Untargeted Metabolomics Combined with Sensory Analysis to Evaluate the Chemical Changes in Coppa Piacentina PDO during Different Ripening Times
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Composition of Coppa Piacentina PDO Samples
2.2. Modification of Fatty Acid Profile and Total Peroxides during Ripening
2.3. Marker Compounds of the Ripening Time by Untargeted Metabolomics
2.4. Effect of Coppa Piacentina PDO Ripening Period on Sensory Characteristics
3. Materials and Methods
3.1. Samples
3.2. Proximate Composition
3.3. Fatty Acids Profile and Total Peroxides
3.4. Extraction and UHPLC-HRMS Analysis of Coppa Piacentina PDO Samples
3.5. Sensory Analysis of Coppa Piacentina PDO Samples
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Rocchetti, G.; Rebecchi, A.; Dallolio, M.; Braceschi, G.; Domínguez, R.; Dallolio, G.; Trevisan, M.; Lorenzo, J.M.; Lucini, L. Changes in chemical and sensory profile of ripened Italian salami following the addition of different microbial starters. Meat Sci. 2021, 180, 108584. [Google Scholar] [CrossRef]
- Mediani, A.; Hamezah, H.S.; Jam, F.A.; Mahadi, N.F.; Chan, S.X.Y.; Rohani, E.R.; Lah, N.H.C.; Azlan, U.K.; Annuar, N.A.K.; Azman, N.A.F.; et al. A comprehensive review of drying meat products and the associated effects and changes. Front. Nutr. 2022, 9, 1057366. [Google Scholar] [CrossRef]
- Flores, M.; Piornos, J.A. Fermented meat sausages and the challenge of their plant-based alternatives: A comparative review on aroma-related aspects. Meat Sci. 2021, 182, 108636. [Google Scholar] [CrossRef]
- Rocchetti, G.; Rebecchi, A.; Lopez, C.M.; Dallolio, M.; Dallolio, G.; Trevisan, N.; Lucini, L. Impact of axenic and mixed starter cultures on metabolomic and sensory profiles of ripened Italian salami. Food Chem. 2023, 402, 134182. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef]
- Capozzi, F.; Trimigno, A.; Ferranti, P. Chapter 9—Proteomics and metabolomics in relation to meat quality. In Poultry Quality Evaluation; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2017; pp. 221–245. [Google Scholar]
- Rocchetti, G.; Bernardo, L.; Pateiro, M.; Barba, F.J.; Munekata, P.E.S.; Trevisan, M.; Lorenzo, J.M.; Lucini, L. Impact of pitanga leaf extract to prevent lipid oxidation processes during shelf life of packaged pork burgers: An untargeted metabolomic approach. Foods 2020, 9, 1668. [Google Scholar] [CrossRef]
- Rocchetti, G.; Becchi, P.P.; Lucini, L.; Cittadini, A.; Munekata, P.E.S.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M. Elderberry (Sambucus nigra L.) encapsulated extracts as meat extenders against lipid and protein oxidation during shelf-life of beef burgers. Antioxidants 2022, 11, 2130. [Google Scholar] [CrossRef] [PubMed]
- García-García, A.B.; Lamichhane, S.; Castejón, D.; Cambero, M.I.; Bertram, H.C. 1H HR-MAS NMR-based metabolomics analysis for dry-fermented sausage characterization. Food Chem. 2018, 240, 514–523. [Google Scholar] [CrossRef]
- Sugimoto, M.; Sugawara, T.; Obiya, S.; Enomoto, A.; Kaneko, M.; Ota, S.; Soga, T.; Tomita, M. Sensory properties and metabolomic profiles of dry-cured ham during the ripening process. Food Res. Int. 2020, 129, 108850. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, L.; Zheng, X.; Huang, Q.; Farag, M.A.; Zhu, R.; Zhao, C. Emerging applications of metabolomics in food science and future trends. Food Chem. X 2022, 16, 100500. [Google Scholar] [CrossRef]
- Andres, A.I.; Ventanas, S.; Ventanas, J.; Cava, R.; Ruiz, J. Physicochemical changes throughout the ripening of dry cured hams with different salt content and processing conditions. Eur. Food Res. Technol. 2005, 221, 30–35. [Google Scholar] [CrossRef]
- Cava, R.; Ruiz, J.; Ventanas, J.; Antequera, T. Oxidative and lipolytic changes during ripening of Iberian hams as affected by feeding regime: Extensive feeding and alpha-tocopheryl acetate supplementation. Meat Sci. 1999, 52, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Coutron-Gambotti, C.; Gandemer, G. Lipolysis and oxidation in subcutaneous adipose tissue during dry cured ham processing. Food Chem. 1999, 64, 95–101. [Google Scholar] [CrossRef]
- Visessanguan, W.; Benjakul, S.; Riebroy, S.; Yarchai, M.; Tapingkae, W. Changes in lipid composition and fatty acid profile of Nham, a Thai fermented pork sausage, during fermentation. Food Chem. 2006, 94, 580–588. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F.; Ventanas, J.; Toldrá, C. Nutritional composition of dry-cured ham and its role in a healthy diet. Meat Sci. 2010, 84, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Muzolf-Panek, M.; Kaczmarek, A. Chemometric analysis of fatty acid composition of raw chicken, beef, and pork meat with plant extract addition during refrigerated storage. Molecules 2021, 26, 4952. [Google Scholar] [CrossRef] [PubMed]
- Seong, P.N.; Park, K.M.; Kang, G.H.; Cho, S.H.; Park, B.Y.; Ba, H.V. The impact of ripening time on technological quality traits, chemical change and sensory characteristics of dry-cured loin. Asian-Australas J. Anim. Sci. 2015, 28, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Cava, R.; Estévez, M.; Morcuende, D.; Antequera, T. Evolution of fatty acids from intramuscular lipid fractions during ripening of Iberian hams as affected by α-tocopheryl acetate supplementation in diet. Food Chem. 2003, 81, 199–207. [Google Scholar] [CrossRef]
- Larrea, V.; Pérez-Munuera, I.; Hernando, I.; Quiles, A.; Lluch, M.A. Chemical and structural changes in lipids during the ripening of Teruel dry-cured ham. Food Chem. 2007, 102, 494–503. [Google Scholar] [CrossRef]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Wagner, J.; Czyż, K.; Bodkowski, R.; Lochyński, S.; Patkowska-Sokoła, B. Polyunsaturated fatty acids and their potential therapeutic role in cardiovascular system disorders—A review. Nutrients 2018, 10, 1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doeun, D.; Davaatseren, M.; Chung, M.-S. Biogenic amines in foods. Food Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef]
- Muñoz-Esparza, N.C.; Costa-Catala, J.; Comas-Basté, O.; Toro-Funes, N.; Latorre-Moratalla, M.L.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Occurrence of polyamines in foods and the influence of cooking processes. Foods 2021, 10, 1752. [Google Scholar] [CrossRef]
- Kalač, P. Biologically active polyamines in beef, pork and meat products: A review. Meat Sci. 2006, 73, 1–11. [Google Scholar] [CrossRef]
- Busconi, M.; Zacconi, C.; Scolari, G. Bacterial ecology of PDO Coppa and Pancetta Piacentina at the end of ripening and after MAP storage of sliced product. Int. J. Food Microbiol. 2014, 172, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. Biogenic amine production by lactic acid bacteria: A review. Foods 2019, 8, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermassen, A.; Dordet-Frisoni, E.; de la Foye, A.; Micheau, P.; Laroute, V.; Leroy, S.; Talon, R. Adaptation of Staphylococcus xylosus to nutrients and osmotic stress in a salted meat model. Front. Microbiol. 2016, 7, 87. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Suo, R.; Liu, X.; Wang, Y.; Sun, J.; Liu, Y.; Wang, W.; Wang, J. Kokumi γ-glutamyl peptides: Some insight into their evaluation and detection, biosynthetic pathways, contribution and changes in food processing. Food Chem. Advan. 2022, 1, 100061. [Google Scholar] [CrossRef]
- Yang, J.; Bai, W.; Zeng, X.; Cui, C. Gamma glutamyl peptides: The food source, enzymatic synthesis, kokumi-active and the potential functional properties—A review. Trends Food Sci. Technol. 2019, 91, 330–346. [Google Scholar] [CrossRef]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V. Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: A review. Compr. Rev. Food Sci. 2017, 16, 96–123. [Google Scholar] [CrossRef]
- Prandini, A.; Sigolo, S.; Gallo, A.; Faeti, V.; Della Casa, G. Characterization of protected designation of origin Italian meat products obtained from heavy pigs fed barley-based diets. J. Anim. Sci. 2015, 93, 4510–4523. [Google Scholar] [CrossRef] [Green Version]
- Ueda, Y.; Yonemitsu, M.; Tsubuku, T.; Sakaguchi, M.; Miyajima, R. Flavor characteristics of glutathione in raw and cooked foodstuffs. Biosci. Biotechnol. Biochem. 1997, 61, 1977–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Organization for Standardization (ISO). Determination of Moisture Content—Meat and Meat Products. Reference Method ISO 1442; ISO: Geneva, Switzerland, 1997. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- International Organization for Standardization (ISO). Determination of Total Fat Content—Meat and Meat Products. Method 1443; ISO: Geneva, Switzerlan, 1973. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, TX, USA, 1990. [Google Scholar]
- Christie, W.W. Gas Chromatography and Lipids—A Practical Guide; The Oily Press: Dundee, Scotland, 1989. [Google Scholar]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods. 2015, 12, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience 2013, 2, 2047-217X-2-13. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization (ISO). Sensory analysis—Methodology—General Guidance for Establishing a Sensory Profile. Reference Method ISO 13299; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 2022, 17, 1735–1761. [Google Scholar] [CrossRef] [PubMed]
Ripening Time (Days) | Moisture (g/100 g) | Proteins (g/100 g) | Lipids (g/100 g) | Peroxide Value (mEq. O2/kg) |
---|---|---|---|---|
T0 | 62.3 ± 1.4 a | 18.2 ± 0.9 a | 17.9 ± 3.3 a | 0.6 ± 0.7 a |
T60 | 47.8 ± 2.5 b | 20.5 ± 1.3 ab | 26.9 ± 3.6 b | 10.3 ± 0.8 b |
T90 | 48.8 ±2.1 b | 20.9 ± 1.4 ab | 25.9 ± 1.1 b | 19.8 ± 0.9 c |
T180 | 42.8 ± 3.8 b | 21.9 ± 1.6 bc | 30.2 ± 4.3 bc | 21.2 ± 0.8 c |
T240 | 33.8 ± 4.9 c | 24.5 ± 3.3 bc | 34.6 ± 4.8 c | 26.0 ± 2.4 d |
Fatty Acids | T0 | T60 | T90 | T180 | T240 |
---|---|---|---|---|---|
C 10:0 | 0.06 ± 0.01 a | 0.07 ± 0.00 a | 0.07 ± 0.01 a | 0.07 ± 0.00 a | 0.07 ± 0.01 a |
C 12:0 | 0.08 ± 0.02 ab | 0.09 ± 0.02 b | 0.07 ± 0.00 a | 0.08 ± 0.00 ab | 0.07 ± 0.01 a |
C 14:0 | 1.37 ± 0.01 a | 1.33 ± 0.06 a | 1.26 ± 0.05 a | 1.33 ± 0.10 a | 1.32 ± 0.11 a |
C 15:0 | 0.04 ± 0.00 a | 0.03 ± 0.01 b | 0.03 ± 0.01 ab | 0.04 ± 0.00 a | 0.03 ± 0.01 ab |
C 16:0 | 27.38 ± 0.08 a | 26.57 ± 0.51 a | 26.28 ± 0.95 a | 26.49 ± 0.74 a | 26.63 ± 1.07 a |
C 16:1 | 1.78 ± 0.08 a | 1.86 ± 0.20 a | 1.73 ± 0.20 a | 1.89 ± 0.17 a | 2.03 ± 0.17 a |
C 17:0 | 0.19 ± 0.01 bc | 0.14 ± 0.03 a | 0.18 ± 0.03 bc | 0.22 ± 0.01 c | 0.17 ± 0.02 a |
C 18:0 | 14.67 ± 0.21 a | 14.13 ± 1.08 a | 14.59 ± 1.05 a | 13.76 ± 0.91 a | 14.03 ± 1.15 a |
C 18:1n9c | 37.20 ± 0.38 a | 42.00 ± 1.64 bc | 39.18 ± 1.92 a | 40.11 ± 1.38 abc | 43.10 ± 2.80 c |
C 18:1cis11 | 2.49 ± 0.08 a | 2.57 ± 0.15 a | 2.41 ± 0.18 a | 2.58 ± 0.10 a | 2.95 ± 0.19 b |
C 18:2n6c | 12.13 ± 0.35 c | 9.11 ± 1.70 ab | 11.89 ± 1.36 c | 11.26 ± 1.35 bc | 7.58 ± 0.88 a |
C 18:3n3 | 0.52 ± 0.02 c | 0.40 ± 0.08 b | 0.42 ± 0.03 b | 0.42 ± 0.04 b | 0.26 ± 0.01 a |
C 20:0 | 0.13 ± 0.01 a | 0.14 ± 0.02 a | 0.13 ± 0.01 a | 0.12 ± 0.01 a | 0.14 ± 0.03 a |
CLA tot. | 0.06 | 0.03 | 0.06 | 0.06 | 0.05 |
C 20:1 | 0.75 ± 0.01 ab | 0.67 ± 0.04 ab | 0.66 ± 0.09 ab | 0.60 ± 0.07 a | 0.80 ± 0.15 b |
C 20:2 | 0.50 ± 0.02 c | 0.35 ± 0.07 ab | 0.45 ± 0.06 bc | 0.41 ± 0.06 abc | 0.33 ± 0.05 a |
C 20:3n6 | 0.09 ± 0.00 c | 0.07 ± 0.02 ab | 0.08 ± 0.01 bc | 0.09 ± 0.01 bc | 0.07 ± 0.00 a |
C 20:3n3 | 0.11 ± 0.00 b | 0.08 ± 0.01 a | 0.08 ± 0.01 a | 0.08 ± 0.01 a | 0.07 ± 0.01 a |
C 20:4n6 | 0.38 ± 0.02 c | 0.30 ± 0.03 ab | 0.36 ± 0.05 bc | 0.34 ± 0.04 abc | 0.26 ± 0.05 a |
C 22:5n3 | 0.08 ± 0.00 b | 0.06 ± 0.01 ab | 0.06 ± 0.01 a | 0.06 ± 0.01 a | 0.05 ± 0.01 a |
C 22:6n3 | nd a | 0.01 ± 0.01 b | 0.01 ± 0.00 b | 0.02 ± 0.01 b | 0.01 ± 0.00 ab |
Saturated (SFA) | 43.92 ± 0.26 a | 42.49 ± 0.94 a | 42.62 ± 1.88 a | 42.09 ± 1.09 a | 42.45 ± 2.21 a |
Monounsaturated (MUFA) | 42.21 ± 0.51 a | 47.10 ± 1.69 bc | 43.98 ± 2.23 ab | 45.19 ± 1.12 ab | 48.88 ± 2.96 c |
Polyunsaturated (PUFA) | 13.87 ± 0.38 c | 10.42 ± 1.91 ab | 13.41 ± 1.50 c | 12.72 ± 1.40 bc | 8.67 ± 0.90 a |
Unsaturated (UFA) | 56.08 ± 0.26 a | 57.51 ± 0.94 a | 57.38 ± 1.83 a | 57.91 ± 1.09 a | 57.55 ± 2.21 a |
Discriminant VIP Marker Compound (OPLS-DA) | VIP Score (OPLS-DA) | Log2 FC T60 vs. T0 | Log2 FC T90 vs. T0 | Log2 FC T180 vs. T0 | Log2 FC T240 vs. T0 |
---|---|---|---|---|---|
(9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoate | 1.21 ± 0.15 | −0.33 | −0.10 | 3.82 | 5.19 |
(9Z,11E,13E,15Z)-4-oxo-9,11,13,15-octadecatetraenoic acid | 1.16 ± 0.12 | 3.52 | 3.65 | 5.56 | 6.50 |
(9Z,11E,14Z)-(13S)-hydroperoxyoctadeca-(9,11,14)-trienoate | 1.24 ± 0.15 | −0.05 | 0.77 | 2.20 | 3.07 |
(E)-6-hexadecenoic acid | 1.17 ± 0.13 | 3.69 | 3.44 | 2.95 | 3.45 |
(Z)-1,4-undecadiene | 1.20 ± 0.13 | 2.45 | 2.31 | 4.37 | 5.30 |
8-heptadecenal | 1.10 ± 0.30 | 0.44 | 0.10 | 1.88 | 3.16 |
9-octadecenal | 1.12 ± 0.08 | 2.39 | 2.49 | 3.45 | 3.64 |
9-tetradecenal | 1.18 ± 0.12 | 1.10 | 1.64 | 2.72 | 3.31 |
Glutathione | 1.12 ± 0.08 | −5.97 | −6.60 | −7.92 | −8.14 |
L-phenylalanine | 1.13 ± 0.07 | 2.22 | 2.34 | 2.44 | 2.58 |
L-proline | 1.12 ± 0.16 | 1.78 | 1.49 | 2.05 | 1.81 |
Spermidine | 1.10 ± 0.10 | 1.47 | 1.90 | 1.88 | 1.79 |
Tyramine | 1.18 ± 0.06 | 1.05 | 0.82 | 1.04 | 1.08 |
γ -glutamyl-L-putrescine | 1.13 ± 0.10 | 4.97 | 4.65 | 6.45 | 6.83 |
γ -glutamyl-glutamic acid | 1.06 ± 0.38 | 4.23 | 3.73 | 3.77 | 3.78 |
γ -L-glutamyl- γ -L-glutamyl-L-methionine | 1.11 ± 0.12 | 7.76 | 7.34 | 7.96 | 7.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocchetti, G.; Scansani, A.; Leni, G.; Sigolo, S.; Bertuzzi, T.; Prandini, A. Untargeted Metabolomics Combined with Sensory Analysis to Evaluate the Chemical Changes in Coppa Piacentina PDO during Different Ripening Times. Molecules 2023, 28, 2223. https://doi.org/10.3390/molecules28052223
Rocchetti G, Scansani A, Leni G, Sigolo S, Bertuzzi T, Prandini A. Untargeted Metabolomics Combined with Sensory Analysis to Evaluate the Chemical Changes in Coppa Piacentina PDO during Different Ripening Times. Molecules. 2023; 28(5):2223. https://doi.org/10.3390/molecules28052223
Chicago/Turabian StyleRocchetti, Gabriele, Alessandra Scansani, Giulia Leni, Samantha Sigolo, Terenzio Bertuzzi, and Aldo Prandini. 2023. "Untargeted Metabolomics Combined with Sensory Analysis to Evaluate the Chemical Changes in Coppa Piacentina PDO during Different Ripening Times" Molecules 28, no. 5: 2223. https://doi.org/10.3390/molecules28052223
APA StyleRocchetti, G., Scansani, A., Leni, G., Sigolo, S., Bertuzzi, T., & Prandini, A. (2023). Untargeted Metabolomics Combined with Sensory Analysis to Evaluate the Chemical Changes in Coppa Piacentina PDO during Different Ripening Times. Molecules, 28(5), 2223. https://doi.org/10.3390/molecules28052223