Crystal Structures of Xenon(VI) Salts: XeF5Ni(AsF6)3, XeF5AF6 (A = Nb, Ta, Ru, Rh, Ir, Pt, Au), and XeF5A2F11 (A = Nb, Ta)
Abstract
:1. Introduction
2. Results
2.1. Attempted Preparation of the Salts XeF5M(AF6)3 (M = Cu, Ni; A = Cr, Nb, Ta, Ru, Rh, Re, Os, Ir, Pt, Au, As), XeF5M(SbF6)3 (M = Sn, Pb), and XeF5M(BF4)x(SbF6)3-x (x = 1, 2, 3; M = Co, Mn, Ni, Zn)
2.2. Crystal Structures of the Salts XeF5AF6 (A = Nb, Ta, Ru, Rh, Ir, Pt, Au), XeF5A2F11 (A = Nb, Ta), (Xe2F11)2(NiF6)2, and Ni(XeF2)2(IrF6)2
3. Discussion
3.1. Crystal Structures of XeF5AF6 (A = Nb, Ta, Ru, Rh, Os, Ir, Pt, Au, As, Sb)
3.1.1. Type I; XeF5AF6 (A = Nb, Ta, Ru, Os, Ir, Pt, Sb) Salts
3.1.2. Type II; XeF5AF5 (A = As, Au) Salts
3.1.3. Type III; XeF5AF5 (A = Rh) Salts
3.1.4. Type IV; Orthorhombic XeF5AsF6 and Mixed Anionic [XeF5][As0.3Sb0.7F6) and [XeF5][As0.5Sb0.5F6) Salts
3.1.5. General Considerations for XeF5AF6 Salts (A = Nb, Ta, Ru, Rh, Os, Ir, Pt, Au, As, Sb)
3.2. Crystal Structures of XeF5A2F11 (A = Nb, Ta, Sb)
3.3. Crystal Structure of XeF5Ni(AsF6)3
3.4. Crystal Structures of the Salts (Xe2F11)2(NiF6)2 and Ni(XeF2)2(IrF6)2
4. Materials and Methods
4.1. Apparatus, Techniques, and Reagents
4.2. Attempted Preparation of XeF5M(AF6)3 (M = Cu, Ni; A = Cr, Nb, Ta, Ru, Rh, Re, Os, Ir, Pt, Au, As), XeF5M(SbF6)3 (M = Sn, Pb), and XeF5M(BF4)x(SbF6)3-x (x = 1, 2, 3; M = Co, Mn, Ni, Zn)
4.3. Crystal Structure Determination
5. Conclusions
- (a)
- In view of the successful preparation of XeF5Ni(AsF6)3, we assume that it is reasonable to attempt the preparation of other compounds with other M2+ cations (M = Mg, Fe, Co, Zn, etc.).
- (b)
- Crystal structure determination of XeF5RhF6 reveals a new type of structure. Together with the crystal structures of XeF5TaF6 and XeF5IrF6, which were determined for the first time, and the redetermined crystal structures of XeF5NbF6, XeF5PtF6, XeF5RuF6, and XeF5AuF6, they contribute to the understanding of the possible crystal phases in the family of XeF5AF5 salts.
- (c)
- The crystal structures of the XeF5Nb2F11 and XeF5Ta2F11 salts were determined. These compounds were previously unknown, and for the XeF5A2F11 salts, only the crystal structure of XeF5Sb2F11 [25] was known. These three [A2F11]− salts are not isotypic and each of them represents a unique structural type.
- (d)
- The crystal structure of XeF5IrF6 determined at 150 K and at room temperature is identical. The crystal structures of the salts XeF5NbF6, XeF5PtF6, XeF5RuF6, XeF5AuF6, XeF5AsF6 [37], and (Xe2F11)2NiF6 redetermined at 150 K are also identical to those determined at room temperature, indicating that there is no phase transition in the range from 150 K to 298 K.
- (e)
- All the new data on the XeF5AF6 and XeF5A2F11 salts help to fill the gaps in our knowledge of the XeF6-AVF5 system (Table 10).
- (f)
- The preparation of Ni(XeF2)2(IrF6)2 has shown that it is worthwhile to try the preparation of some other [Mn+(XeF2)p](AF6)n− salts (A = Rh, Ru, Os, Ir, Pt, Au, Nb, Ta) where attempts to stabilize such salts with [AF6]− (A = As, Sb) have failed.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Slivnik, J.; Brčić, B.; Volavšek, B.; Marsel, J.; Vrščaj, V.; Šmalc, A.; Frlec, B.; Zemljič, Z. Über die syntheses von XeF6. Croat. Chem. Acta 1962, 34, 253. [Google Scholar]
- Slivnik, J.; Šmalc, A.; Žemva, B.; Mosevič, A.N. On the synthesis of xenon di-, tetra-, and hexafluoride. Croat. Chem. Acta 1968, 40, 49–51. [Google Scholar]
- Chernick, C.L.; Malm, J.G. Xenon hexafluoride. In Inorganic Synthesis; Holtzclaw, F., Jr., Ed.; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1966; Volume 8, pp. 258–260. [Google Scholar]
- Žemva, B.; Slivnik, J. On the xenon-fluorine-reactions. J. Inorg. Nucl. Chem. Suppl. 1976, 28, 173–178. [Google Scholar] [CrossRef]
- Nielsen, J.B.; Kinkead, S.A.; Purson, J.D.; Eller, P.G. New syntheses of xenon hexafluoride (XeF6) and xenon tetrafluoride, (XeF4). Inorg. Chem. 1999, 29, 1779–1780. [Google Scholar] [CrossRef]
- Bartlett, N.; Sladky, F.O. The Chemistry of Krypton, Xenon and Radon. In The Chemistry of the Monoatomic Gases, Comprehensive Inorganic Chemistry; Bailar, J.C., Jr., Emeléus, H.J., Nyholm, R., Trotman-Dickenson, A.F., Eds.; Pergamon Press Ltd.: Oxford, UK, 1975; pp. 213–330. [Google Scholar]
- Hoyer, S.; Emmler, T.; Seppelt, K. The structure of xenon hexafluoride in the solid state. J. Fluor. Chem. 2006, 127, 1415–1422. [Google Scholar] [CrossRef]
- Schrobilgen, G.J.; Holloway, J.H.; Granger, P.; Brevard, C. Xenon-129 pulse Fourier-transfrom nuclear magnetic resonance spectroscopy. Inorg. Chem. 1978, 17, 980–987. [Google Scholar] [CrossRef]
- Gavin, R.M., Jr.; Bartell, L.S. Molecular structure of XeF6. I. Analysis of electron-diffrcation intensities. J. Chem. Phys. 1968, 48, 2460–2465. [Google Scholar] [CrossRef]
- Bartell, L.S.; Gavin, R.M., Jr. Molecular structure of XeF6. II. Internal motion and mean geometry deduced by electron diffraction. J. Chem. Phys. 1968, 48, 2466–2483. [Google Scholar] [CrossRef] [Green Version]
- Gerken, M.; Hazendonk, P.; Nieboer, J.; Schrobilhen, G.J. NMR spectroscopic study of xenon fluorides in the gas phase and of XeF2 in the solid state. J. Fluor. Chem. 2004, 125, 1163–1168. [Google Scholar] [CrossRef]
- Dixon, D.A.; de Jong, W.A.; Peterson, K.A.; Christe, K.O.; Schrobilgen, G.J. Heats of formation of xenon fluorides and the fluoxionality of XeF6 from high level electronic structure calculations. J. Am. Chem. Soc. 2005, 127, 8627–8634. [Google Scholar] [CrossRef]
- Cheng, L.; Gauss, J.; Stanton, J.F. Relativistic coupled-cluster calculations on XeF6: Delicate interplay between electron-correlation and basis-set effects. J. Chem. Phys. 2015, 142, 224309. [Google Scholar] [CrossRef]
- Kaupp, M.; van Wüllen, C.; Franke, R.; Schmitz, F.; Kutzelnigg, W. The structure of XeF6 and of compounds isoelectronic with it. A challenge to computational chemistry and to the qualitative theory of the chemical bond. J. Am. Chem. Soc. 1996, 118, 11939–11950. [Google Scholar] [CrossRef]
- Gawrilow, M.; Becker, H.; Riedel, S.; Cheng, L. Matrix-isolation and quantum-chemical analysis of the C3v conformer of XeF6, XeOF4, and their acetonitrile adducts. J. Phys Chem. A 2018, 122, 119–129. [Google Scholar] [CrossRef]
- Sedgi, I.; Kozuch, S. Heavy atom tunnelling on XeF6 pseudorotation. Phys. Chem. Chem. Phys. 2020, 22, 17725–17730. [Google Scholar] [CrossRef]
- Paschoal, D.F.S.; Dos Santos, H.F. Predicting the structure and NMR coupling constant 1J(129Xe-19F) of XeF6 using quantum mechanics methods. Phys. Chem. Chem. Phys. 2021, 23, 7240–7246. [Google Scholar] [CrossRef]
- Seppelt, K. Molecular hexafluorides. Chem. Rev. 2015, 115, 1296–1306. [Google Scholar] [CrossRef]
- Gard, G.L.; Cady, G.H. Reactions of xenon hexafluoride with antimony pentafluoride, hydrogen chloride, and perfluorocyclopentane. Inorg. Chem. 1964, 3, 1745–1747. [Google Scholar] [CrossRef]
- Selig, H. Xenon hexafluoride complexes. Sciece 1964, 144, 537. [Google Scholar]
- Moody, G.J.; Selig, H. Vanadium pentafluoride complexes with xenon fluorides. J. Inorg. Nucl. Chem. 1966, 28, 2429–2430. [Google Scholar] [CrossRef]
- Pullen, K.E.; Cady, G.H. The systems xenon hexafluoride-arsenic pentafluoride and xenon hexafluoride-phosphorus pentafluoride. Inorg. Chem. 1967, 6, 2267–2268. [Google Scholar] [CrossRef]
- Bartlett, N.; Sladky, F.O. The relative fluoride ion donor abilities of XeF2, XeF4, and XeF6 and a chemical purification of XeF4. J. Am. Chem. Soc. 1968, 90, 5316–5317. [Google Scholar] [CrossRef]
- Bartlett, N.; Einstein, F.; Stewart, D.F.; Trotter, J. The crystal structure of [XeF5]+[PtF6]−. J. Chem Soc. A 1967, 1190–1193. [Google Scholar] [CrossRef]
- Mazej, Z.; Goreshnik, E. Single-crystal structure determination of NO2SbF6, XeF5SbF6 and XeF5Sb2F11. J. Fluor. Chem. 2015, 175, 47–50. [Google Scholar] [CrossRef]
- Leary, K.; Zalkin, A.; Bartlett, N. Crystal structure of Xe2F11+AuF6− and the Raman spectrum of Xe2F11+. Inorg. Chem. 1974, 13, 775–779. [Google Scholar] [CrossRef]
- Benkič, P.; Golič, L.; Koller, J. Žemva, B. Crystal structure of (Xe2F11+)(VF6−). Acta Chim. Slov. 1999, 46, 239–252. [Google Scholar]
- Mazej, Z.; Goreshnik, E. Crystal growth and characterization of the mixed-cation Rb+/[XeF5]+ and Cs+/[XeF5]+ salts. Eur. J. Inorg. Chem. 2017, 2017, 2800–2807. [Google Scholar] [CrossRef]
- Bartlett, N.; Wechsberg, M. The xenon difluoride complexes XeF2⋅XeOF4; XeF2⋅XeF6⋅AsF5 and XeF2⋅2XeF6⋅2AsF5 and their relevance to bond polarity and fluoride ion donor ability of XeF2 and XeF6. Z. Anorg. Allg. Chem. 1971, 285, 5–17. [Google Scholar] [CrossRef]
- Žemva, B.; Golič, L.; Slivnik, J. Concerning xenon difluoride interactions with XeF5+MF6, the existence of XeF2⋅XeF5+RuF6− and the absence of XeF2⋅XeF5+NbF6−. Vestn. Slov. Kem. Drus. 1983, 30, 365–376. [Google Scholar]
- Žemva, B.; Jesih, A.; Tepleten, D.H.; Zalkin, A.; Chhetman, A.K.; Bartlett, N. Phases in the system XeF2/XeF5AsF6 and structural and vibrational evidence for the following ionization pathway: XeF2 XeF+ + F−. J. Am. Chem. Soc. 1987, 109, 7420–7427. [Google Scholar] [CrossRef]
- Lozinšek, M.; Mercier, H.P.A.; Schrobilgen, G.J. Mixed noble-gas compounds of krypton(II) and xenon(VI): [F5Xe(FKrF)AsF6] and [F5Xe(FKrF)2AsF6]. Angew. Chem. Int. Ed. 2021, 60, 8149–8156. [Google Scholar] [CrossRef]
- Pointner, B.E.; Suotamo, R.J.; Schrobilgen, G.J. Syntheses and X-ray crystal structures of α- and β-[XeO2F][SbF6], [XeO2F][AsF6], [FO2XeFXeXeO2F][AsF6], and [XeF5][SbF6]⋅XeOF4 and computational studies of the XeO2F+ and FO2XeFXeO2F+ cations and related species. Inorg. Chem. 2006, 45, 1517–1534. [Google Scholar] [CrossRef]
- Mazej, Z.; Goreshnik, E. [XeF5]+/metal and [XeF5]+/non-metal mixed-cation salts of hexafluoridoantimonate(V). Eur. J. Inorg. Chem. 2015, 8, 1453–1456. [Google Scholar] [CrossRef]
- Mazej, Z.; Goreshnik, E. Influence of the increasing size of the M2+ cation on the crystal structures of XeF5M(SbF6)3 (M = Ni, Mg, Cu, Zn, Co, Mn, Pd) and (XeF5)3[Hg(HF)]2(SbF6)7. Eur. J. Inorg. Chem. 2016, 2016, 3156–3364. [Google Scholar] [CrossRef]
- Mazej, Z.; Goreshnik, E. Mixed cation [H3O]+/[XeF5]+/M2+ (M = Ca, Cd), [O2]+/[XeF5]+/Sr2+ and [H3O]+/Sr2+ fluoridoantimonate(V) salts. Z. Anorg. Allg. Chem. 2022, 648, e202200173. [Google Scholar]
- Goreshnik, E.; Akselrud, L.G.; Mazej, Z. Mixed-anion [AsF6]−/[SbF6]− salts of Cs+ and [XeF5]+; incommensurately modulated crystal structures of [XeF5][As1-xSbxF6) (x ≈ 0.5 and 0.7). Cryst. Growth Des. 2022, 22, 2980–2988. [Google Scholar] [CrossRef]
- Bartlett, N.; Gennis, M.; Gibler, D.D.; Morrell, B.K.; Zalkin, A. Crystal structures of [XeF+][RuF6−] and [XeF5+][RuF6−]. Inorg. Chem. 1973, 12, 1717–1721. [Google Scholar] [CrossRef]
- Bartlett, N.; Leary, K. Quinquevalent gold salts. Rev. Chim. Minér. 1976, 13, 82–97. [Google Scholar]
- Jesih, A.; Lutar, K.; Leban, I.; Žemva, B. Synthesis and crystal structure of (Xe2F11+)2NiF62−. Inorg. Chem. 1989, 28, 2911–2914. [Google Scholar] [CrossRef]
- Bartlett, N.; DeBoer, B.G.; Hollander, F.J.; Sladky, F.O.; Templeton, D.H.; Zalkin, A. Crystal structures of [Xe2F3+][AsF6−] and [XeF5+][AsF6−]. Inorg. Chem. 1974, 13, 780–785. [Google Scholar] [CrossRef]
- Mazej, Z.; Arčon, I.; Benkič, P.; Kodre, A.; Tressaud, A. Compressed octahedral coordination in chain compounds containing divalent copper: Structure and magnetic properties of CuFAsF6 and CsCuAlF6. Chem. Eur. J. 2004, 10, 5052–5058. [Google Scholar] [CrossRef]
- Botkovitz, P.; Lucier, G.M.; Rao, R.P.; Bartlett, N. The crystal structure of O2+RuF6− and the nature of O2RhF6. Acta Chim. Slov. 1999, 46, 141–154. [Google Scholar]
- Ibers, J.A.; Hamilton, W.C. Crystal structure of O2PtF6: A neutron-diffraction study. J. Chem. Phys. 1966, 44, 1748–1752. [Google Scholar] [CrossRef]
- Mazej, Z.; Goreshnik, E. Crystal growth and crystal structures of gold(V) compounds: Cu(AuF6)2, Ag(AuF6)2, and O2(CuF)3(AuF6)4⋅HF. Eur. J. Inorg. Chem. 2023, in press. [CrossRef]
- Mazej, Z. Fluoride ion donor ability of binary fluorides towards the Lewis acids AsF5 and SbF5. J. Fluor. Chem. 2023, 265, 110073. [Google Scholar] [CrossRef]
- Mazej, Z. Photochemical Syntheses of Fluoride. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds; Groult, H., Leroux, F., Tressaud, A., Eds.; Elsevier Inc.: London, UK, 2017; pp. 587–607. [Google Scholar]
- Whalen, J.M.; Lucier, G.M.; Bartlett, N. The room temperaure conversion of nickel difluoride to hexafluoronickelate(IV) salts of alkali cations. J. Fluor. Chem. 1998, 88, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Higelin, A.; Riedel, S. High Oxidation States in Transition Metal Fluorides. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds; Groult, H., Leroux, F., Tressaud, A., Eds.; Elsevier: London, UK, 2017; pp. 561–586. [Google Scholar]
- Lutar, K.; Leban, I.; Ogrin, T.; Žemva, B. XeF2⋅CrF4 and (XeF5+CrF5−)4⋅XeF4; syntheses, crystal structures and some properties. Eur. J. Solid State Inorg. Chem. 1992, 29, 713–727. [Google Scholar]
- Mazej, Z.; Goreshnik, E. Alkali metal (Li+–Cs+) salts with hexafluorochromate(V), hexafluorochromate(IV), pentafluorochromate(IV), and undecafluorodichromate(IV) anions. Eur. J. Inorg. Chem. 2008, 2008, 1795–1812. [Google Scholar] [CrossRef]
- Lutar, K.; Borrmann, H.; Žemva, B. XeF2⋅2CrF4 and XeF5+CrF5−: Syntheses, crystal structures, and some properties. Inorg. Chem. 1998, 37, 3002–3006. [Google Scholar] [CrossRef]
- Bortolus, M.R.; Mercier, H.P.A.; Nguyen, B.; Schrobilgen, G.J. Syntheses and characterizations of the mixed noble-gas compounds, [FKrIIFXeIIF][AsF6]·0.5KrIIF2·2HF, ([KrII2F3][AsF6])2·XeIVF4, and XeIVF4·KrIIF2. Angew. Chem. Int. Ed. 2021, 60, 23678–23686. [Google Scholar] [CrossRef]
- Mazej, Z.; Goreshnik, E. Synthesis, Raman spectra and crystal structures of [Cu(XeF2)n](SbF6)2 (n = 2, 4). Inorg. Chem. 2008, 47, 4209–4214. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Graudejus, O.; Wilkinson, A.P.; Chacón, L.C.; Bartlett, N. M-F interatomic distances and effective volumes of second and third transition series MF6− and MF62− anions. Inorg. Chem. 2000, 39, 2794–2800. [Google Scholar] [CrossRef]
- Röhr, C.; Kniep, R. Die kristalstrukturen von Li[PF6] und Li[AsF6]: Zur kristalchemie von verbindungen A[EVF6]. Z. Naturforsch. 1994, 49b, 650–654. [Google Scholar] [CrossRef]
- Burns, J. The crystal structure of lithium fluoroantimonate(V). Acta Cryst. 1962, 15, 1098–1101. [Google Scholar] [CrossRef]
- Mazej, Z.; Hagiwara, R. Hexafluoro-, heptafluoro-, and octafluoro-salts, and [MnF5n+1]− (n = 2, 3, 4) polyfluorometallates of singly charged metal cations, Li+–Cs+, Cu+, Ag+, In+ and Tl+. J. Fluor. Chem. 2007, 128, 423–437. [Google Scholar] [CrossRef]
- Mazej, Z.; Goreshnik, E. Photochemical preparation of CsMF6 salts (M = Ru, Rh, Os, Ir, Pt); crystal structures and Raman spectra. J. Fluor. Chem. 2023, in press. [CrossRef]
- Žemva, B.; Slivnik, J. On the syntheses of xenon(VI) fluoroniobates(V). J. Fluor. Chem. 1976, 8, 369–371. [Google Scholar] [CrossRef]
- Aubert, J.; Cady, G.H. The systems xenon hexafluoride–tantalum pentafluoride, xenon hexafluoride–manganese fluoride, xenon hexafluoride–uranium pentafluoride. Inorg. Chem. 1970, 9, 2600–2602. [Google Scholar]
- Marchetti, F.; Pampaloni, G.; Pinzino, C.; Zacchini, S. Stable [M2F11]− (M = Nb, Ta) salts of protonated 1,3-dimethoxybenzene. Eur. J. Inorg. Chem. 2013, 2013, 5755–5761. [Google Scholar] [CrossRef]
- Tramšek, M.; Žemva, B. Synthesis, properties and chemistry of xenon(II) fluoride. Acta Chim. Slov. 2006, 53, 105–116. [Google Scholar] [CrossRef]
- Mazej, Z.; Goreshnik, E. Crystal growth from anhydrous HF solutions of M2+ (M = Ca, Sr,. Ba) and [AuF6]−, not only simple M(AuF6)2 salts. Inorg. Chem. 2022, 61, 10587–10597. [Google Scholar] [CrossRef] [PubMed]
- Šmalc, A.; Lutar, K. Xenon difluoride (modification). In Inorganic Syntheses; Grimes, R.N., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1992; Volume 29, pp. 1–4. [Google Scholar]
- Mazej, Z. Žemva, Synthesis of arsenic pentafluoride by static fluorination of As2O3 in a closed system. J. Fluor. Chem. 2005, 126, 1432–1434. [Google Scholar] [CrossRef]
- Mazej. Z. Recent achievements in the synthesis and characterization of metal hexafluorantimonates and hexafluoroaurates. J. Fluor. Chem. 2004, 125, 1723–1733. [Google Scholar] [CrossRef]
- Gantar, D.; Leban, I.; Frlec, B.; Holloway, J.H. Metal(II) hexafluoroantimonates: Preparation and characterization of MF2⋅2SbF5 (M = Mg, Ni, Zn, Fe, Co, Cu, Cr, Ag, Cd, or Pb) and the X-ray structure determination of AgF2⋅2SbF5. J. Chem. Soc. Dalton Trans. 1987, 10, 2379–2383. [Google Scholar] [CrossRef]
- CrysAlisPro; Version 1.171.37.31. release 14 January 2014 CrysAlis171.NET; Agilent Technologies: Santa Clara, CA, USA, 2014.
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, T.C.; Kang, S.J. Balls&Sticks: Easy-to-use structure visualization and animation program. J. Appl. Crystallogr. 2004, 37, 679. [Google Scholar]
- Slivnik, J.; Frlec, B.; Žemva, B.; Bohinc, M. Xenon hexafluoride-uranium pentafluoride complexes. J. Inorg. Nucl. Chem. 1970, 32, 1397–1400. [Google Scholar] [CrossRef]
- de Waard, H.; Bukspan, S.; Schrobilgen, G.J.; Holloway, J.H.; Martin, D. A Mössbauer study of xenon compounds. J. Chem. Phys. 1979, 70, 3247–3253. [Google Scholar] [CrossRef] [Green Version]
- Jesih, A.; Žemva, B.; Slivnik, J. Reactions in the system vanadium pentafluoride–xenon hexafluoride. J. Fluor. Chem. 1982, 19, 231–236. [Google Scholar] [CrossRef]
- Frlec, B.; Bohinc, M.; Charpin, P.; Drifford, M. On the xenon hexafluoride–uranium pentafluoride XeF6UF5. J. Inorg. Nucl. Chem. 1972, 34, 2938–2941. [Google Scholar] [CrossRef]
- Družina, B.; Žemva, B. On the synthesis of xenon(VI) hexafluorobismutathe(V). J. Fluor. Chem. 1988, 39, 309–315. [Google Scholar] [CrossRef]
Formula | XeF5NbF6 | XeF5TaF6 | XeF5RuF6 | XeF5RhF6 |
---|---|---|---|---|
T (K) | 150 | 150 | 150 | 150 |
Crystal System | Orthorhombic | Orthorhombic | Orthorhombic | Orthorhombic |
Space Group | Pnma | Pnma | Pnma | Pbca |
a (Å) | 16.8078 (10) | 16.8312 (12) | 16.6197 (12) | 9.0028 (4) |
b (Å) | 8.2491 (6) | 8.2399 (6) | 8.0530 (6) | 8.8181 (4) |
c (Å) | 5.6064 (3) | 5.6488 (4) | 5.6373 (4) | 18.2581 (8) |
V (Å3) | 777.32 (8) | 783.41 (10) | 754.49 (9) | 1449.47 (11) |
Z | 4 | 4 | 4 | 8 |
Dcalcd (g/cm3) | 3.702 | 4.419 | 3.886 | 4.062 |
λ (Å) | 0.71073 | 0.71073 | 0.71073 | 0.71073 |
μ (mm−1) | 5.988 | 18.436 | 6.652 | 7.118 |
GOF a | 1.091 | 1.052 | 1.109 | 1.044 |
R1 b | 0.0253 | 0.0355 | 0.0244 | 0.0226 |
wR2 c | 0.0503 | 0.0757 | 0.0521 | 0.0430 |
Formula | XeF5IrF6 | XeF5IrF6 | XeF5PtF6 | XeF5AuF6 |
T (K) | 150 | 285 | 150 | 150 |
Crystal System | Orthorhombic | Orthorhombic | Orthorhombic | Monoclinic |
Space Group | Pnma | Pnma | Pnma | P21/c |
a (Å) | 16.5720 (10) | 16.7456 (14) | 16.5286 (13) | 5.8447 (5) |
b (Å) | 7.9954 (5) | 8.1444 (8) | 7.9642 (5) | 16.6324 (10) |
c (Å) | 5.7412 (4) | 5.6998 (6) | 5.7779 (5) | 8.0536 (5) |
β (o) | 90.781 (6) | |||
V (Å3) | 760.71 (8) | 777.35 (13) | 760.58 (10) | 782.82 (9) |
Z | 4 | 4 | 4 | 4 |
Dcalcd (g/cm3) | 4.650 | 4.550 | 4.675 | 4.559 |
λ (Å) | 0.71073 | 0.71073 | 0.71073 | 0.71073 |
μ (mm−1) | 22.088 | 21.615 | 22.986 | 23.202 |
GOF a | 1.081 | 1.174 | 1.078 | 1.064 |
R1 b | 0.0267 | 0.0398 | 0.0247 | 0.0364 |
wR2 c | 0.0491 | 0.0815 | 0.0445 | 0.0798 |
Formula | XeF5Nb2F11 | XeF5Ta2F11 | XeF5Ni(AsF6)3 | (Xe2F11)2(NiF6)2 | Ni(XeF2)2(IrF6)2 |
---|---|---|---|---|---|
T (K) | 150 | 150 | 150 | 150 | 150 |
Crystal System | Monoclinic | Monoclinic | Monoclinic | Monoclinic | Monoclinic |
Space Group | P21 | I2/a | P21/n | I2/c | P21/c |
a (Å) | 5.2717 (2) | 8.9972 (5) | 10.2200 (3) | 17.2498 (11) | 5.43790 (10) |
b (Å) | 14.1920 (5) | 9.3302 (5) | 10.1973 (3) | 5.3239 (3) | 14.6396 (5) |
c (Å) | 7.6489 (2) | 14.0691 (8) | 14.5606 (4) | 21.0164 (11) | 9.1039 (3) |
β (o) | 92.412 (3) | 99.281 (5) | 90.072 (2) | 102.510 (6) | 92.003 (2) |
V (Å3) | 571.75 (3) | 1165.58 (11) | 1517.45 (8) | 1884.3 (2) | 724.31 (4) |
Z | 2 | 4 | 4 | 4 | 2 |
Dcalcd (g/cm3) | 3.608 | 4.543 | 3.728 | 3.934 | 4.630 |
λ (Å) | 0.71073 | 0.71073 | 0.71073 | 0.71073 | 0.71073 |
μ (mm−1) | 5.115 | 21.814 | 10.216 | 8.358 | 24.375 |
GOF a | 1.056 | 1.057 | 1.062 | 1.045 | 1.072 |
R1 b | 0.0205 | 0.0273 | 0.0269 | 0.0214 | 0.0429 |
wR2 c | 0.0427 | 0.0665 | 0.0563 | 0.0463 | 0.1305 |
Nb a | Ta a | Ru a | Ir a | Pt a | Sb b | |
---|---|---|---|---|---|---|
Orthorhombic Pnma | ||||||
150 K | 150 K | 150 K | 150 K | 150 K | 150 K | |
Xe–Fax | 1.808 (3) | 1.803 (7) | 1.807 (3) | 1.809 (5) | 1.809 (5) | 1.804 (3) |
Xe–Feq | 1.839 (2) | 1.839 (5) | 1.843 (2) | 1.835 (3) | 1.838 (3) | 1.841 (2) |
1.839 (2) | 1.839 (5) | 1.843 (2) | 1.835 (3) | 1.838 (3) | 1.841 (2) | |
1.842 (2) | 1.843 (5) | 1.846 (2) | 1.843 (3) | 1.839 (3) | 1.844 (2) | |
1.842 (2) | 1.843 (5) | 1.846 (2) | 1.843 (3) | 1.839 (3) | 1.844 (2) | |
Xe···F | 2.540 (3) | 2.562 (6) | 2.562 (3) | 2.602 (5) | 2.604 (5) | 2.617 (3) |
2.535 (2) | 2.560 (6) | 2.587 (3) | 2.616 (4) | 2.646 (4) | 2.638 (3) | |
2.887 (2) | 2.894 (5) | 2.856 (2) | 2.822 (3) | 2.817 (3) | 2.860 (2) | |
2.887 (2) | 2.894 (5) | 2.857 (3) | 2.822 (3) | 2.817 (3) | 2.860 (2) | |
A–F | 1.835 (3) | 1.849 (7) | 1.820 (3) | 1.841 (5) | 1.857 (4) | 1.857 (3) |
1.852 (3) | 1.873 (7) | 1.823 (3) | 1.861 (5) | 1.871 (4) | 1.859 (3) | |
1.886 (2) | 1.880 (5) | 1.854 (3) | 1.879 (3) | 1.884 (3) | 1.882 (2) | |
1.886 (2) | 1.880 (5) | 1.854 (3) | 1.879 (3) | 1.884 (3) | 1.882 (2) | |
1.925 (3) | 1.930 (6) | 1.878 (3) | 1.892 (4) | 1.894 (4) | 1.895 (3) | |
1.941 (3) | 1.939 (6) | 1.885 (3) | 1.906 (5) | 1.897 (4) | 1.898 (3) |
Rh a | Au a | As b | As c | |
---|---|---|---|---|
Orthorhombic Pbca | Monoclinic P21/c | Monoclinic P21/c | Orthorhombic Ama2 | |
150 K | 150 K | 150 K | 100 K | |
Xe (2)/Xe (1) | ||||
Xe–Fax | 1.814 (2) | 1.804 (5) | 1.794 (3) | 1.815 (7)/1.800 (8) |
Xe–Feq | 1.833 (2) | 1.823 (6) | 1.826 (3) | 1.844 (5)/1.840 (6) |
1.841 (2) | 1.834 (6) | 1.828 (3) | 1.833 (8)/1.838 (6) | |
1.842 (2) | 1.835 (5) | 1.833 (3) | 1.833 (8)/1.838 (6) | |
1.842 (2) | 1.836 (5) | 1.836 (3) | 1.832 (8)/1.840 (6) | |
Xe···F | 2.603 (2) | 2.575 (6) | 2.643 (3) | 2.705 (5)/2.615 (6) |
2.664 (2) | 2.746 (5) | 2.722 (3) | 2.705 (5)/2.615 (6) | |
2.761 (2) | 2.785 (6) | 2.782 (3) | 2.767 (6)/2.796 (6) | |
2.844 (2) | 2.767 (6)/3.451 (7) | |||
As (2)/As (1) | ||||
A–F | 1.871 (2) | 1.872 (6) | 1.688 (3) | 1.709 (5)/1.657 (7) |
1.873 (2) | 1.876 (5) | 1.696 (3) | 1.709 (5)/1.657 (7) | |
1.874 (2) | 1.884 (5) | 1.696 (3) | 1.741 (6)/1.699 (6) | |
1.879 (2) | 1.903 (5) | 1.738 (3) | 1.749 (5)/1.699 (6) | |
1.799 (2) | 1.910 (5) | 1.744 (3) | 1.749 (5)/1.712 (6) | |
1.815 (2) | 1.911 (5) | 1.750 (3) | 1.710 (7)/1.712 (6) |
Nb a | Ta a | Sb b | |
---|---|---|---|
Monoclinic P21 | Monoclinic I2/a | Triclinic P | |
150 K | 150 K | 200 K | |
Xe–Fax | 1.801 (3) | 1.802 (6) | 1.883 (3) |
Xe–Feq | 1.826 (3) | 1.838 (3) | 2.019 (3) |
1.836 (3) | 1.838 (3) | 2.029 (3) | |
1.837 (3) | 1.839 (4) | 1.837 (3) | |
1.838 (4) | 1.839 (4) | 1.838 (3) | |
Xe···F | 2.582 (3) | 2.666 (4) | 2.915 (3) |
2.633 (3) | 2.872 (3) | 2.848 (3) | |
2.667 (3) | 2.872 (3) | 2.775 (3) | |
2.814 (3) | |||
A (1)–Ft | 1.823 (3) | 1.824 (4) | 1.838 (3) |
1.840 (4) | 1.849 (4) | 1.846 (3) | |
1.846 (4) | 1.855 (4) | 1.853 (3) | |
1.847 (4) | 1.900 (4) | 1.866 (3) | |
1.918 (3) | 1.910 (4) | 1.883 (3) | |
A (1)–Fb | 2.096 (3) | 2.0657 (6) | 2.019 (3) |
2.0657 (6) | |||
A (2)–Ft | 1.821 (4) | 1.837 (3) | |
1.832 (3) | 1.838 (3) | ||
1.833 (4) | 1.843 (3) | ||
1.910 (3) | 1.870 (3) | ||
1.923 (3) | 1.878 (3) | ||
A (2)–Fb | 2.038 (3) | 2.029 (3) | |
A–Fb–A | 155.63 (19) | 169.6 (3) | 145.09 (16) |
XeF5Ni (AsF6)3 a | XeF5Ni (SbF6)3 b | |
---|---|---|
P21/n | ||
150 K | ||
Ni (1)–F | 2.000 (2) | 2.002 (1) |
2.000 (2) | 2.002 (1) | |
1.994 (2) | 1.989 (1) | |
1.994 (2) | 1.989 (1) | |
2.006 (2) | 2.013 (1) | |
2.006 (2) | 2.013 (1) | |
Ni (2)–F | 1.999 (2) | 1.991 (1) |
1.999 (2) | 1.991 (1) | |
2.006 (2) | 1.979 (1) | |
2.006 (2) | 1.979 (1) | |
2.010 (2) | 2.006 (1) | |
2.010 (2) | 2.006 (1) | |
Xe–Fax | 1.782 (2) | 1.800 (2) |
Xe–Feq | 1.818 (2) | 1.825 (2) |
1.819 (2) | 1.828 (2) | |
1.820 (2) | 1.826 (2) | |
1.822 (2) | 1.832 (2) | |
Xe···F | 2.903 (2) | 2.866 (2) |
2.919 (3) | 2.928 (2) | |
2.931 (2) | 2.944 (2) | |
2.971 (3) | 2.898 (2) |
[Ni (XeF2)2] (IrF6)2 a | [Cu (XeF2)2] (SbF6)2 b | |
---|---|---|
P21/c | ||
150 K | 200 K | |
M–Fb (AF6) | 2.016 (6) | 2.090 (5) |
2.016 (6) | 2.090 (5) | |
2.023 (7) | 2.123 (5) | |
2.023 (7) | 2.123 (5) | |
M–Fb (XeF2) | 1.938 (6) | 1.857 (5) |
1.938 (6) | 1.857 (5) | |
Xe–Ft | 1.920 (7) | 1.906 (5) |
Xe–Fb | 2.078 (6) | 2.102 (5) |
A–Fb | 1.921 (7) | 1.891 (5) |
1.934 (7) | 1.917 (5) | |
A–Ft | 1.843 (8) | 1.841 (6) |
1.852 (8) | 1.843 (6) | |
1.858 (8) | 1.861 (6) | |
1.861 (8) | 1.870 (6) |
Compound | Crystal System | Space Group | Z | a /Å | b /Å | c /Å | T /K |
---|---|---|---|---|---|---|---|
XeF5AsF6 a | orthorhombic | Ama2 | 8 | 9.796 (2) | 13.272 (10) | 11.578 (2) | 100 |
[XeF5][As0.3Sb0.7F6] b | orthorhombic | Ama2(00γ)s0s | 8 | 10.031 (1) | 13.362 (1) | 11.808 (1) | 200 |
β-[XeF5][As0.5Sb0.5F6] b | orthorhombic | Ama2(00γ)s0s | 8 | 10.1196 (5) | 13.4517 (6) | 11.8999 (5) | 295 |
α-[XeF5][As0.5Sb0.5F6] b | orthorhombic | Pca21 | 16 | 9.9738 (2) | 13.2492 (4) | 23.3701 (7) | 150 |
A | As | Rh | Au | Pt | Ir | Ru | Os | Sb | Nb | Ta |
---|---|---|---|---|---|---|---|---|---|---|
r(A5+) a | 0.46 | 0.55 | 0.57 | 0.57 | 0.57 | 0.565 | 0.575 | 0.60 | 0.64 | 0.64 |
LiAF6 | ||||||||||
VFU | 94.6 b | 98.64 c | 99.12 c | 99.61 c | 100.77 c | 100.5 c | 102.41 c | 105.3 d | 110.92 c | 111.26 c |
dav[A–F] | 1.74 | 1.855 | 1.874 | 1.887 | 1.879 | 1.851 | 1.872 | 1.877 | 1.863 | 1.859 |
CsAF6 | ||||||||||
VFU e | 138.6 | 141.2 | 138.95 | 143.4 | 143.6 | 141.7 | 144.5 | 149 | 147.9 | 149.3 |
VFU f | 137.07 | 138.42 | 138.97 | 138.35 | 139.97 | |||||
XeF5AF6 | ||||||||||
Type | II | III | II | I | I | I | I | I | I | I |
VFU g | 196.15 | 203.03 | 196.35 | 194.34 | 193.26 | 199.42 | 200 | |||
VFU h | 188.67 | 181.18 | 195.71 | 190.15 | 190.18 | 188.62 | 195.11 | 194.33 | 195.85 | |
dav[A–F] | 1.719 | 1.852 | 1.893 | 1.881 | 1.876 | 1.852 | 1.879 | 1.888 | 1.892 |
Formula | A5+ | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[Xe2F11][AF6] | V a | Nb b | Ta c | Ru d | Ir e | Pt f | Au d | U g | P h | As i | Sb j | Bi k | ||
[XeF5][AF6] | V l | Nb m | Ta c | Ru n | Rh | Os o | Ir e | Pt p | Au f | U r | As s | Sb t | Bi u | |
[XeF5][A2F11] | V l | Nb | Ta | Sb t |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazej, Z.; Goreshnik, E. Crystal Structures of Xenon(VI) Salts: XeF5Ni(AsF6)3, XeF5AF6 (A = Nb, Ta, Ru, Rh, Ir, Pt, Au), and XeF5A2F11 (A = Nb, Ta). Molecules 2023, 28, 3370. https://doi.org/10.3390/molecules28083370
Mazej Z, Goreshnik E. Crystal Structures of Xenon(VI) Salts: XeF5Ni(AsF6)3, XeF5AF6 (A = Nb, Ta, Ru, Rh, Ir, Pt, Au), and XeF5A2F11 (A = Nb, Ta). Molecules. 2023; 28(8):3370. https://doi.org/10.3390/molecules28083370
Chicago/Turabian StyleMazej, Zoran, and Evgeny Goreshnik. 2023. "Crystal Structures of Xenon(VI) Salts: XeF5Ni(AsF6)3, XeF5AF6 (A = Nb, Ta, Ru, Rh, Ir, Pt, Au), and XeF5A2F11 (A = Nb, Ta)" Molecules 28, no. 8: 3370. https://doi.org/10.3390/molecules28083370
APA StyleMazej, Z., & Goreshnik, E. (2023). Crystal Structures of Xenon(VI) Salts: XeF5Ni(AsF6)3, XeF5AF6 (A = Nb, Ta, Ru, Rh, Ir, Pt, Au), and XeF5A2F11 (A = Nb, Ta). Molecules, 28(8), 3370. https://doi.org/10.3390/molecules28083370