Determination of Some Isoquinoline Alkaloids in Extracts Obtained from Selected Plants of the Ranunculaceae, Papaveraceae and Fumarioideae Families by Liquid Chromatography and In Vitro and In Vivo Investigations of Their Cytotoxic Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC-DAD Analysis of Alkaloid Standards and Plant Extracts
2.2. Investigation of In Vitro Cytotoxic Activity of Plant Extracts
2.3. In Vivo Anticancer Activity of Lamprocapnos spectabilis Extract
2.3.1. In Vivo Investigation of Toxicity of Lamprocapnos spectabilis Herb Extract to Determine LC50 Value and Non-Toxic Doses
2.3.2. Danio rerio Human Tumor Cell Xenograft
3. Experimental Section
3.1. Chemicals and Plant Materials
3.2. Apparatus and HPLC-DAD Conditions
3.3. LC-MS/MS
3.4. Extraction Procedure
3.5. Investigation of Cytotoxic Activity
3.5.1. Investigation of Cell Viability
3.5.2. Danio rerio Culture and Fish Embryo Toxicity Test (FET)
3.5.3. Danio rerio Human Tumor Cell Xenograft
3.5.4. Quantification of Xenografted Melanoma Cancer Cells
3.5.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lopes, J.; Rodrigues, C.M.P.; Gaspar, M.M.; Reis, C.P. Melanoma Management: From Epidemiology to Treatment and Latest Advances. Cancers 2022, 14, 4652. [Google Scholar] [CrossRef]
- European Cancer Information System. Available online: https://ecis.jrc.ec.europa.eu/ (accessed on 10 March 2023).
- Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D.C.; Szopa, A.; Sharifi-Rad, J.; Docea, A.O.; Mardare, I.; et al. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022, 22, 206. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Lu, J.-J.; Ding, J. Natural Products in Cancer Therapy: Past, Present and Future. Nat. Prod. Bioprospect. 2021, 11, 5–13. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Zhang, L.; Zhang, J.; Wei, X. Chelerythrine chloride from Macleaya cordata induces growth inhibition and apoptosis in human gastric cancer BGC-823 cells. Acta Pharm. Sin. B 2012, 2, 464–471. [Google Scholar] [CrossRef]
- Baek, M.-Y.; Park, H.-J.; Kim, G.-M.; Lee, D.-Y.; Lee, G.-Y.; Moon, S.-J.; Ahn, E.-M.; Kim, G.-S.; Bang, M.-H.; Baek, N.-I. Insecticidal alkaloids from the seeds of Macleaya cordata on cotton aphid (Aphis gossypii). J. Korean Soc. Appl. Biol. Chem. 2013, 56, 135–140. [Google Scholar] [CrossRef]
- Lin, L.; Liu, Y.-C.; Huang, J.-L.; Liu, X.-B.; Qing, Z.-X.; Zeng, J.-G.; Liu, Z.-Y. Medicinal plants of the genus Macleaya (Macleaya cordata, Macleaya microcarpa): A review of their phytochemistry, pharmacology, and toxicology. Phytother. Res. 2017, 32, 19–48. [Google Scholar] [CrossRef]
- Li, C.-M.; Yu, J.-P. Chemical Composition, Antimicrobial Activity and Mechanism of Action of Essential Oil from the Leaves of M acleaya Cordata (Willd.) R. Br. J. Food Saf. 2015, 35, 227–236. [Google Scholar] [CrossRef]
- Hu, Z.; Hu, H.; Hu, Z.; Zhong, X.; Guan, Y.; Zhao, Y.; Wang, L.; Ye, L.; Ming, L.; Rajoka, M.S.R.; et al. Sanguinarine, Isolated From Macleaya cordata, Exhibits Potent Antifungal Efficacy Against Candida albicans Through Inhibiting Ergosterol Synthesis. Front. Microbiol. 2022, 13, 908461. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.; Lin, X.; Yu, Z.; Sun, Q.; Zhang, Q. Molluscicidal activity and physiological toxicity of Macleaya cordata alkaloids components on snail Oncomelania hupensis. Pestic. Biochem. Physiol. 2017, 143, 111–115. [Google Scholar] [CrossRef]
- Liu, M.; Lin, Y.-L.; Chen, X.-R.; Liao, C.-C.; Poo, W.-K. In vitro assessment of Macleaya cordata crude extract bioactivity and anticancer properties in normal and cancerous human lung cells. Exp. Toxicol. Pathol. 2013, 65, 775–787. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Huang, X.; Liu, Y.; Zeng, J. Effects of Dietary Macleaya cordata Extract on Growth Performance, Biochemical Indices, and Intestinal Microbiota of Yellow-Feathered Broilers Subjected to Chronic Heat Stress. Animals 2022, 12, 2197. [Google Scholar] [CrossRef] [PubMed]
- Kosina, P.; Gregorova, J.; Gruz, J.; Vacek, J.; Kolar, M.; Vogel, M.; Roos, W.; Naumann, K.; Simanek, V.; Ulrichova, J. Phytochemical and antimicrobial characterization of Macleaya cordata herb. Fitoterapia 2010, 81, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Pseudo-Fumaria Lutea | International Plant Names Index. Available online: https://www.ipni.org/n/urn:lsid:ipni.org:names:673928-1 (accessed on 10 March 2023).
- Mirek, Z.; Piękoś-Mirkowa, H.; Zając, A.; Maria, Z. Flowering Plants and Pteridophytes of Poland. A Checklist; W. Szafer Institute of Botany, Polihs Academy of Science: Kraków, Poland, 2002; Volume 1. [Google Scholar]
- Tokarska-Guzik, B.; Dajdok, Z.; Maria, Z.; Zając, A.; Urbisz, A.; Danielewicz, W.; Hołdyński, C. Rośliny Obcego Pochodzenia w Polsce Ze Szczególnym Uwzględnieniem Gatunków Inwazyjnych-Alien Plants in Poland with Particular Reference to Invasive Species; Generalna Dyrekcja Ochrony Środowiska: Warsaw, Poland, 2012; ISBN 978-83-62940-34-9. [Google Scholar]
- Lidén, M. Fumariaceae. In Flowering Plants Dicotyledons: Magnoliid, Hamamelid and Caryophyllid Families; Kubitzki, K., Rohwer, J.G., Bittrich, V., Eds.; The Families and Genera of Vascular Plants; Springer: Berlin/Heidelberg, Germany, 1993; pp. 310–318. ISBN 978-3-662-02899-5. [Google Scholar]
- Zielińska, S.; Dziągwa-Becker, M.; Piątczak, E.; Jezierska-Domaradzka, A.; Brożyna, M.; Junka, A.; Kucharski, M.; Çiçek, S.S.; Zidorn, C.; Matkowski, A. Phytochemical Composition and Antimicrobial Activity of Corydalis solida and Pseudofumaria lutea. Molecules 2020, 25, 3591. [Google Scholar] [CrossRef]
- Orhan, I.; Özçelik, B.; Karaoğlu, T.; Şener, B. Antiviral and Antimicrobial Profiles of Selected Isoquinoline Alkaloids from Fumaria and Corydalis Species. Z. Für Nat. C 2007, 62, 19–26. [Google Scholar] [CrossRef]
- Petruczynik, A.; Plech, T.; Tuzimski, T.; Misiurek, J.; Kaproń, B.; Misiurek, D.; Szultka-Młyńska, M.; Buszewski, B.; Waksmundzka-Hajnos, M. Determination of Selected Isoquinoline Alkaloids from Mahonia aquifolia; Meconopsis cambrica; Corydalis lutea; Dicentra spectabilis; Fumaria officinalis; Macleaya cordata Extracts by HPLC-DAD and Comparison of Their Cytotoxic Activity. Toxins 2019, 11, 575. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L. Morphology, structure and ultrastructure of staminal nectary in Lamprocapnos (Fumarioideae, Papaveraceae). Flora 2018, 242, 128–136. [Google Scholar] [CrossRef]
- Kim, A.H.; Jang, J.H.; Woo, K.W.; Park, J.E.; Lee, K.H.; Jung, H.K.; An, B.; Jung, W.S.; Ham, S.H.; Cho, H.W. Chemical constituents of Dicentra spectabilis and their anti-inflammation effect. J. Appl. Biol. Chem. 2018, 61, 39–46. [Google Scholar] [CrossRef]
- Ma, W.G.; Fukushi, Y.; Tahara, S.; Osawa, T. Fungitoxic alkaloids from Hokkaido Papaveraceae. Fitoterapia 2000, 71, 527–534. [Google Scholar] [CrossRef]
- McNulty, J.; Poloczek, J.; Larichev, V.; Werstiuk, N.; Griffin, C.; Pandey, S. Discovery of the Apoptosis-Inducing Activity and High Accumulation of the Butenolides, Menisdaurilide and Aquilegiolide, in Dicentra spectabilis. Planta Med. 2007, 73, 1543–1547. [Google Scholar] [CrossRef] [PubMed]
- Goetz, P.; Ghedira, K.; Le Jeune, R. Fumaria officinalis L. (Fumariaceae). Phytothérapie 2009, 7, 221–225. [Google Scholar] [CrossRef]
- Dutta, R.; Sharma, M.K.; Jha, M. A Review on Ethnobotanical, Phytochemistry, Bioactivities and Medicinal Mysteries of Fumaria Officinalis (Common Fumitory). EAS J. Pharm. Pharm. 2019, 1, 99–105. [Google Scholar]
- Al-Snafi, A. Phenolics and Flavonoids Contents of Medicinal Plants, as Natural Ingredients for Many Therapeutic Purposes—A Review. IOSR J. Pharm. 2020, 10, 42–81. [Google Scholar]
- Sharef, A.Y.; Aziz, F.M.; Adham, A.N. The protective effect of Fumaria officinalis against the testicular toxicity of fluoxetine in rat. Zanco J. Med. Sci. 2020, 24, 117–131. [Google Scholar] [CrossRef]
- Adham, A.N.; Naqishbandi, A.M.; Efferth, T. Cytotoxicity and apoptosis induction by Fumaria officinalis extracts in leukemia and multiple myeloma cell lines. J. Ethnopharmacol. 2020, 266, 113458. [Google Scholar] [CrossRef] [PubMed]
- Cakić, M.; Glišić, S.; Cvetković, D.; Cvetinov, M.; Stanojević, L.; Danilović, B.; Cakić, K. Green Synthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles Produced from Fumaria officinalis L. Plant Extract. Colloid J. 2018, 80, 803–813. [Google Scholar] [CrossRef]
- Păltinean, R.; Mocan, A.; Vlase, L.; Gheldiu, A.-M.; Crișan, G.; Ielciu, I.; Voștinaru, O.; Crișan, O. Evaluation of Polyphenolic Content, Antioxidant and Diuretic Activities of Six Fumaria Species. Molecules 2017, 22, 639. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Simpson, B.B. A New Infrageneric Classification of Meconopsis (Papaveraceae) Based on a Well-supported Molecular Phylogeny. Syst. Bot. 2017, 42, 226–233. [Google Scholar] [CrossRef]
- Shi, N.; Wang, C.; Wang, J.; Wu, N.; Naudiyal, N.; Zhang, L.; Wang, L.; Sun, J.; Du, W.; Wei, Y.; et al. Biogeographic Patterns and Richness of the Meconopsis Species and Their Influence Factors across the Pan-Himalaya and Adjacent Regions. Diversity 2022, 14, 661. [Google Scholar] [CrossRef]
- Guo, Q.; Bai, R.; Zhao, B.; Feng, X.; Zhao, Y.; Tu, P.; Chai, X. An Ethnopharmacological, Phytochemical and Pharmacological Review of the Genus Meconopsis. Am. J. Chin. Med. 2016, 44, 439–462. [Google Scholar] [CrossRef]
- Valtueña, F.J.; Preston, C.D.; Kadereit, J.W. Phylogeography of a Tertiary relict plant, Meconopsis cambrica (Papaveraceae), implies the existence of northern refugia for a temperate herb. Mol. Ecol. 2012, 21, 1423–1437. [Google Scholar] [CrossRef]
- Chen, S.-B.; Chen, S.-L.; Xiao, P.-G. Ethnopharmacological investigations on Thalictrum plants in China. J. Asian Nat. Prod. Res. 2003, 5, 263–271. [Google Scholar] [CrossRef]
- Ma, J.; Clemants, S. A history and overview of the Flora Reipublicae Popularis Sinicae (FRPS, Flora of China, Chinese edition, 1959–2004). Taxon 2006, 55, 451–460. [Google Scholar] [CrossRef]
- Zhu, Y.-P.; Woerdenbag, H.J. Traditional Chinese herbal medicine. Pharm. Weekbl. 1995, 17, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Petruczynik, A.; Tuzimski, T.; Plech, T.; Misiurek, J.; Szalast, K.; Szymczak, G. Comparison of Anticancer Activity and HPLC-DAD Determination of Selected Isoquinoline Alkaloids from Thalictrum foetidum, Berberis sp. and Chelidonium majus Extracts. Molecules 2019, 24, 3417. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Peng, W.; Xu, A. Apoptosis of a human non-small cell lung cancer (NSCLC) cell line, PLA-801, induced by acutiaporberine, a novel bisalkaloid derived from Thalictrum acutifolium (Hand.-Mazz.) Boivin. Biochem. Pharmacol. 2002, 63, 1389–1396. [Google Scholar] [CrossRef]
- Chen, Q.; Peng, W.; Qi, S.; Xu, A. Apoptosis of Human Highly Metastatic Lung Cancer Cell Line 95-D Induced by Acutiaporberine, a Novel Bisalkaloid Derived from Thalictrum acutifolium. Planta Medica 2002, 68, 550–553. [Google Scholar] [CrossRef]
- Tuzimski, T.; Petruczynik, A.; Kaproń, B.; Makuch-Kocka, A.; Szultka-Młyńska, M.; Misiurek, J.; Szymczak, G.; Buszewski, B. Determination of Cytotoxic Activity of Selected Isoquinoline Alkaloids and Plant Extracts Obtained from Various Parts of Mahonia aquifolium Collected in Various Vegetation Seasons. Molecules 2021, 26, 816. [Google Scholar] [CrossRef]
- Gong, X.; Chen, Z.; Han, Q.; Chen, C.; Jing, L.; Liu, Y.; Zhao, L.; Yao, X.; Sun, X. Sanguinarine triggers intrinsic apoptosis to suppress colorectal cancer growth through disassociation between STRAP and MELK. BMC Cancer 2018, 18, 578. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, C.; Xie, R.; Ni, M. Green synthesis of nickel nanoparticles using Fumaria officinalis as a novel chemotherapeutic drug for the treatment of ovarian cancer. J. Exp. Nanosci. 2021, 16, 368–381. [Google Scholar] [CrossRef]
- Berkov, S.; Bastida, J.; Sidjimova, B.; Viladomat, F.; Codina, C. Phytochemical differentiation of Galanthus nivalis and Galanthus elwesii (Amaryllidaceae): A case study. Biochem. Syst. Ecol. 2008, 36, 638–645. [Google Scholar] [CrossRef]
- Petruczynik, A.; Misiurek, J.; Tuzimski, T.; Uszyński, R.; Szymczak, G.; Chernetskyy, M.; Waksmundzka-Hajnos, M. Comparison of different HPLC systems for analysis of galantamine and lycorine in various species of Amaryllidaceae family. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 574–579. [Google Scholar] [CrossRef]
- Bresciani, E.; Broadbridge, E.; Liu, P.P. An efficient dissociation protocol for generation of single cell suspension from zebrafish embryos and larvae. Methodsx 2018, 5, 1287–1290. [Google Scholar] [CrossRef] [PubMed]
Name of Compound | tR | AS | N/m |
---|---|---|---|
Magnoflorine | 5.34 | 1.02 | 21,900 |
Protopine | 14.18 | 1.01 | 54,300 |
Stylopine | 19.73 | 0.99 | 61,100 |
Palmatine | 30.56 | 1.10 | 171,100 |
Berberine | 35.48 | 1.01 | 342,400 |
Sanguinarine | 36.82 | 0.99 | 490,200 |
Chelerythrine | 42.57 | 1.11 | 90,600 |
Compound | Elemental Composition | Polarity | Theoretical (m/z) | Measured (m/z) | Major Fragment Ions | Error (ppm) | ID Score [%] |
---|---|---|---|---|---|---|---|
Magnoflorine | C20H24NO4 [M + H]+ | ESI+ | 341.7915 | 341.7917 | 296.7147 264.6899 236.7089 206.7327 | −0.39 | 99.48 |
Protopine | C20H20NO5 [M + H]+ | ESI+ | 353.7653 | 353.7655 | 336.1209 274.6716 205.7380 188.7681 148.8711 | −0.93 | 99.15 |
Stylopine | C19H17NO4 [M + H]+ | ESI+ | 331.7109 | 331.7105 | 277.8803 251.7101 175.7931 163.8332 148.8696 | −0.48 | 99.63 |
Palmatine | C21H22NO4 [M + H]+ | ESI+ | 351.7872 | 351.7853 | 335.7442 307.7351 277.6835 249.6977 | 1.07 | 99.62 |
Berberine | C20H18NO4 [M + H]+ | ESI+ | 335.7426 | 335.7429 | 319.7029 305.6823 304.1893 291.6987 277.6827 | −0.41 | 99.18 |
Sanguinarine | C20H14NO4 [M + H]+ | ESI+ | 331.7068 | 331.7065 | 316.6761 303.6993 288.6723 273.6853 245.7012 | 1.26 | 99.34 |
Chelerythrine | C21H18NO4 [M + H]+ | ESI+ | 347.7491 | 347.7489 | 331.7071 303.6990 274.6920 231.6968 | 1.19 | 99.56 |
Alkaloid | Equation of Calibration Curve | r | LOD [mg/mL] | LOQ [mg/mL] |
---|---|---|---|---|
Magnoflorine | y = 25635805 x − 251782 | 0.9983 | 0.0222 | 0.0672 |
Protopine | y = 25340599 x + 98298 | 0.9935 | 0.0222 | 0.0673 |
Stylopine | y = 879342 x − 13994 | 0.9964 | 0.0241 | 0.0729 |
Palmatine | y = 52900121 x + 732112 | 0.9945 | 0.0202 | 0.0613 |
Berberine | y = 70984852 x − 330076 | 0.9979 | 0.0133 | 0.0403 |
Sanguinarine | y = 63958474 x + 118255 | 0.9995 | 0.0060 | 0.0182 |
Chelerythrine | y = 57154059 x + 12978 | 0.9990 | 0.0086 | 0.0260 |
Name of Compound | Content of Alkaloids (mg/g of Dry Plant Material) and Standard Deviation of These Values. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Macleaya cordata Leaves | Macleaya cordata Stalk | Macleaya cordata Root | Pseudo-fumaria lutea Herb | Pseudo-fumaria lutea Root | Lamprocapnos spectabilis Herb | Lamprocapnos Spectabilis Root | Fumaria officinalis | Meconopsis cambrica Herb | Meconopsis cambrica Root | Thalictrum foetidum Herb | Thalictrum foetidum Root | |
Magnoflorine | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.021 ± 0.002 |
Protopine | 0.015 ± 0.0011 | 0.010 ± 0.001 | 0.018 ± 0.0015 | 0.120 ± 0.011 | 0.370 ± 0.031 | 0.448 ± 0.039 | 3.350 ± 0.28 | 0.514 ± 0.047 | 0.093 ± 0.008 | 0.700± 0.0067 | ND | ND |
Stylopine | ND | ND | ND | 0.655 ± 0.064 | 5.716 ± 0.495 | ND | ND | ND | ND | ND | ND | ND |
Palmatine | ND | ND | ND | 0.100 ± 0.008 | 0.268 ± 0.022 | ND | ND | ND | ND | ND | ND | ND |
Berberine | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.001 ± 0.0001 | 0.308 ± 0.028 |
Sanguinarine | 0.051 ± 0.003 | 0.027 ± 0.002 | 0.026 ± 0.002 | ND | ND | 0.066 ± 0.006 | 0.097 ± 0.008 | 0.043 ± 0.004 | 0.005 ± 0.004 | 0.047 ± 0.003 | ND | ND |
Chelerythrine | 0.046 ± 0.003 | 0.024 ± 0.002 | 0.019 ± 0.002 | ND | ND | ND | ND | ND | ND | ND | ND | ND |
IC50 [µg/mL] for Cell Viability | |||
---|---|---|---|
A375 | G-361 | SK-MEL-3 | |
Macleaya cordata leaves | 0.75 (±0.04) | 1.51 (±0.01) | 0.21 (±0.02) |
Macleaya cordata stalk | 0.77 (±0.02) | 1.12 (±0.01) | 0.14 (±0.01) |
Macleaya cordata root | 7.13 (±0.31) | 5.38 (±0.27) | 2.44 (±0.32) |
Pseudofumaria lutea herb | 21.57 (±1.36) | 7.96 (±0.35) | 46.67 (±4.11) |
Pseudofumaria lutea root | 110.29 (±4.07) | 6.63 (±0.41) | 40.66 (±2.79) |
Lamprocapnos spectabilis herb | 4.13 (±0.11) | 11.45 (±0.55) | 23.22 (±3.01) |
Lamprocapnos spectabilis root | extract insoluble in DMSO and H2O—analysis not performed | ||
Fumaria officinalis whole plant | 141.9 (±5.82) | 11.79 (±1.01) | 124.49 (±7.81) |
Meconopsis cambrica herb | 22.53 (±0.93) | 11.72 (±0.97) | 88.54 (±5.74) |
Meconopsis cambrica root | 40.13 (±1.38) | 70.60 (±6.25) | 94.10 (±6.07) |
Thalictrum foetidum herb | 64.78 (±2.55) | 9.72 (±1.10) | 43.90 (±4.01) |
Thalictrum foetidum root | 37.01 (±2.13) | 6.69 (±0.22) | 15.96 (±0.39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misiurek, J.; Plech, T.; Kaproń, B.; Makuch-Kocka, A.; Szultka-Młyńska, M.; Buszewski, B.; Petruczynik, A. Determination of Some Isoquinoline Alkaloids in Extracts Obtained from Selected Plants of the Ranunculaceae, Papaveraceae and Fumarioideae Families by Liquid Chromatography and In Vitro and In Vivo Investigations of Their Cytotoxic Activity. Molecules 2023, 28, 3503. https://doi.org/10.3390/molecules28083503
Misiurek J, Plech T, Kaproń B, Makuch-Kocka A, Szultka-Młyńska M, Buszewski B, Petruczynik A. Determination of Some Isoquinoline Alkaloids in Extracts Obtained from Selected Plants of the Ranunculaceae, Papaveraceae and Fumarioideae Families by Liquid Chromatography and In Vitro and In Vivo Investigations of Their Cytotoxic Activity. Molecules. 2023; 28(8):3503. https://doi.org/10.3390/molecules28083503
Chicago/Turabian StyleMisiurek, Justyna, Tomasz Plech, Barbara Kaproń, Anna Makuch-Kocka, Małgorzata Szultka-Młyńska, Bogusław Buszewski, and Anna Petruczynik. 2023. "Determination of Some Isoquinoline Alkaloids in Extracts Obtained from Selected Plants of the Ranunculaceae, Papaveraceae and Fumarioideae Families by Liquid Chromatography and In Vitro and In Vivo Investigations of Their Cytotoxic Activity" Molecules 28, no. 8: 3503. https://doi.org/10.3390/molecules28083503
APA StyleMisiurek, J., Plech, T., Kaproń, B., Makuch-Kocka, A., Szultka-Młyńska, M., Buszewski, B., & Petruczynik, A. (2023). Determination of Some Isoquinoline Alkaloids in Extracts Obtained from Selected Plants of the Ranunculaceae, Papaveraceae and Fumarioideae Families by Liquid Chromatography and In Vitro and In Vivo Investigations of Their Cytotoxic Activity. Molecules, 28(8), 3503. https://doi.org/10.3390/molecules28083503