Physicochemical Properties, Antioxidant Markers, and Meat Quality as Affected by Heat Stress: A Review
Abstract
:1. Introduction
2. Heat Stress and Carcass Characteristics
3. Heat Stress and Rapid pH Drop
4. Meat Color and Water Holding Capacity
5. Impacts of Heat Stress on Muscle Biochemical and Chemical Properties
Origin | Chemical Class | Sub-Class | References |
---|---|---|---|
Pigs | Steroid hormones | Glucocorticoids | [79] |
Carbohydrates | Glycogen | [71] | |
Organic acid | Lactic acid | [64] | |
Ruminants | Protein | Myofibrillar protein | [81] |
alpha βcrystallin (αβC) heat shock protein (sHSP) and HSP27 | [31,89,90] | ||
Steroid hormones | Glucocorticoids | [79] | |
Organic acid | Lactic acid | [71] | |
Carbohydrates | Glycogen | ||
Lipid | Volatile fatty acids | ||
Broiler | Hormone | Corticosterone | [83] |
Insulin | [88] | ||
Protein | alpha βcrystallin (αβC) heat shock protein (sHSP) and HSP27 | [31,87,89,90] | |
Organic acid | Lactic acid | [65] | |
Steroid hormones | Glucocorticoids | [79] | |
Lipid | Fatty acid | [87] | |
Rabbit | Organic acid | Lactic acid | [4] |
Lipids | - | [93] | |
Proteins | - | [93] | |
Metalloprotein | Myoglobin | [92] |
6. Fatty Acid Profiling
7. Mineral Composition
8. Antioxidant Status
Antioxidant Enzyme Activity
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Teixeira, A.; Rodrigues, S. Consumer perceptions towards healthier meat products. Curr. Opin. Food Sci. 2020, 38, 147–154. [Google Scholar] [CrossRef]
- Baba, Y.; Kallas, Z.; Costa-Font, M.; Gil, J.M.; Realini, C.E. Impact of hedonic evaluation on consumers’ preferences for beef attributes including its enrichment with n-3 and CLA fatty acids. Meat Sci. 2016, 111, 9–17. [Google Scholar] [CrossRef]
- Hung, Y.; de Kok, T.M.; Verbeke, W. Consumer attitude and purchase intention towards processed meat products with natural compounds and a reduced level of nitrite. Meat Sci. 2016, 121, 119–126. [Google Scholar] [CrossRef]
- Kurćubić, V.; Stajić, S.; Miletić, N.; Stanišić, N. Healthier Meat Products Are Fashionable-Consumers Love Fashion. Appl. Sci. 2022, 12, 10129. [Google Scholar] [CrossRef]
- Aminzare, M.; Aliakbarlu, J.; Tajik, H. The effect of Cinnamomum zeylanicum essential oil on chemical characteristics of Lyoner-type sausage during refrigerated storage. Vet. Res. 2015, 6, 31. [Google Scholar]
- Chauhan, S.S.; Dunshea, F.R.; Plozza, T.E.; Hopkins, D.L.; Ponnampalam, E.N. The Impact of Antioxidant Supplementation and Heat Stress on Carcass Characteristics, Muscle Nutritional Profile and Functionality of Lamb Meat. Animals 2020, 10, 1286. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for Food Security and Nutrition; FAO: Rome, Italy, 2018. [Google Scholar]
- Thornton, P.; Nelson, G.; Mayberry, D.; Herrero, M. Impacts of heat stress on global cattle production during the 21st century: A modelling study. Lancet Planet. Health 2022, 6, 192–201. [Google Scholar] [CrossRef]
- Lara, L.J.; Rostagno, M.H. Impact of Heat Stress on Poultry Production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef] [Green Version]
- Rana, M.S.; Hashem, M.A.; Akhter, S.; Habibullah, M.; Islam, M.H.; Biswas, R.C. Effect of heat stress on carcass and meat quality of indigenous sheep of Bangladesh. Bangladesh J. Anim. Sci. 2014, 43, 147–153. [Google Scholar] [CrossRef]
- Tavaniello, S.; Slawinska, A.; Prioriello, D.; Petrecca, V.; Bertocchi, M.; Zampiga, M.; Salvatori, G.; Maiorano, G. Effect of galactooligosaccharides delivered in ovo on meat quality traits of broiler chickens exposed to heat stress. Poult. Sci. 2020, 99, 612–619. [Google Scholar] [CrossRef]
- Zaboli, G.; Huang, X.; Feng, X.; Ahn, D.U. How can heat stress affect chicken meat quality? -A review. Poult. Sci. 2019, 98, 1551–1556. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Jia, G.Q.; Zuo, J.J.; Zhang, Y.; Lei, J.; Ren, L.; Feng, D.Y. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult. Sci. 2012, 91, 2931–2937. [Google Scholar] [CrossRef]
- Freitas, A.S.; Carvalho, L.M.; Soares, A.L.; Oliveira, M.D.S.; Madruga, M.S.; Neto, A.D.S.; Carvalho, R.H.; Ida, E.I.; Shimokomaki, M. Pale, Soft and Exudative (PSE) and Dark, Firm and Dry (DFD) Meat Determination in Broiler Chicken Raised Under Tropical Climate Management Conditions. Int. J. Poult. Sci. 2017, 16, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.H.; Liang, R.R.; Lin, H.; Zhu, L.X.; Zhang, Y.M.; Mao, Y.W.; Dong, P.C.; Niu, L.B.; Zhang, M.H.; Luo, X. Effect of acute heat stress and slaughter processing on poultry meat quality and post-mortem carbohydrate metabolism. Poult. Sci. 2017, 96, 738–746. [Google Scholar] [CrossRef]
- Zhou, B.; Luo, J.; Quan, W.; Lou, A.; Shen, Q. Antioxidant Activity and Sensory Quality of Bacon. Foods 2022, 11, 236. [Google Scholar] [CrossRef]
- Lowe, T.E.; Gregory, N.G.; Fisher, A.D.; Payne, S.R. The effects of temperature elevation and water deprivation on lamb physiology, welfare, and meat quality. Aust. J. Agric. Res. 2002, 53, 707–714. [Google Scholar] [CrossRef]
- Kadim, I.T.; Mahgoub, O.; Al-Marzooqi, W.; Al-Ajmi, D.S.; Al-Maqbali, R.S.; Al-Lawati, S.M. The influence of seasonal temperatures on meat quality characteristics of hot-boned, m. psoas major and minor, from goats and sheep. Meat Sci. 2008, 80, 210–215. [Google Scholar] [CrossRef]
- Macías Cruz, U. Feedlot growth, carcass characteristics and meat quality of hair breed male lambs exposed to seasonal heat stress (winter vs. summer) in an arid climate. Meat Sci. 2020, 169, 108202. [Google Scholar] [CrossRef]
- Zhang, M.; Dunshea, F.R.; Warner, R.D.; DiGiacomo, K.; Amponsah, R.O.; Chauchan, S.S. Impacts of heat stress on meat quality and strategies for amelioration: A review. Int. J. Biometeorol. 2020, 64, 1613–1628. [Google Scholar] [CrossRef]
- Imik, H.; Ozlu, H.; Gumus, R.; Atasever, M.A.; Urcarand, S.; Atasever, M. Effects of ascorbic acid and a-lipoic acid on performance and meat quality of broilers subjected to heat stress. Br. Poult. Sci. 2012, 53, 800–808. [Google Scholar] [CrossRef]
- Pearce, S.C.; Upah, N.C.; Harris, A.; Gabler, N.K.; Ross, J.W.; Rhoads, R.P.; Baumgard, L.H. Effects of heat stress on energetic metabolism in growing pigs. Faseb J. 2011, 25, 1052. [Google Scholar] [CrossRef]
- Sivakumar, A.V.N.; Singh, G.; Varshney, V.P. Antioxidants Supplementation on Acid Base Balance during Heat Stress in Goats. Asian-Australas. J. Anim. Sci. 2010, 23, 1462–1468. [Google Scholar] [CrossRef]
- O’Brien, M.D.; Rhoads, R.P.; Sanders, S.R.; Duff, G.C.; Baumgard, L.H. Metabolic adaptations to heat stress in growing cattle. Domest. Anim. Endocrinol. 2010, 38, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Mahjoubi, E.; Yazdi, M.H.; Aghaziarati, N.; Noori, G.R.; Afsarian, O.; Baumgard, L.H. The effect of cyclical and severe heat stress on growth performance and metabolism in Afshari lambs1. J. Anim. Sci. 2015, 93, 1632–1640. [Google Scholar] [CrossRef]
- Xing, T.; Gao, F.; Tume, R.K.; Zhou, G.; Xu, X. Stress Effects on Meat Quality: A Mechanistic Perspective. Compr. Rev. Food Sci. Food Saf. 2018, 18, 380–401. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Ma, X.Y.; Jiang, Z.Y.; Lin, Y.C.; Zheng, C.T.; Zhou, G.L. Dietary supplementation with carnosine improves antioxidant capacity and meat quality of finishing pigs. J. Anim. Physiol. Anim. Nutr. 2010, 94, e286–e295. [Google Scholar] [CrossRef]
- Guerrero, A.; Valero, M.V.; Campo, M.M.; Sañudo, C. Some Factors That Affect Ruminant Meat Quality: From the Farm to the Fork. Review. Acta Sci. 2013, 35, 335–347. [Google Scholar]
- Archana, P.R.; Sejian, V.; Ruban, W.; Bagath, M.; Krishnan, G.; Aleena, J.; Manjunathareddy, G.B.; Beena, V.; Bhatta, R. Comparative assessment of heat stress-induced changes in carcass traits, plasma leptin profile and skeletal muscle myostatin and HSP70 gene expression patterns between indigenous Osmanabadi and Salem Black goat breeds. Meat Sci. 2018, 141, 66–80. [Google Scholar] [CrossRef]
- Baumgard, L.H.; Rhoads, R.P. Effects of heat stress on postabsorptive metabolism and energetics. Ann. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef] [Green Version]
- Rhoads, R.P.; Baumgard, L.H.; Suagee, J.K. Early Careers Achievement Awards: Metabolic priorities during heat stress with an emphasis on skeletal muscle. J. Anim. Sci. 2013, 91, 2492–2503. [Google Scholar] [CrossRef]
- Marai, I.F.M.; El-Darawany, A.A.; Fadiel, A.; Abdel-Hafez, M.A.M. Physiological traits as affected by heat stress in sheep—A review. Small Rumin. Res. 2007, 71, 1–12. [Google Scholar] [CrossRef]
- Spencer, J.D.; Boyd, R.D.; Cabrera, R.; Allee, G.L. Early weaning to reduce tissue mobilization in lactating sows and milk supplementation to enhance pig weaning weight during extreme heat stress. J. Anim. Sci. 2003, 81, 2041–2052. [Google Scholar] [CrossRef]
- Maloiy, G.M.; Kanui, T.I.; Towett, P.K.; Wambugu, S.N.; Miaron, J.O.; Wanyoike, M.M. Effects of dehydration and heat stress on food intake and dry matter digestibility in East African ruminants. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2008, 151, 185–190. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, Z.; Zheng, C.; Hu, Y.; Wang, L. Nutritional regulation for meat quality and nutrient metabolism of pigs exposed to high-temperature environment. J. Nutr. Food Sci. 2015, 5, 420. [Google Scholar] [CrossRef]
- Holinger, M.; Früh, B.; Stoll, P.; Pedan, V.; Kreuzer, M.; Bérard, J.; Hillmann, E. Long-Term Effects of Castration, Chronic Intermittent Social Stress, Provision of Grass Silage and Their Interactions on Performance and Meat and Adipose Tissue Properties in Growing-Finishing Pigs. Meat Sci. 2018, 145, 40–50. [Google Scholar] [CrossRef]
- St Pierre, N.R. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 2003, 86, E52. [Google Scholar] [CrossRef] [Green Version]
- Baziz, H.A.; Geraert, P.A.; Padilha, J.C.F.; Guillaumin, S. Chronic heat exposure enhances fat deposition and modifies muscle and fat partition in broiler carcasses. Poult. Sci. 1996, 75, 505–513. [Google Scholar] [CrossRef]
- Mader, T.L.; Dahlquist, J.M.; Hahn, G.L.; Gaughan, J.B. Shade and wind barrier effects on summertime feedlot cattle performance. J. Anim. Sci. 1999, 77, 2065–2072. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Burnett, V.F.; Norng, S.; Hopkins, D.L.; Plozza, T.; Jacobs, J.L. Muscle antioxidant (vitamin E) and major fatty acid groups, lipid oxidation and retail colour of meat from lambs fed a roughage-based diet with flaxseed or algae. Meat Sci. 2016, 111, 154–160. [Google Scholar] [CrossRef]
- England, E.M.; Scheffler, T.L.; Kasten, S.C.; Matarneh, S.K.; Gerrard, D.E. Exploring the unknowns involved in the transformation of muscle to meat. Meat Sci. 2013, 95, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Cheah, K.S.; Cheah, A.M. Post-mortem changes in structure and function of ox muscle mitochondria. 1. Electron microscopic and polarographic investigations. J. Bioenerg. 1971, 2, 85–92. [Google Scholar] [CrossRef]
- Tarrant, P.V. The Occurrence, Causes and Economic Consequences of Dark-Cutting in Beef—A Survey of Current Information on the Problem of Dark-Cutting in Beef; Springer: Dordrecht, The Netherlands, 1981; pp. 3–36. [Google Scholar]
- Liang, R.R.; Zhang, M.Y.; Zhang, M.H.; Luo, X. Effect of different acute heat stress degrees on amp-activated protein kinase (ampk) in chicken meat. In Proceedings of the 64th International Congress of Meat Science Technology, Melbourne, Australia, 12–17 August 2018. [Google Scholar]
- Aksit, M.; Yalcin, S.; Ozkan, S.; Metin, K.; Ozdemir, D. Effects of temperature during rearing and crating on stress parameters and meat quality of broilers. Poult. Sci. 2006, 85, 1867–1874. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Xu, X.L.; Zhou, G.H.; Wang, P.; Jiang, N.N. The effect of transportation of broilers during summer on the expression of heat shock protein 70, postmortem metabolism, and meat quality. J. Anim. Sci. 2015, 93, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Xing, T.; Xu, X.; Jiang, N.; Deng, S. Effect of transportation and preslaughter water shower spray with resting on AMP-activated protein kinase, glycolysis, and meat quality of broilers during summer. Anim. Sci. J. 2016, 87, 299–307. [Google Scholar] [CrossRef]
- Downing, J.A.; Kerr, M.J.; Hopkins, D.L. The effects of pre-transport supplementation with electrolytes and betaine on performance, carcass yield, and meat quality of broilers in summer and winter. Livest. Sci. 2017, 205, 16–23. [Google Scholar] [CrossRef]
- Sandercock, D.A.; Hunter, R.R.; Nute, G.R.; Mitchell, M.A.; Hocking, P.M. Acute heat stress-induced alterations in blood acid-base status and skeletal muscle membrane integrity in broiler chickens at two ages: Implications for meat quality. Poult. Sci. 2001, 80, 418–425. [Google Scholar] [CrossRef]
- Wang, R.R.; Pan, X.J.; Peng, Z.Q. Effects of heat exposure on muscle oxidation and protein functionalities of pectoralis majors in broilers. Poult. Sci. 2009, 88, 1078–1084. [Google Scholar] [CrossRef]
- Van Laack, R.L.J.; Liu, C.-H.; Smith, M.O.; Loveday, H.D. Characteristics of pale, soft, exudative broiler breast meat. Poult. Sci. 2000, 79, 1057–1061. [Google Scholar] [CrossRef]
- Strasburg, G.M.; Chiang, W. Pale, soft, exudative Turkey—The role of ryanodine receptor variation in meat quality. Poult. Sci. 2009, 88, 1497–1505. [Google Scholar] [CrossRef]
- Apaoblaza, A.; Galaz, A.; Strobel, P.; Ramirez-Reveco, A.; Jerez-Timaure, N.; Gallo, C. Glycolytic potential, and activity of adenosine monophosphate kinase (AMPK), glycogen phosphorylase (GP) and glycogen debranching enzyme (GDE) in steer carcasses with normal (5.9) 24 h pH determined in M. longissimus dorsi. Meat Sci. 2015, 101, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Yu, J.M.; Zhang, M.; Bao, E.D. Effects of different heat stress periods on various blood and meat quality parameters in young arbor Acer broiler chickens. Can. J. Anim. Sci. 2012, 93, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Kadim, I.T.; Mahgoub, O.; Khalaf, S. Effects of the transportation during hot season and electrical stimulation on meat quality characteristics of goat Longissimus dorsi muscle. Small Rumin. Res. 2014, 121, 120–124. [Google Scholar] [CrossRef]
- Song, D.J.; King, A.J. Effects of heat stress on broiler meat quality. Worlds Poult. Sci. J. 2015, 71, 701–709. [Google Scholar] [CrossRef]
- Woelfel, R.L.; Owens, C.M.; Hirschler, E.M.; Martinez-Dawson, R.; Sams, A.R. The characterization and incidence of pale, soft, and exudative broiler meat in a commercial processing plant. Poult. Sci. 2002, 81, 579–584. [Google Scholar] [CrossRef]
- Zhang, X.; Owens, C.M.; Schilling, M.W. Meat: The edible flesh from mammals only or does it include poultry, fish, and seafood? Anim. Front. 2017, 7, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Yost, J.; Kenney, P.; Slider, S.; Russell, R.; Killefer, J. Influence of selection for breast muscle mass on myosin isoform composition and metabolism of deep pectoralis muscles of male and female turkeys. Poult. Sci. 2002, 81, 911–917. [Google Scholar] [CrossRef]
- Wilhelm, A.E.; Maganhini, M.B.; Hernández-Blazquez, F.J.; Ida, E.I.; Shimokomaki, M. Protease activity and the ultrastructure of broiler chicken PSE (pale, soft, exudative) meat. Food Chem. 2010, 119, 1201–1204. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Xing, T.; Li, J.; Zhang, L.; Jiang, Y.; Gao, F. Transcriptome analysis reveals the mechanism of chronic heat stress on meat quality of broilers. J. Anim. Sci. Biotechnol. 2022, 13, 110. [Google Scholar] [CrossRef]
- Barbut, S.; Sosnicki, A.A.; Lonergan, S.M.; Knapp, T.; Ciobanu, D.C.; Gatcliffe, L.J.; Huff-Lonergan, E.; Wilson, E.W. Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat. Meat Sci. 2008, 79, 46–63. [Google Scholar] [CrossRef]
- Owens, C.M.; Alvarado, C.Z.; Sams, A.R. Research developments in pale, soft, and exudative turkey meat in North America. Poult. Sci. 2009, 88, 1513–1517. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.L.; Li, Y.J.; Gao, T.; Zhang, L.; Gao, F.; Zhou, G.H. Effects of dietary supplementation of guanidino acetic acid and combination of guanidino acetic acid and betaine on postmortem glycolysis and meat quality of finishing pigs. Anim. Feed. Sci. Tech. 2015, 205, 82–89. [Google Scholar] [CrossRef]
- Hughes, J.M.; Clarke, F.M.; Purslow, P.P.; Warner, R.D. Meat color is determined not only by chromatic heme pigments but also by the physical structure and achromatic light scattering properties of the muscle. Compr. Rev. Food Sci. Food Saf. 2019, 19, 44–63. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Special Report: Global Warming of 1.5 °C; IPCC: Incheon, Republic of Korea, 2018; Available online: https://www.ipcc.ch/sr15/ (accessed on 5 February 2023).
- Dettleff, P.; Zuloaga, R.; Fuentes, M.; Gonzalez, P.; Aedo, J.; Estrada, J.M.; Molina, A.; Valdés, J.A. Physiological and molecular responses to thermal stress in red cusk-eel (Genypterus chilensis) juveniles reveals atrophy and oxidative damage in skeletal muscle. J. Therm. Biol. 2020, 94, 102750. [Google Scholar] [CrossRef]
- Xu, Y.; Lai, X.; Li, Z.; Zhang, X.; Luo, Q. Effect of chronic heat stress on some physiological and immunological parameters in different breeds of broilers. Poult. Sci. 2018, 97, 4073–4082. [Google Scholar] [CrossRef]
- Sula, M.J.; Winslow, C.M.; Boileau, M.J.; Barker, L.D.; Panciera, R.J. Heat-related injury in lambs. J. Vet. Diagn. Investig. 2012, 24, 772–776. [Google Scholar] [CrossRef] [Green Version]
- Adzitey, F.; Nurul, H. Pale soft exudative (PSE) and dark firm dry (DFD) meats: Causes and measures to reduce these incidences. Int. Food Res. J. 2011, 18, 11–20. [Google Scholar]
- Kim, Y.H.B.; Warner, R.D.; Rosenvold, K. Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: A review. Anim. Prod. Sci. 2014, 54, 375–395. [Google Scholar] [CrossRef] [Green Version]
- Warner, R.D.; Dunshea, F.R.; Gutzke, D.; Lau, J.; Kearney, G. Factors influencing the incidence of high rigor temperature in beef carcasses in Australia. Anim. Prod. Sci. 2014, 54, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Gregory, N.G. How climatic changes could affect meat quality. Food Res. Int. 2010, 7, 1866–1873. [Google Scholar] [CrossRef]
- D’Souza, D.N.; Leury, B.J.; Dunshea, F.R.; Warner, R.D. Effect of on-farm and pre-slaughter handling of pigs on meat quality. Aust. J. Agric. Res. 1998, 49, 1021–1025. [Google Scholar] [CrossRef]
- Minton, J.E. Function of the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system in models of acute stress in domestic farm animals. J. Anim. Sci. 1994, 72, 1891–1898. [Google Scholar] [CrossRef]
- Afsal, A.; Sejian, V.; Madiajagan, B.; Krishnan, G. Heat Stress and Livestock Adaptation: Neuro-endocrine Regulation. Int. J. Vet. Anim. Med. 2018, 1, 1–8. [Google Scholar]
- Kadim, I.T.; Mahgoub, O.; Al-Kindi, A.; Al-Marzooqi, W.; Al-Saqri, N.M. Effects of transportation at high ambient temperatures on physiological responses, carcass, and meat quality characteristics of three breeds of Omani goats. Meat Sci. 2006, 73, 626–634. [Google Scholar] [CrossRef]
- Kuo, T.; Harris, C.A.; Wang, J.-C. Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol. Cell. Endocrinol. 2013, 380, 79–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiaffino, S.; Dyar, K.A.; Ciciliot, S.; Blaauw, B.; Sandri, M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013, 280, 4294–4314. [Google Scholar] [CrossRef]
- Bell, R.A.V.; Al-Khalaf, M.; Megeney, L.A. The beneficial role of proteolysis in skeletal muscle growth and stress adaptation. Skelet. Muscle 2016, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Braun, T.P.; Marks, D.L. The regulation of muscle mass by endogenous glucocorticoids. Front. Physiol. 2015, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar]
- Scanes, C.G. Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poult. Sci. 2016, 95, 2208–2215. [Google Scholar] [CrossRef]
- Lu, Q.; Wen, J.; Zhang, H. Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poult. Sci. 2007, 86, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Song, Z.; Zhang, X.; Wang, X.; Jiao, H.; Lin, H. Increased de novo lipogenesis in liver contributes to the augmented fat deposition in dexamethasone-exposed broiler chickens (Gallus gallus domesticus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009, 150, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Song, Z.G.; Jiao, H.C.; Lin, H. Skeletal muscle fatty acids shift from oxidation to storage upon dexamethasone treatment in chickens. Gen. Comp. Endocrinol. 2012, 179, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Wei, D.L.; Song, Z.G.; Jiao, H.C.; Lin, H. Effects of fatty acid treatments on the dexamethasone-induced intramuscular lipid accumulation in chickens. PLoS ONE 2012, 7, e36663. [Google Scholar] [CrossRef] [PubMed]
- Cruzen, S.M.; Boddicker, R.L.; Graves, K.L.; Johnson, T.P.; Arkfeld, E.K.; Baumgard, L.H.; Ross, J.W.; Safranski, T.J.; Lucy, M.C.; Lonergan, S.M. Carcass composition of market weight pigs subjected to heat stress in utero and during finishing. J. Anim. Sci. 2015, 93, 2587–2596. [Google Scholar] [CrossRef] [Green Version]
- Qu, H.; Yan, H.; Lu, H.; Donkin, S.S.; Ajuwon, K.M. Heat stress in pigs is accompanied by adipose tissue–specific responses that favor increased triglyceride storage. J. Anim. Sci. 2016, 94, 1884–1896. [Google Scholar] [CrossRef]
- Carra, S.; Alberti, S.; Arrigo, P.A.; Benesch, J.L.; Benjamin, I.J.; Boelens, W.; Bartelt-Kirbach, B.; Brundel, B.J.; Buchner, J.; Bukau, B.; et al. The growing world of small heat shock proteins: From structure to functions. Cell Stress Chaperones 2017, 22, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Newcom, D.W.; Stadler, K.J.; Baas, T.J.; Goodwin, R.N.; Parrish, F.C.; Wiegand, B.R. Breed differences and genetic parameters of myoglobin concentration in porcine longissimus muscle. J. Anim. Sci. 2004, 82, 2264–2268. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.S.; Bao, B. Review, Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants 2019, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, M.; DelCurto-Wyffels, H.; Thomson, J.; Boles, J. Fat Deposition and Fat Effects on Meat Quality—A Review. Animals 2022, 3, 1550. [Google Scholar] [CrossRef]
- Belhadj Slimen, I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular, and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heng, J.; Tian, M.; Zhang, W.; Chen, F.; Guan, W.; Zhang, S. Maternal heat stress regulates the early fat deposition partly through modification of m6A RNA methylation in neonatal piglets. Cell Stress Chaperones 2019, 24, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Kouba, M.; Hermier, D.; Le Dividich, J. Influence of a high ambient temperature on lipid metabolism in the growing pig. J. Anim. Sci. 2001, 79, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.Y.; Wang, J.; Sun, P.; Bu, D. The effect of heat stress on the metabolism of dairy cows: Updates & review. Austin J. Nutr. Metab. 2016, 3, 1036. [Google Scholar]
- Hakeri, M.; Cottrell, J.J.; Wilkinson, S.; Le, H.H.; Suleria, H.A.; Warner, R.D.; Dunshea, F.R. Growth performance and characterization of meat quality of broiler chickens supplemented with betaine and antioxidants under cyclic heat stress. Antioxidants 2019, 8, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouad, A.M.; Chen, W.; Ruan, D.; Wang, S.; Xia, W.G.; Zheng, C.T. Impact of heat stress on meat, egg quality, immunity and fertility in poultry and nutritional factors that overcome these effects: A review. Int. J. Poult. Sci. 2016, 15, 81. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wen, J.; Fang, G.Y.; Li, Z.R.; Dong, Z.Y.; Liu, J. The effects of raising system on the lipid metabolism and meat quality traits of slow-growing chickens. J. Appl. Anim. Res. 2015, 43, 147–152. [Google Scholar] [CrossRef]
- El-Tarabany, M.S.; Ahmed-Farid, O.A.; Nassan, M.A.; Salah, A.S. Oxidative Stability, Carcass Traits, and Muscle Fatty Acid and Amino Acid Profiles in Heat-Stressed Broiler Chickens. Antioxidants 2021, 10, 1725. [Google Scholar] [CrossRef]
- Rinaldo, D.; Mourot, J. Effects of tropical climate and season on growth chemical composition of muscle and adipose tissue and meat quality in pigs. Anim. Res. 2001, 50, 507–521. [Google Scholar] [CrossRef] [Green Version]
- Pardo, Z.; Fernández-Fígares, I.; Lachica, M.; Lara, L.; Nieto, R.; Seiquer, I. Impact of Heat Stress on Meat Quality and Antioxidant Markers in Iberian Pigs. Antioxidants 2021, 10, 1911. [Google Scholar] [CrossRef]
- Mishkind, M.; Vermeer, J.E.; Darwish, E.; Munnik, T. Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. Plant J. 2009, 60, 10–21. [Google Scholar] [CrossRef]
- Collier, R.J.; Dahl, G.E.; VanBaale, M.J. Major advances associated with environmental effects on dairy cattle. J. Dairy Sci. 2006, 89, 1244–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beede, D.K.; Collier, R.J. Potential nutritional strategies for intensively managed cattle during thermal stress. J. Anim. Sci. 1986, 62, 543–554. [Google Scholar] [CrossRef]
- Ahmad, T.; Khalid, T.; Mushtaq, T.; Mirza, M.A.; Nadeem, A.; Babar, M.E.; Ahmad, G. Effect of potassium chloride supplementation in drinking water on broiler performance under heat stress conditions. Poult. Sci. 2008, 87, 1276–1280. [Google Scholar] [CrossRef]
- Lin, H.; Jiao, H.C.; Buyse, J.; Decuypere, E. Strategies for preventing heat stress in poultry. World’s Poult. Sci. J. 2006, 62, 71–86. [Google Scholar] [CrossRef]
- Balnave, D.; Muheereza, S.K. Improving eggshell quality at high temperatures with dietary sodium bicarbonate. Poult. Sci. 1997, 76, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Del Vesco, A.P.; Gasparino, E.; Grieser, D.O.; Zancanela, V.; Gasparin, F.R.S.; Constantin, J.; Neto, A.O. Effects of methionine supplementation on the redox state of acute heat stress–exposed quails. J. Anim. Sci. 2014, 92, 806–815. [Google Scholar] [CrossRef] [Green Version]
- Zeng, T.; Li, J.J.; Wang, D.Q.; Li, G.Q.; Wang, G.L.; Lu, L.Z. Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: Evidence for differential thermal sensitivities. Cell. Stress. Chaperones 2014, 19, 895–901. [Google Scholar] [CrossRef]
- Tamzil, M.H.; Noor, R.R.; Hardjosworo, P.S.; Manalu, W.; Sumantri, C. Hematological response of chickens with different heat shock protein 70 genotypes to acute heat stress. Poult. Sci. 2014, 13, 14. [Google Scholar] [CrossRef] [Green Version]
- Sporer, K.R.B.; Zhou, H.R.; Linz, J.E.; Booren, A.M.; Strasburg, G.M. Differential expression of calcium-regulating genes in heat-stressed turkey breast muscle is associated with meat quality. Poult. Sci. 2012, 91, 1418–1424. [Google Scholar] [CrossRef]
- Cardoso-Pereira, P.M.C.; Baltazar-Vicente, A.F.R. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Babinszky, L.; Horváth, M.; Remenyik, J.; Verstegen, M.W.A. The adverse effects of heat stress on the antioxidant status and performance of pigs and poultry and reducing these effects with nutritional tools. In Poultry and Pig Nutrition: Challenges of the 21st Century; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; pp. 471–476. [Google Scholar]
- Liu, Y.; Yin, S.; Tang, J.; Liu, Y.; Jia, G.; Liu, G.; Tian, G.; Chen, X.; Cai, J.; Kang, B.; et al. Hydroxy selenomethionine improves meat quality through optimal skeletal metabolism and functions of selenoproteins of pigs under chronic heat stress. Antioxidants 2021, 10, 1558. [Google Scholar] [CrossRef]
- Rosado Montilla, S.I.; Johnson, T.P.; Pearce, S.C.; Gardan-Salmon, D.; Gabler, N.K.; Ross, J.W.; Rhoads, R.P.; Baumgard, L.H.; Lonergan, S.M.; Selsby, J.T. Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle. Temperature 2014, 1, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Hao, Y.; Feng, J.; Lin, H.; Feng, Y.; Wu, X.; Yang, X.; Gu, X. The expression of carnosine and its effect on the antioxidant capacity of longissimus dorsi muscle in finishing pigs exposed to constant heat stress. Asian-Australas. J. Anim. Sci. 2014, 27, 1763–1772. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Prabhakaran, S.A. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Ind. J. ExBiol. 2005, 43, 963–974. [Google Scholar]
- Liu, R.; Zhang, X.; Ren, A.; Shi, D.K.; Shi, L.; Zhu, J.; Yu, H.S.; Zhao, M.W. Heat stress-induced reactive oxygen species participate in the regulation of HSP expression, hyphal branching, and ganoderic acid biosynthesis in Ganoderma lucidum. Microbiol. Res. 2018, 209, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, K.; Mingbin, L.; Zhao, J.; Xiong, B. Effects of chestnut tannins on the meat quality, welfare, and antioxidant status of heat-stressed lambs. Meat Sci. 2016, 116, 236–242. [Google Scholar] [CrossRef]
- Huang, X.; Ahn, D.U. Lipid oxidation and its implications to meat quality and human health. Food Sci. Biotechnol. 2019, 7, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef]
- He, Y.; Zhou, M.; Xia, C.; Xia, Q.; He, J.; Cao, J.; Pan, D.; Sun, Y. Volatile flavor changes responding to heat stress-induced lipid oxidation in duck meat. Anim. Sci. J. 2020, 91, e13461. [Google Scholar] [CrossRef] [PubMed]
- Altan, Ö.; Pabuçcuoğlu, A.; Altan, A.; Konyalioğlu, S.; Bayraktar, H. Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br. Poult. Sci. 2003, 44, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Hosseindoust, A.; Oh, S.M.; Ko, H.S.; Jeon, S.M.; Ha, S.H.; Jang, A.; Son, J.S.; Kim, G.Y.; Kang, H.K.; Kim, J.S. Muscle antioxidant activity and meat quality are altered by supplementation of astaxanthin in broilers exposed to high temperature. Antioxidants 2020, 9, 1032. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, Y.; Du, M.; Zhou, Y. Protective effects of dietary symbiotic supplementation on meat quality and oxidative status in broilers under heat stress. Environ. Sci. Pollut. Res. 2021, 28, 30197–30206. [Google Scholar] [CrossRef]
- Swanson, R.M.; Tait, R.G.; Galles, B.M.; Duffy, E.M.; Schmidt, T.B.; Petersen, J.L.; Yates, D.T. Heat stress-induced deficits in growth, metabolic efficiency, and cardiovascular function coincided with chronic systemic inflammation and hypercatecholaminemia in ractopamine-supplemented feedlot lambs. J. Anim. Sci. 2020, 98, skaa168. [Google Scholar] [CrossRef] [PubMed]
- Barnes, T.L.; Cadaret, C.N.; Beede, K.A.; Schmidt, T.B.; Petersen, J.L.; Yates, D.T. Hypertrophic muscle growth and metabolic efficiency were impaired by chronic heat stress, improved by zilpaterol supplementation, and not affected by ractopamine supplementation in feedlot lambs. J. Anim. Sci. 2019, 97, 4101–4113. [Google Scholar] [CrossRef]
- Lundy, E.L.; Loy, D.D.; Hansen, S.L. Influence of distiller’s grains resulting from a cellulosic ethanol process utilizing corn kernel fiber on nutrient digestibility of lambs and steer feedlot performance. J. Anim. Sci. 2015, 93, 2265–2274. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.L.; Chen, F.; Park, S.; Balasubramanian, B.; Liu, W.C. Impacts of heat stress on rabbit immune function, endocrine, blood biochemical changes, antioxidant capacity, and production performance, and the potential mitigation strategies of nutritional intervention. Front. Vet. Sci. 2022, 9, 906084. [Google Scholar] [CrossRef]
- Li, D.X.; Yang, S.H.; He, J.B. The effect of heat stress on the levels of CAT and SOD in rabbit pituitary gland and hypothalamus. Adv. Vet. Med. 2010, 31, 77–80. [Google Scholar] [CrossRef]
- Hagenmaier, J.A.; Reinhardt, C.D.; Bartle, S.J.; Henningson, J.N.; Ritter, M.J.; Calvo-Lorenzo, M.S.; Vogel, G.J.; Guthrie, C.A.; Siemens, M.G.; Thomson, D.U. Effect of handling intensity at the time of transport for slaughter on physiological response and carcass characteristics in beef cattle fed ractopamine hydrochloride. J. Anim. Sci. 2017, 95, 1963–1976. [Google Scholar]
- Kaushik, R.; Dige, M.; Dass, G.; Ramachandran, N.; Rout, K. Superoxide dismutase activity in response to heat stress in Jamunapari goats. Indian J. Biochem. Biophys. 2018, 55, 39–43. [Google Scholar]
- Gyawali, I.; Paudel, R. The Effect of Heat Stress on Meat Quality, Growth Performance and Antioxidant Capacity of Broiler Chickens: A review. Poult. Sci. J. 2022, 10, 1–12. [Google Scholar]
- Li, W.Z.; Li, H.L.; Guo, Z.K.; Shang, S.Q. Effects of short-term heat stress on the development and reproduction of predatory mite Neoseiulus barkeri (Acari, Phytoseiidae). Syst. Appl. Acarol. 2021, 26, 713–723. [Google Scholar] [CrossRef]
- Tan, G.Y.; Yang, L.; Fu, Y.Q.; Feng, J.H.; Zhang, M.H. Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens. Poult. Sci. 2010, 89, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Tan, G.Y.; Fu, Y.Q.; Feng, J.H.; Zhang, M.H. Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production, and lipid peroxidation in broiler chickens. ComBiochem. Physiol. C Toxicol. Pharmacol. 2010, 151, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.P.; Liu, Y.L.; Zhang, J.X.; Ding, K.N.; Lu, M.H.; He, Y.M. Heat stress in broilers of liver injury effects of heat stress on oxidative stress and autophagy in liver of broilers. Poult. Sci. 2022, 101, 102085. [Google Scholar] [CrossRef]
- Pamok, S.; Aengwanich, W.; Komutrin, T. Adaptation to oxidative stress and impact of chronic oxidative stress on immunity in heat-stressed broilers. J. Therm. Biol. 2009, 34, 353–357. [Google Scholar] [CrossRef]
- Sahin, K.; Onderci, M.; Sahin, N.; Gursu, M.F.; Kucuk, O. Dietary vitamin C, and folic acid supplementation ameliorate the detrimental effects of heat stress in Japanese quail. J. Nutr. 2003, 133, 1882–1886. [Google Scholar] [CrossRef] [Green Version]
Antioxidant Enzyme. | Animal Species | Effects of HS | References |
---|---|---|---|
Antioxidant capacity (T-AOC) | Lambs | Increased | [129] |
Broilers | Increased | [128] | |
Rabbits | Accelerated | [132] | |
Superoxide dismutase (SOD) | Pigs | Enhanced | [104] |
Broilers | Increased | [141,142] | |
Goats | High | [135] | |
Beef | High | [134] | |
Catalase (CAT) | Pigs | Stimulated | [104] |
Broilers | Increased | [142] | |
Lambs | Increased | [129] | |
Malondialdehybe (MDA) | Pigs | Elevated | [104] |
Broilers | Increased | [138] | |
Glutathione Peroxidase (GPx) | Pigs | Low activity | [139] |
Broilers | Increased | [142] | |
Japanese quail | Decreased | [143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bejaoui, B.; Sdiri, C.; Ben Souf, I.; Belhadj Slimen, I.; Ben Larbi, M.; Koumba, S.; Martin, P.; M’Hamdi, N. Physicochemical Properties, Antioxidant Markers, and Meat Quality as Affected by Heat Stress: A Review. Molecules 2023, 28, 3332. https://doi.org/10.3390/molecules28083332
Bejaoui B, Sdiri C, Ben Souf I, Belhadj Slimen I, Ben Larbi M, Koumba S, Martin P, M’Hamdi N. Physicochemical Properties, Antioxidant Markers, and Meat Quality as Affected by Heat Stress: A Review. Molecules. 2023; 28(8):3332. https://doi.org/10.3390/molecules28083332
Chicago/Turabian StyleBejaoui, Bochra, Chaima Sdiri, Ikram Ben Souf, Imen Belhadj Slimen, Manel Ben Larbi, Sidrine Koumba, Patrick Martin, and Naceur M’Hamdi. 2023. "Physicochemical Properties, Antioxidant Markers, and Meat Quality as Affected by Heat Stress: A Review" Molecules 28, no. 8: 3332. https://doi.org/10.3390/molecules28083332
APA StyleBejaoui, B., Sdiri, C., Ben Souf, I., Belhadj Slimen, I., Ben Larbi, M., Koumba, S., Martin, P., & M’Hamdi, N. (2023). Physicochemical Properties, Antioxidant Markers, and Meat Quality as Affected by Heat Stress: A Review. Molecules, 28(8), 3332. https://doi.org/10.3390/molecules28083332