polymer films. Adv. Funct. Mater. 2021, 31, 2101861. [Google Scholar] [CrossRef]
- Rajapakse, R.M.G.; Watkins, D.L.; Ranathunge, T.A.; Malikaramage, A.U.; Gunarathna, H.M.N.P.; Sandakelum, L.; Wylie, S.; Abewardana, P.G.P.R.; Egodawele, M.G.S.A.M.E.W.D.D.K.; Herath, W.H.M.R.N.K.; et al. Implementing the donor–acceptor approach in electronically conducting copolymers via electropolymerization. RSC Adv. 2022, 12, 12089–12115. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, H.; Gu, C.; Ma, Y. Electrochemical polymerization: An emerging approach for fabricating high-quality luminescent films and super-resolution oleds. J. Mater. Chem. C 2020, 8, 5310–5320. [Google Scholar] [CrossRef]
- Jarosz, T.; Stolarczyk, A.; Glosz, K. Recent advances in the electrochemical synthesis of copolymers bearing π-conjugated systems and methods for the identification of their structure. Curr. Org. Chem. 2020, 24, 339–353. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, J.; Shao, X.; Dong, Y.; Li, W.; Zhang, C. Polycarbazole electropolymerization materials with excellent electrochromic performance based on phenothiazine/phenoxazine group. Macromol. Chem. Phys. 2022, 223, 2200059. [Google Scholar] [CrossRef]
- Rybakiewicz-Sekita, R.; Toman, P.; Ganczarczyk, R.; Drapala, J.; Ledwon, P.; Banasiewicz, M.; Skorka, L.; Matyjasiak, A.; Zagorska, M.; Pron, A. D-A-D compounds combining dithienopyrrole donors and acceptors of increasing electron-withdrawing capability: Synthesis, spectroscopy, electropolymerization, and electrochromism. J. Phys. Chem. B 2022, 126, 4089–4105. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, W.; Zhu, J.; Han, Y.; Liu, J. Electropolymerization of D-A type EDOT-based monomers consisting of camphor substituted quinoxaline unit for electrochromism with enhanced performance. Polymer 2022, 240, 124485. [Google Scholar] [CrossRef]
- Santra, D.C.; Nad, S.; Malik, S. Electrochemical polymerization of triphenylamine end-capped dendron: Electrochromic and electrofluorochromic switching behaviors. J. Electroanal. Chem. 2018, 823, 203–212. [Google Scholar] [CrossRef]
- Dufresne, S.; Callaghan, L.; Skene, W.G. Conjugated fluorenes prepared from azomethines connections-ii: The effect of alternating fluorenones and fluorenes on the spectroscopic and electrochemical properties. J. Phys. Chem. B 2009, 113, 15541–15549. [Google Scholar] [CrossRef]
- Bezgin Carbas, B. Fluorene based electrochromic conjugated polymers: A review. Polymer 2022, 254, 125040. [Google Scholar] [CrossRef]
- Lim, H.; Seogjae, S.; Chihyun, P.; Haijin, S.; Xu, Y.; Kenji, K.; Eunkyoung, K. Multi-color fluorescence switching with electrofluorochromic polymers. Optical Materials Express 2016, 6, 1808. [Google Scholar] [CrossRef]
- Xiang, C.; Wan, H.; Zhu, M.; Chen, Y.; Peng, J.; Zhou, G. Dipicolylamine functionalized polyfluorene based gel with lower critical solution temperature: Preparation, characterization, and application. ACS Appl. Mater. Interfaces 2017, 9, 8872–8879. [Google Scholar] [CrossRef]
- Wu, J.; Zeng, Z.; Chen, Q.; Zheng, J.; Xu, C. Thiophene and phenothiazine electrochromic copolymers with dual-state emission via tuning the distance of π-π stacking. Opt. Mater. 2019, 96, 109346. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, M.; Zhang, Y.; Berda, E.B.; Chao, D. Water-soluble hyperbranched polyamidoamine bearing viologen groups toward electrochromic/electrofluorochromic dual-mode aqueous phase devices. Macromol. Mater. Eng. 2022, 307, 2100977. [Google Scholar] [CrossRef]
- Chang, M.; Chen, W.; Xue, H.; Liang, D.; Lu, X.; Zhou, G. Conjugation-extended viologens with thiophene derivative bridges: Near-infrared electrochromism, electrofluorochromism, and smart window applications. J. Mater. Chem. C 2020, 8, 16129–16142. [Google Scholar] [CrossRef]
- Wu, J.; Han, Y.; Liu, J.; Shi, Y.; Zheng, J.; Xu, C. Electrofluorochromic and electrochromic bifunctional polymers with dual-state emission via introducing multiple C—H⋯π bonds. Org. Electron. 2018, 62, 481–490. [Google Scholar] [CrossRef]
- Liu, F.; Cong, Z.; Yu, G.; Niu, H.; Hou, Y.; Wang, C.; Wang, S. Novel D-A-D conjugated polymers based on tetraphenylethylene monomer for electrochromism. Opt. Mater. 2020, 100, 109658. [Google Scholar] [CrossRef]
- Shah, K.W.; Wang, S.-X.; Soo, D.X.Y.; Xu, J. Viologen-based electrochromic materials: From small molecules, polymers and composites to their applications. Polymers 2019, 11, 1839. [Google Scholar] [CrossRef] [Green Version]
- Monk, P.M.S.; Rosseinsky, D.R.; Mortimer, R.J. Electrochromic materials and devices based on viologens. In Electrochromic Materials and Devices; Mortimer, R.J., Rosseinsky, D.R., Monk, P.M.S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 57–90. [Google Scholar] [CrossRef]
- Ding, J.; Zheng, C.; Wang, L.; Lu, C.; Zhang, B.; Chen, Y.; Li, M.; Zhai, G.; Zhuang, X. Viologen-inspired functional materials: Synthetic strategies and applications. J. Mater. Chem. A 2019, 7, 23337–23360. [Google Scholar] [CrossRef]
- Striepe, L.; Baumgartner, T. Viologens and their application as functional materials. Chem. Eur. J. 2017, 23, 16924–16940. [Google Scholar] [CrossRef]
- Oh, H.; Seo, D.G.; Yun, T.Y.; Kim, C.Y.; Moon, H.C. Voltage-tunable multicolor, sub-1.5 V, flexible electrochromic devices based on ion gels. ACS Appl. Mater. Interfaces 2017, 9, 7658–7665. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, J.; Moses, D.; Bazan, G.C.; Heeger, A.J. Photoluminescence quenching of conjugated macromolecules by bipyridinium derivatives in aqueous media: Charge dependence. Langmuir 2001, 17, 1262–1266. [Google Scholar] [CrossRef]
- Deng, B.; Zhu, Y.; Ali, M.U.; Li, K.; Liu, X.; Zhang, X.; Ning, J.; Hu, Z.; Chen, H.; He, J.; et al. Pyrrole-based viologen derivatives with high contrast and magenta color for electrochromic-fluorescent devices. Sol. Energy Mater. Sol. Cells 2023, 251, 112149. [Google Scholar] [CrossRef]
- Xue, R.; Guo, H.; Wang, T.; Gong, L.; Wang, Y.; Ai, J.; Huang, D.; Chen, H.; Yang, W. Fluorescence properties and analytical applications of covalent organic frameworks. Anal. Methods 2017, 9, 3737–3750. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Xie, L.-H.; Li, X.; Li, J.-R. Construction and application of base-stable MOFs: A critical review. Chem. Soc. Rev. 2022, 51, 6417–6441. [Google Scholar] [CrossRef]
- Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K.T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhu, G. Porous aromatic frameworks (PAFs). Chem. Rev. 2020, 120, 8934–8986. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Tan, K.T.; Gong, Y.; Chen, Y.; Li, Z.; Xie, S.; He, T.; Lu, Z.; Yang, H.; Jiang, D. Covalent organic frameworks: An ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 2021, 50, 120–242. [Google Scholar] [CrossRef]
- Li, Y.; Chen, W.; Xing, G.; Jiang, D.; Chen, L. New synthetic strategies toward covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 2852–2868. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, E.; Lam, J.W.Y.; Tang, B.Z. AIE luminogens: Emission brightened by aggregation. Mater. Today 2015, 18, 365–377. [Google Scholar] [CrossRef]
- Zhao, X.; Pachfule, P.; Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871–6913. [Google Scholar] [CrossRef]
- Sarkar, M.; Dutta, T.K.; Patra, A. Two-dimensional covalent organic frameworks for electrochromic switching. Chem. Asian J. 2021, 16, 3055–3067. [Google Scholar] [CrossRef] [PubMed]
- El-Mahdy, A.F.M.; Mohamed, M.G.; Mansoure, T.H.; Yu, H.-H.; Chen, T.; Kuo, S.-W. Ultrastable tetraphenyl-p-phenylenediamine-based covalent organic frameworks as platforms for high-performance electrochemical supercapacitors. Chem. Commun. 2019, 55, 14890–14893. [Google Scholar] [CrossRef] [PubMed]
- Yusran, Y.; Fang, Q.; Valtchev, V. Electroactive covalent organic frameworks: Design, synthesis, and applications. Adv. Mater. 2020, 32, 2002038. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Li, Z.J.; Bai, B.; Zhang, X.; Zhong, Y.W.; Wan, L.J.; Wang, D. A covalent organic framework film for three-state near-infrared electrochromism and a molecular logic gate. Angew. Chem., Int. Ed. 2021, 60, 12498–12503. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; Xiong, S.; Zhang, J.; Wang, X.; Chu, J.; Zhang, R.; Gong, M.; Wu, B.; Liu, G.; Luo, W. Enhanced electrochromic properties of 2,6-diaminoanthraquinone and 1,3,5-triformylresorcinol (DAAQ-TFP) covalent organic framework/functionalized graphene oxide composites containing anthraquinone active unit. Electrochim. Acta 2021, 398, 139301. [Google Scholar] [CrossRef]
- Halder, S.; Gupta, N.; Behere, R.P.; Kuila, B.K.; Chakraborty, C. Vis-to-NIR electrochromism and bright-to-dark electrofluorochromism in a triazine and thiophene-based three-dimensional covalent polymer. Mol. Syst. Des. Eng. 2022, 7, 1658–1669. [Google Scholar] [CrossRef]
- Haug, W.K.; Moscarello, E.M.; Wolfson, E.R.; McGrier, P.L. The luminescent and photophysical properties of covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 839–864. [Google Scholar] [CrossRef]
- Yang, Y.; Börjesson, K. Electroactive covalent organic frameworks: A new choice for organic electronics. Trends Chem. 2022, 4, 60–75. [Google Scholar] [CrossRef]
- Zhang, L.; Yi, L.; Sun, Z.-J.; Deng, H. Covalent organic frameworks for optical applications. Aggregate 2021, 2, e24. [Google Scholar] [CrossRef]
Cmpd | λabs a (nm) | λem a (nm) | Eox b (V) | Ered b (V) | Φfl (%) c | Cmpd | λabs a (nm) | λem a (nm) | Eox b (V) | Ered b (V) | Φfl (%) c |
---|---|---|---|---|---|---|---|---|---|---|---|
AD1 | 390, 410, 440 d | 650 d | 1.28 [1.24] d,p | −0.96 [−1.00] d,p | 4 d,u | F5 | 360 f | 442 f | 0.41 [0.37] o,p | 3 v (2.2) | |
AD2a | 475 d | 688 d | 3.30t | (4) | F6 | 316 f | 471 f | 0.53 [0.49] o,p | 2 v (30) | ||
AD2b | 475 d | 628 d | 3.10 t | (35) | F7 | 415 f | 596 f | 1.04 [1.00] n,p | <1 v (44) | ||
AD3 | 289 e | 471 e | 3.20 t | 27 d | F8 | 423 f | 599 f | 1.05 [1.01] n,p | <1 v (74) | ||
MV1 | 486 d | 610 d | 0.71 [0.67] d,p | −1.11 [−1.15] d,p | F9 | 566 k | 593 k | [−1.9, −1.15] m,s | 100 k | ||
MV2 | 240, 310, 375 e | 426 e | 0.71, 0.85 [0.67, 0.81] l,p | (63) | F10 | 580 k | 614 k | [−1.71, −0.91] m,s | 89 k | ||
MV3 | 378 f | 422 f | 0.53, 0.87 [0.57, 0.91] h,p | 70 f | F11 | 522 h | 414 h | −0.95 [−0.99] f,p | |||
MV4 | 380 f | 496 f | 0.80 [0.76] h,p | 83 f | F12a | 470, 512 j | 430 j | −0.89 [−0.93] f,p | 66 k | ||
MV5 | 397 f | 535 f | 0.86 [0.82] h,p | 23 f | F12b | 482, 526 j | 455 j | −0.98 [−1.02] f,p | 61 k | ||
MV6 | 345 f | 441 f | 0.73 [0.69] h,p | 67 f | F12c | 496, 582 j | −0.71 [−0.75] f,p | ||||
MV7 | 355 f | 496 f | 0.81 [0.77] h,p | 75 f | F12d | 502, 608 j | −0.65 [−0.69]f,p | ||||
MV8 | 368 f | 524 f | 0.78 [0.74] h,p | 52 f | F12e | 466, 504, 572 j | −0.72 [−0.76] f,p | ||||
MV9 | 485 g | 615 g | 0.80 [0.42] h,p | 71 g | F12f | 406, 556 j | 445 j | −0.92 [−0.96] f,p | 58 w | ||
MV10 | 527 d | 706 d | 0.79 [0.75] h,p | 3.4 d | F13a | 348 j | 420 j | 1.62 [1.58] j,p | −1.49, −1.77, −2.50 [−1.53, −1.81, −2.54] j,p | 14 j | |
MV11a | 459 d | 621 d | 0.99 [0.95] h,p | 63 d | F13b | 356 j | 434 j | 1.66 [1.62] j,p | −1.37, −1.59, −2.37 [−1.41, −1.63, −2.41] j,p | 24 j | |
MV11b | 477 d | 649 d | 1.19 [1.15] h,p | 47 d | F14a | 352 j | 385 j | [−1.44] j,r | 73 j | ||
MV11c | 460 d | 630 d | 0.92 [0.88] h,p | 72 d | F14b | 359 j | 395 j | [−1.15, −1.55] j,r | 66 j | ||
MV12 | 400 h | 460 h | [0.97] h,s | 30 h | F14c | 367 j | 410 j | [−0.91, −1.32] j,r | 42 j | ||
MV13 | 674 e | 0.28 [0.36] h,q | −1.78, −1.30 [−1.70, −1.22] h,q | 77 e | F14d | 375 j | 410 j | [−0.75, −1.10] j,r | 30 j | ||
MV14 | 390 i | 452 i | [−0.57, −0.53] i,s | 87 u | F15a | 345 l (364) | 434 l (462) | [1.11] n,p | <1 v (98) | ||
Pyr | 590–630 | 620–675 | [0.53–0.73] h,q | (5–11) | F15b | 355 l (372) | 451 l (478) | [0.79] n,p | <1 v (91) | ||
F1 | 380, 445 j | 498 j | −0.13, −1.11 [−0.53, −1.51] m,q | 59 j | F16a | 380 l (413) | 581 l (531) | 1.21 [1.17] n,p | 4 v (25) | ||
F2 | (560) | −0.48 [−0.52] h,p | F16b | 400 l (430) | 636 l (560) | 0.99 [0.95] n,p | <1 v (48) | ||||
F3 | 350 d | 510 d | 0.56 [0.10] h,q | (6) | F17 | 522 h | 735 h | [0.91, 1.19] h,r | [−1.14, −1.41] h,r | 7 h | |
F4 | 380 d | 500 d | 0.61 [0.15] h,q | (3) | F18 | 288 (396) i | (545) | [−3.23] t |
Cmpd | λabs (nm) a | λem (nm) a | E (V) b,c | Φfl (%) d | τc (s) e | τb (s) f | Cmpd | λabs (nm) a | λem (nm) a | E (V) b,c | Φfl (%) d | τc (s) e | τb (s) f |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1a | 360 g | 495 g | 0.84, 1.55 [0.80, 1.51] g,s | 69 g | 1.6 | 2.7 | P11c | 332 (327) g | 528 (486) g | 1.08, 0.66 [1.04, 0.62] h,s | 26.6 (15.2) g | 1.8 | 1.2 |
P1b | 359 g | 495 g | 1.0, 1.4 [0.96, 1.36] g,s | 79 g | 4.2 | 3.6 | P11d | 332 (327) g | 512 (470) g | 1.07, 0.70 [1.03, 0.66] h,s | 83.8 (18.8) g | 2.2 | 1.1 |
P2a | 346 (340) i | 455 (450) i | 0.70, 1.06 [0.66, 1.02] h,s | 26 t | 3.4 | 2.8 | P12 | 316 (342) g | 525 g | 0.78, 1.16 [0.74, 1.12] h,s | 1.3 | 0.5 | |
P2b | 375 (378) i | 520 (491) i | 0.81, 1.11 [0.77, 1.07] h,s | 17 t | 2.2 | 2.1 | P13a | 312 (310) g | 532 (520) g | 1.08 [1.04] h,s | (16) | 2.2 | 0.8 |
P2c | 356 (346) i | 505 (493) i | 0.87, 1.26 [0.83, 1.22] h,s | 4 t | 3.6 | 3.8 | P13b | 312 (310) g | 546 (523) g | 0.87 [0.83] h,s | (25) | 1.1 | 0.6 |
P3a | 373 (370) g | 530 (515) g | 0.51, 0.79 [0.81, 1.09] h,s | P13c | 315 (312) g | 547 (526) g | 0.87 [0.83] h,s | (33) | 0.6 | 0.3 | |||
P3b | 373 (370) g | 535 (521) g | 0.46, 0.69 [0.76, 0.99] h,s | 87 g | 0.7 | 5.6 | P14a | 312 (322) g | 432 (440) g | 0.76, 0.97 [0.72, 0.93] h,s | 54 g (8.4) | 2.7 | 1.7 |
P3c | 374 (369) g | 541 (532) g | 0.32, 0.65 [0.62, 0.95] h,s | P14b | 309 (309) g | 553 (530) g | 1.02 [0.98] h,s | 86 g (14) | 2.8 | 2.4 | |||
P4a | 303 (334) g | 401 (407) g | 0.36 [0.32] h,s | 18 (13) g,t | 1.2 | 3. 5 | P15a | 339 (343) g | 493 (510) g | [2.10] p | 3 g,t (16) | ||
P4b | 348 (348) g | 379 (380) g | 1.07 [1.03] h,s | 32 (30) g,t | 1.9 | 4.4 | P15b | 347 (353) g | 498 (554) g | [1.75] p | <1 g,t (5) | ||
P4c | 304 (351) g | 398 (400) g | 0.48 [0.44]h,s | 17 (13) g,t | 1.0 | 2.5 | P16a | 330 h | 515 (566) h | 1.40, 1.00 [1.36, 0.96] h,s | 2.6, 12.1, 6.7 | 2.2, 6.5, 3.6 | |
P4d | 315 (332) g | 479 (450) g | 0.65 [0.61] h,s | 37 (33) g,t | 1.4 | 3.6 | P16b | 365 j | 490 j | 0.55 [0.51] j,s | 14 t | 1.9 | 11.6 |
P5 | 332 (334) g | 541 (512) g | 0.59 [0.55] h,s | 49 g | 0.9 | 2.8 | P17 | 342 (356) | 412 (473) g | [0.76, 1.02] h,q | 1.1 | 0.8 | |
P6 | 329 (336) g | 400 (414) g | 1.47 [1.43] h,s | 28 | 7.3 | 1.5 | P18 | / | 428 p | 1.29 [1.25] k,s | |||
P7a | 326 (267) g | 435 (450) g | 0.86, 1.11 [0.82, 1.07] h,s | 14 t | 10 | 7.7 | P19 | 395 g | 440 (465) g | [0.45, 0.90] h,r | |||
P7b | 326 (284) g | 382 (401) g | 0.85, 1.07 [0.81, 1.03] h,s | 23 t | 7.5 | 6.0 | P20 | 376 o | 440 (577) o | 0.89, −1.41 [0.85 (−1.45)] o,s | |||
P7c | 324 (259) g | 399 (408) g | 0.84, 1.08 [0.80, 1.04] h,s | 46 t | 9.0 | 7.5 | P21a | 441 (452) n | 533 (452) n | [1.37] h,q | 0.8 | 3.7 | |
P7d | 327 (274) g | 453 (487) g | 0.86, 1.01 [0.82, 0.97] h,s | 27 t | 8.5 | 5.5 | P21b | 402 (412) n | 538 (540) n | [1.69] h,q | 4.0 | 2.0 | |
P7e | 324 (284) g | 395 (410) g | 0.92, 1.14 [0.88, 1.10] h,s | 6 t | 10 | 8.0 | P21c | 480 (522) n | 617 (636) n | [1.32] h,q | 0.2 | 2.5 | |
P8xa | 310 (350) g | 535 (525) g | 0.47, 0.51 [0.43, 0.47] h,s | <1 (15) g | P22a | 402 (420) l | 511 l | [0.95] h,q | 0.4 | 2.1 | |||
P8ya | 321 (325) g | 544 (534) g | 0.60 [0.56] h,s | <1 (<1) g | 2.1 | 1.7 | P22b | 422 (445) l | 512 (534) l | [1.17, 0.80] h,q | 0.6 | 1.5 | |
P8xb | 314 (348) g | 525 (500) g | 0.64, 1.10 [0.60, 1.06] h,s | <1 (1) g | P22c | 424 (446) l | 513 (535) l | [1.06, 0.79] h,q | 0.5 | 1.0 | |||
P8yb | 325 (366) g | 562 (577) g | 0.70 [0.66] h,s | 2.5 | 1.5 | P22d | 420 (446) l | 512 (541) l | [1.31, 0.82] h,q | 0.4 | 2.6 | ||
P8xc | 300 (344) g | 465 (460) g | 0.55, 0.85 [0.51, 0.81] h,s | <1 (3) g | P23a | 304 (325) m | 1.33 [1.29] h,s | 6.45 | 1.07 | ||||
P8yc | 318 (354) g | 525 (354) g | 0.65 [0.61] h,s | (<1) | 10.7 | 6.8 | P23b | 365 (362) m | 1.44 [1.40] h,s | 3.43 | 1.41 | ||
P9a | 322 p | 399 l | [0.91] k,q | 5.4 | 5.4 | P24a | 376 g | 433 g | [−0.41, −0.17] g,q | 2 g | 0.9 | 24.8 | |
P9b | 463 p | [0.90] k,q | 12.8 | 13.6 | P24b | 416 g | 480 g | [−0.53, −0.30] g,q | 5 g | 1.9 | 21.6 | ||
P9c | 384 p | [0.92] k,q | 14.0 | 15.7 | P24c | 423 g | 466 g | [−0.44] g,q | 16 g | 5.7 | 8.5 | ||
P10a | 315 (441) g | 511 (514) g | 1.12 [1.08] h,s | 2 g (69) | P24d | 437 g | 507 g | [−0.33] g,q | 72 g | 2.9 | 35.1 | ||
P10b | 349 (351) g | 480 (465) g | 1.11, 0.74 [1.07, 0.70] h,s | 44 (2) g | 2.9 | 1.8 | P25 | (410) | (465) | −1.1–−1.19; −1.31–−1.37 s | <1–34 | 18–38 | 27–49 |
P11a | 333 (334) g | 532 g | 0.66, 1.02 [0.62, 0.98] h,s | <1 g (29) | 2.0, 1.6 | 1.7, 1.2 | P26 | 488 p | 570 p | [−0.32] p,s | |||
P11b | 331 (329) g | 497 (456) g | 0.72, 1.11 [0.68, 1.07] h,s | 70 g (14) | 2.3 | 1.6 | P27 | 445 j | 530 j | −0.87, −0.48 [−0.91, −0.52] j,s | 7.5 | 6.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seddiki, I.; N’Diaye, B.I.; Skene, W.G. Survey of Recent Advances in Molecular Fluorophores, Unconjugated Polymers, and Emerging Functional Materials Designed for Electrofluorochromic Use. Molecules 2023, 28, 3225. https://doi.org/10.3390/molecules28073225
Seddiki I, N’Diaye BI, Skene WG. Survey of Recent Advances in Molecular Fluorophores, Unconjugated Polymers, and Emerging Functional Materials Designed for Electrofluorochromic Use. Molecules. 2023; 28(7):3225. https://doi.org/10.3390/molecules28073225
Chicago/Turabian StyleSeddiki, Ilies, Brelotte Idriss N’Diaye, and W. G. Skene. 2023. "Survey of Recent Advances in Molecular Fluorophores, Unconjugated Polymers, and Emerging Functional Materials Designed for Electrofluorochromic Use" Molecules 28, no. 7: 3225. https://doi.org/10.3390/molecules28073225
APA StyleSeddiki, I., N’Diaye, B. I., & Skene, W. G. (2023). Survey of Recent Advances in Molecular Fluorophores, Unconjugated Polymers, and Emerging Functional Materials Designed for Electrofluorochromic Use. Molecules, 28(7), 3225. https://doi.org/10.3390/molecules28073225