An Efficient Synthesis of Oxygen-Bridged Spirooxindoles via Microwave-Promoted Multicomponent Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Microwave Assisted 1,3-dipolar Cycloaddition of Azomethine Ylides Prepared from Isatins and α-Amino Acids with 1,4-dihydro-1,4-epoxynaphthalene
3.2.1. 1′,2′,3′,5a’,6′,11′,11a’,11b’-Octahydrospiro[indoline-3,5′-[6,11]epoxybenzo[f]pyrrolo [2,1-a]isoindol]-2-one (4a)
3.2.2. 4-Bromo-1′,2′,3′,5a’,6′,11′,11a’,11b’-octahydrospiro[indoline-3,5′-[6,11]epoxybenzo[f]pyrrolo [2,1-a]isoindol]-2-one (4b)
3.2.3. 5-Methyl-1′,2′,3′,5a’,6′,11′,11a’,11b’-octahydrospiro[indoline-3,5′-[6,11]epoxybenzo[f]pyrrolo [2,1-a]isoindol]-2-one (4c)
3.2.4. 5-Fluoro-1′,2′,3′,5a’,6′,11′,11a’,11b’-octahydrospiro[indoline-3,5′-[6,11]epoxybenzo[f]pyrrolo [2,1-a]isoindol]-2-one (4d)
3.2.5. 5-Chloro-1′,2′,3′,5a’,6′,11′,11a’,11b’-octahydrospiro[indoline-3,5′-[6,11]epoxybenzo[f]pyrrolo [2,1-a]isoindol]-2-one (4e)
3.2.6. 5-Bromo-1′,2′,3′,5a’,6′,11′,11a’,11b’-octahydrospiro[indoline-3,5′-[6,11]epoxybenzo[f]pyrrolo [2,1-a]isoindol]-2-one (4f)
3.2.7. 5-Nitro-1′,2′,3′,5a’,6′,11′,11a’,11b’-octahydrospiro[indoline-3,5′-[6,11]epoxybenzo[f]pyrrolo [2,1-a]isoindol]-2-one (4g)
3.2.8. 6-Methoxy-1′,2′,3′,5a’,6′,11′,11a’,11b’-octahydrospiro[indoline-3,5′-[6,11]epoxybenzo[f]pyrrolo [2,1-a]isoindol]-2-one (4h)
3.2.9. 7-Bromo-1′,2′,3′,5a’,6′,11′,11a’,11b’-octahydrospiro[indoline-3,5′-[6,11]epoxybenzo[f]pyrrolo [2,1-a]isoindol]-2-one (4i)
3.2.10. 1-Methyl-1′,2′,3′,5a’,6′,11′,11a’,11b’-octahydrospiro[indoline-3,5′-[6,11]epoxybenzo[f]pyrrolo [2,1-a]isoindol]-2-one (4j)
3.2.11. 1-Phenyl-1′,2′,3′,5a’,6′,11′,11a’,11b’-octahydrospiro[indoline-3,5′-[6,11]epoxybenzo[f]pyrrolo [2,1-a]isoindol]-2-one (4k)
3.2.12. 1′,2′,3′,5a’,6′,11′,11a’,11b’-Octahydro-2H-spiro[acenaphthylene-1,5′-[6,11]epoxybenzo[f]pyrrolo [2,1-a]isoindol]-2-one (4m)
3.2.13. 1′,2′,3′,5a’,6′,11′,11a’,11b’-Octahydrospiro[indene-2,5′-[6,11]epoxybenzo[f]pyrrolo [2,1-a]isoindole]-1,3-dione (4n)
3.2.14. 3′-Benzyl-2′,3′,3a’,4′,9′,9a’-hexahydrospiro[indoline-3,1′-[4,9]epoxybenzo[f]isoindol]-2-oneEluent (5a)
3.2.15. 3′-(4-Iodobenzyl)-2′,3′,3a’,4′,9′,9a’-hexahydrospiro[indoline-3,1′-[4,9]epoxybenzo[f]isoindol]-2-one (5b)
3.2.16. 3′-(4-Hydroxybenzyl)-1-methyl-2′,3′,3a’,4′,9′,9a’-hexahydrospiro[indoline-3,1′-[4,9]epoxybenzo[f]isoindol]-2-one (5c)
3.2.17. 3′-Phenethyl-2′,3′,3a’,4′,9′,9a’-hexahydrospiro[indoline-3,1′-[4,9]epoxybenzo[f]isoindol]-2-one (5d)
3.2.18. 3′-(2-(Methylthio)ethyl)-2′,3′,3a’,4′,9′,9a’-hexahydrospiro[indoline-3,1′-[4,9]epoxybenzo[f]isoindol]-2-one (5e)
3.2.19. 3′-Isopropyl-2′,3′,3a’,4′,9′,9a’-hexahydrospiro[indoline-3,1′-[4,9]epoxybenzo[f]isoindol]-2-one (5f)
3.2.20. 3′-Isobutyl-2′,3′,3a’,4′,9′,9a’-hexahydrospiro[indoline-3,1′-[4,9]epoxybenzo[f]isoindol]-2-one (5g)
3.2.21. 3′-(sec-Butyl)-2′,3′,3a’,4′,9′,9a’-hexahydrospiro[indoline-3,1′-[4,9]epoxybenzo[f]isoindol]-2-one (5h)
3.2.22. 1′,5a’,6′,11′,11a’,11b’-Hexahydro-3′H-spiro[indoline-3,5′-[6,11]epoxybenzo[f]thiazolo [4,3-a]isoindol]-2-one (5j)
3.2.23. 2′-Cyclohexyl-1′,2′,3′,5a’,6′,11′,11a’,11b’-octahydrospiro[indoline-3,5′-[6,11]epoxybenzo[f]pyrrolo [2,1-a]isoindol]-2-one (5k)
3.2.24. 5-Bromo-1′,5a’,6′,11′,11a’,11b’-hexahydro-3′H-spiro[indoline-3,5′-[6,11]epoxybenzo[f]thiazolo [4,3-a]isoindol]-2-one (6)
3.3. General Procedure for Deoxyaromatization of Cycloaddition Product 6
5′-Bromo-1,11b-dihydro-3H-spiro[benzo[f]thiazolo [4,3-a]isoindole-5,3′-indolin]-2′-one (7)
3.4. General Procedure for the Synthesis of N-Boc Substituted Spirooxindole 8
tert-Butyl -5-bromo-2-oxo-1′,5a’,6′,11′,11a’,11b’-hexahydro-3′H-spiro[indoline-3,5′-[6,11]epoxybenzo[f]thiazolo [4,3-a]isoindole]-1-carboxylate (8)
3.5. General Procedure for the Reduction of Cycloadduct 6 with Lithium Aluminum Hydride
5-Bromo-1′,5a’,6′,11′,11a’,11b’-hexahydro-3′H-spiro[indoline-3,5′-[6,11]epoxybenzo[f]thiazolo [4,3-a]isoindol]-2-ol (9)
3.6. Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zuin, V.G.; Eilks, I.; Elschami, M.; Kümmerer, K. Education in green chemistry and in sustainable chemistry: Perspectives towards sustainability. Green Chem. 2021, 23, 1594–1608. [Google Scholar] [CrossRef]
- C&EN Global Enterprise. Sustainable chemistry enters new territory. ACS Comment 2022, 100, 27. [Google Scholar]
- Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J. Green chemistry in the synthesis of pharmaceuticals. Chem. Rev. 2022, 122, 3637–3710. [Google Scholar] [CrossRef]
- Lew, A.; Krutzik, P.O.; Hart, M.E.; Chamberlin, A.R. Increasing rates of reaction: Microwave-assisted organic synthesis for combinatorial chemistry. J. Comb. Chem. 2002, 4, 95–105. [Google Scholar] [CrossRef]
- Singh, B.K.; Kaval, N.; Tomar, S.; Eycken, E.V.D.; Parmar, V.S. Transition metal-catalyzed carbon−carbon bond formation suzuki, heck, and sonogashira reactions using microwave and microtechnology. Org. Process Res. Dev. 2008, 12, 468–474. [Google Scholar] [CrossRef]
- Kruithof, A.; Ruijter, E.; VA Orru, R. Microwave-assisted multicomponent synthesis of heterocycles. Curr. Org. Chem. 2011, 15, 204–236. [Google Scholar] [CrossRef]
- Beillard, A.; Bantreil, X.; Métro, T.-X.; Martinez, J.; Lamaty, F. Alternative technologies that facilitate access to discrete metal complexes. Chem. Rev. 2019, 119, 7529–7609. [Google Scholar] [CrossRef]
- Fairoosa, J.; Saranya, S.; Radhika, S.; Anilkumar, G. Recent advances in microwave assisted multicomponent reactions. Chemistryselect 2020, 5, 5180–5197. [Google Scholar] [CrossRef]
- Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res. 2009, 42, 463–472. [Google Scholar] [CrossRef]
- Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev. 2009, 109, 4439–4486. [Google Scholar] [CrossRef] [PubMed]
- Ruijter, E.; Scheffelaar, R.; Orru, R.V.A. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed. 2011, 50, 6234–6246. [Google Scholar] [CrossRef]
- Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small heterocycles in multicomponent reactions. Chem. Rev. 2014, 114, 8323–8359. [Google Scholar] [CrossRef] [PubMed]
- Radtke, L.; Marqués-López, E.; Herrera, R.P. Multicomponent Reactions: Concepts and Applications for Design and Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2015; Volume 6, pp. 198–246. [Google Scholar]
- Yu, B.; Yu, D.-Q.; Liu, H.-M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem. 2015, 97, 673–698. [Google Scholar] [CrossRef] [PubMed]
- Ye, N.; Chen, H.; Wold, E.A.; Shi, P.-Y.; Zhou, J. Therapeutic potential of spirooxindoles as antiviral agents. ACS Infect. Dis. 2016, 2, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Panek, J.S. Stereocontrolled synthesis of spirooxindoles through lewis acid-promoted [5 + 2]-annulation of chiral silyl alcohols. Org. Lett. 2009, 11, 3366–3369. [Google Scholar] [CrossRef]
- White, J.D.; Li, Y.; Ihle, D.C. Tandem intramolecular photocycloaddition−retro-mannich fragmentation as a route to spiro[pyrrolidine-3,3′-oxindoles]. Total synthesis of (±)-coerulescine, (±)-horsfiline, (±)-elacomine, and (±)-6-deoxyelacomine. J. Org. Chem. 2010, 75, 3569–3577. [Google Scholar] [CrossRef]
- Jiang, D.; Dong, S.; Tang, W.; Lu, T.; Du, D. N-heterocyclic carbene-catalyzed formal [3 + 2] annulation of α-bromoenals with 3-aminooxindoles: A stereoselective synthesis of spirooxindole γ-butyrolactams. J. Org. Chem. 2015, 80, 11593–11597. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, M.; Pham, K.; Zhang, X.; Yi, W.-B.; Jasinski, J.P.; Zhang, W. Organocatalytic one-pot asymmetric synthesis of thiolated spiro-γ-lactam oxindoles bearing three stereocenters. J. Org. Chem. 2016, 81, 5362–5369. [Google Scholar] [CrossRef]
- Yang, P.; Wang, X.; Chen, F.; Zhang, Z.-B.; Chen, C.; Peng, L.; Wang, L.-X. Organocatalytic enantioselective michael/cyclization domino reaction between 3-amideoxindoles and α, β-unsaturated aldehydes: One-pot preparation of chiral spirocyclic oxindole-γ-lactams. J. Org. Chem. 2017, 82, 3908–3916. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Sun, Y.; Zheng, Z.; Tang, R.; Wang, M.; Li, Y. Chemoselective N–H or C-2 arylation of indole-2-carboxamides: Controllable synthesis of indolo[1,2-a]quinoxalin-6-ones and 2,3′-spirobi[indolin]-2′-ones. Org. Lett. 2018, 20, 5251–5255. [Google Scholar] [CrossRef]
- Ni, Q.; Wang, X.; Zeng, D.; Wu, Q.; Song, X. Organocatalytic asymmetric synthesis of aza-spirooxindoles via michael/friedel–crafts cascade reaction of 1,3-nitroenynes and 3-pyrrolyloxindoles. Org. Lett. 2021, 23, 2273–2278. [Google Scholar] [CrossRef]
- Saleh, S.A.; Hazra, A.; Singh, M.S.; Hajra, S. Selective C3-allylation and formal [3 + 2]-annulation of spiro-aziridine oxindoles: Synthesis of 5′-substituted spiro[pyrrolidine-3,3′-oxindoles] and coerulescine. J. Org. Chem. 2022, 87, 8656–8671. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, W.; Lu, X.; Zhou, H.; Zhong, F. Cinchona alkaloid derived iodide catalyzed enantioselective oxidative α-amination of carbonyl compounds toward the construction of spiroindolyloxindole. Org. Lett. 2022, 24, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Efremov, I.V.; Vajdos, F.F.; Borzilleri, K.A.; Capetta, S.; Chen, H.; Dorff, P.H.; Dutra, J.K.; Goldstein, S.W.; Mansour, M.; McColl, A.; et al. Discovery and optimization of a novel spiropyrrolidine inhibitor of β-secretase (BACE1) through fragment-based drug design. J. Med. Chem. 2012, 55, 9069–9088. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, P.; Viswambharan, B.; Madhavan, S. Synthesis of novel functionalized 3-spiropyrrolizidine and 3-spiropyrrolidine oxindoles from baylis−hillman adducts of isatin and heteroaldehydes with azomethine ylides via [3 + 2]-cycloaddition. Org. Lett. 2007, 9, 4095–4098. [Google Scholar] [CrossRef]
- Filatov, A.S.; Knyazev, N.A.; Molchanov, A.P.; Panikorovsky, T.L.; Kostikov, R.R.; Larina, A.G.; Boitsov, V.M.; Stepakov, A.V. Synthesis of functionalized 3-spiro[cyclopropa[a]pyrrolizine]- and 3-spiro[3-azabicyclo[3.1.0]hexane]oxindoles from cyclopropenes and azomethine ylides via [3 + 2]-cycloaddition. J. Org. Chem. 2017, 82, 959–975. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, P.; Zhang, Y.; Tang, C.-Z.; Tian, F.; Peng, L.; Wang, L.-X. Isatin N, N′-cyclic azomethine imine 1,3-dipole and abnormal [3 + 2]-cycloaddition with maleimide in the presence of 1,4-diazabicyclo[2.2.2]octane. Org. Lett. 2017, 19, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.; Sana, S.; Sridhar, B.; Shankaraiah, N. Microwave-assisted one-pot [3+2] cycloaddition of azomethine ylides and 3-alkenyl oxindoles: A facile approach to pyrrolidine-fused bis-spirooxindoles. Chemistryselect 2019, 4, 1727–1730. [Google Scholar] [CrossRef]
- Gugkaeva, Z.T.; Panova, M.V.; Smol’yakov, A.F.; Medvedev, M.G.; Tsaloev, A.T.; Godovikov, I.A.; Maleev, V.I.; Larionov, V.A. Asymmetric metal-templated route to amino acids with 3-spiropyrrolidine oxindole core via a 1,3-dipolar addition of azomethine ylides to a chiral dehydroalanine Ni(II) complex. Adv. Synth. Catal. 2022, 364, 2395–2402. [Google Scholar] [CrossRef]
- Wang, K.-K.; Li, Y.-L.; Chen, R.-X.; Sun, A.-L.; Wang, Z.-Y.; Zhao, Y.-C.; Wang, M.-Y.; Sheng, S. Substrate-controlled regioselectivity switch in a three-component 1,3-dipolar cycloaddition reaction to access 3,3′-pyrrolidinyl-spirooxindoles derivatives. Adv. Synth. Catal. 2022, 364, 2047–2052. [Google Scholar] [CrossRef]
- Nishimura, T.; Kawamoto, T.; Sasaki, K.; Tsurumaki, E.; Hayashi, T. Rhodium-catalyzed asymmetric cyclodimerization of oxa- and azabicyclic alkenes. J. Am. Chem. Soc. 2007, 129, 1492–1493. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yao, Y.; Yang, W.; Lin, Q.; Wang, L.; Li, H.; Chen, D.; Tan, Y.; Yang, D. Three-component cycloaddition to synthesize aziridines and 1,2,3-triazolines. J. Org. Chem. 2019, 84, 11863–11872. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Yang, W.; Lin, Q.; Yang, W.; Li, H.; Wang, L.; Gu, F.; Yang, D. 1,3-Dipolar cycloaddition of nitrones to oxa(aza)bicyclic alkenes. Org. Chem. Front. 2019, 6, 3360–3364. [Google Scholar] [CrossRef]
- Lin, Q.; Yang, W.; Yao, Y.; Li, Y.; Wang, L.; Yang, D. Copper-catalyzed cycloaddition of heterobicyclic alkenes with diaryl disulfides to synthesize dihydrobenzo[b]thiophene derivatives. J. Org. Chem. 2021, 86, 4193–4204. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yang, W.; Wu, R.; Yang, D. Water-promoted synthesis of fused bicyclic triazolines and naphthols from oxa(aza)bicyclic alkenes and transformation via a novel ring-opening/rearrangement reaction. Green Chem. 2018, 20, 2512–2518. [Google Scholar] [CrossRef]
- Yuan, K.; Zhang, T.K.; Hou, X.L. A highly efficient palladacycle catalyst for hydrophenylation of C-, N-, and O--substituted bicyclic alkenes under aerobic condition. J. Org. Chem. 2005, 70, 6085–6088. [Google Scholar] [CrossRef]
- Li, S.; Lu, Z.; Meng, L.; Wang, J. Iridium-catalyzed asymmetric addition of thiophenols to oxabenzonorbornadienes. Org. Lett. 2016, 18, 5276–5279. [Google Scholar] [CrossRef]
- Yao, Y.; Yang, W.; Wang, C.; Gu, F.; Yang, W.; Yang, D. Radical addition of thiols to oxa(aza)bicyclic alkenes in water. Asian J. Org. Chem. 2019, 8, 506–513. [Google Scholar] [CrossRef]
- Kim, K.; Lee, Y. Copper-catalyzed hydroamination of oxa- and azabenzonorbornadienes with pyrazoles. J. Org. Chem. 2022, 87, 569–578. [Google Scholar] [CrossRef]
- Zhang, K.; Khan, R.; Chen, J.; Zhang, X.; Gao, Y.; Zhou, Y.; Li, K.; Tian, Y.; Fan, B. Directing-group-controlled ring-opening addition and hydroarylation of oxa/azabenzonorbornadienes with arenes via C-H activation. Org. Lett. 2020, 22, 3339–3344. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Pan, X.; Qi, Z.; Li, X. Palladium-catalyzed [3 + 2] annulation of aryl halides with 7-oxa- and 7-azabenzonorbornadienes via C(sp2 or sp3)–H activation. Org. Lett. 2022, 24, 8964–8968. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, S.; Saritha, R.; Gurumurthy, P.; Parthasarathy, K. Synthesis of fused spiropyrrolidine oxindoles through 1,3-dipolar cycloaddition of azomethine ylides prepared from isatins and α-amino acids with heterobicyclic alkenes. Eur. J. Org. Chem. 2020, 2020, 2725–2729. [Google Scholar] [CrossRef]
- Shen, P.; Guo, Y.; Wei, J.; Zhao, H.; Zhai, H.; Zhao, Y. Straightforward synthesis of succinimide-fused pyrrolizidines by a three-component reaction of α-diketone, amino acid, and maleimide. Synthesis 2020, 53, 1262–1270. [Google Scholar]
- Haddad, S.; Boudriga, S.; Porzio, F.; Soldera, A.; Askri, M.; Knorr, M.; Rousselin, Y.; Kubicki, M.M.; Golz, C.; Strohmann, C. Regio- and stereoselective synthesis of spiropyrrolizidines and piperazines through azomethine ylide cycloaddition reaction. J. Org. Chem. 2015, 80, 9064–9075. [Google Scholar] [CrossRef]
Entry | Solvent | Tep.(°C) | Time | Yield(100%) b |
---|---|---|---|---|
1 | THF | 70 | 15 min | 40 |
2 | DMF | 70 | 15 min | 33 |
3 | DMSO | 70 | 15 min | 46 |
4 | Toluene | 70 | 15 min | 8 |
5 | MeOH | 70 | 15 min | 73 |
6 | EtOH | 70 | 15 min | 60 |
7 | iPrOH | 70 | 15 min | 70 |
8 | tBuOH | 70 | 15 min | 48 |
9 | MeOH | 60 | 15 min | 61 |
10 | MeOH | 80 | 15 min | 60 |
11 | MeOH | 90 | 15 min | 64 |
12 | MeOH | 70 | 20 min | 69 |
13 | MeOH | 70 | 25 min | 73 |
14 | MeOH | 70 | 30 min | 72 |
15 | MeOH | 70 | 10 min | 61 |
16 c | MeOH | 70 | 15 min | 81 |
17 d | MeOH | 70 | 15 min | 83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Zhao, H.; Zhao, Y. An Efficient Synthesis of Oxygen-Bridged Spirooxindoles via Microwave-Promoted Multicomponent Reaction. Molecules 2023, 28, 3508. https://doi.org/10.3390/molecules28083508
Shi Y, Zhao H, Zhao Y. An Efficient Synthesis of Oxygen-Bridged Spirooxindoles via Microwave-Promoted Multicomponent Reaction. Molecules. 2023; 28(8):3508. https://doi.org/10.3390/molecules28083508
Chicago/Turabian StyleShi, Yaojing, Hua Zhao, and Yufen Zhao. 2023. "An Efficient Synthesis of Oxygen-Bridged Spirooxindoles via Microwave-Promoted Multicomponent Reaction" Molecules 28, no. 8: 3508. https://doi.org/10.3390/molecules28083508
APA StyleShi, Y., Zhao, H., & Zhao, Y. (2023). An Efficient Synthesis of Oxygen-Bridged Spirooxindoles via Microwave-Promoted Multicomponent Reaction. Molecules, 28(8), 3508. https://doi.org/10.3390/molecules28083508