Direct Arylation Synthesis of Small Molecular Acceptors for Organic Solar Cells
Abstract
:1. Introduction
2. Synthesis of Small-Molecule Acceptors
3. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Battaglia, C.; Cuevasb, A.; Wolf, S.D. High-efficiency crystalline silicon solar cells: Status and perspectives. Energy Environ. Sci. 2016, 9, 1552–1576. [Google Scholar] [CrossRef]
- Ahmad, K.; Shinde, M.A.; Kim, H. Molybdenum disulfide/reduced graphene oxide: Progress in synthesis and electro-catalytic properties for electrochemical sensing and dye sensitized solar cells. Microchem. J. 2021, 169, 106583. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, J.-W.; Jung, H.S.; Shin, H.; Park, N.-G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867–7918. [Google Scholar] [CrossRef]
- Ahmad, K.; Khan, M.Q.; Kim, H. Simulation and fabrication of all-inorganic antimony halide perovskite-like material based Pb-free perovskite solar cells. Opt. Mater. 2022, 128, 112374. [Google Scholar] [CrossRef]
- Wang, G.; Adil, M.A.; Zhang, J.; Wei, Z. Large-Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods. Adv. Mater. 2019, 31, 1805089. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, T.; Yoon, S.; Koh, C.W.; Woo, H.Y.; Son, H.J. Progress in Materials, Solution Processes, and Long-Term Stability for Large-Area Organic Photovoltaics. Adv. Mater. 2020, 32, 2002217. [Google Scholar] [CrossRef]
- Bernardo, G.; Lopes, T.; Lidzey, D.G.; Mendes, A. Progress in Upscaling Organic Photovoltaic Devices. Adv. Energy Mater. 2021, 11, 2100342. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, B.; Ma, C.-Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; et al. Recent progress in organic solar cells (Part I material science). Sci. China Chem. 2022, 65, 224–268. [Google Scholar] [CrossRef]
- Li, S.; Li, C.-Z.; Shi, M.; Chen, H. New Phase for Organic Solar Cell Research: Emergence of Y-Series Electron Acceptors and Their Perspectives. ACS Energy Lett. 2020, 5, 1554–1567. [Google Scholar] [CrossRef]
- Yue, Q.; Liu, W.; Zhu, X. n-Type Molecular Photovoltaic Materials: Design Strategies and Device Applications. J. Am. Chem. Soc. 2020, 142, 11613–11628. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, J.; Zhang, Z.-G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27, 1170–1174. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Meng, L.; Zhang, J.; Qin, S.; Zhang, J.; Li, X.; Li, J.; Wei, Z.; Li, Y. Terpolymer Donor with Inside Alkyl Substituents on Thiophene π-Bridges toward Thiazolothiazole A2-Unit Enables 18.21% Efficiency of Polymer Solar Cells. Adv. Sci. 2022, 9, 2203513. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Yang, H.; Fan, H.; Zhang, J.; Wei, Z.; Cui, C.; Li, Y. Volatilizable Solid Additive-Assisted Treatment Enables Organic Solar Cells with Efficiency over 18.8% and Fill Factor Exceeding 80%. Adv. Mater. 2021, 33, 2105301. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; et al. Single-Junction Organic Photovoltaic Cell with 19% Efficiency. Adv. Mater. 2021, 33, 2102420. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663. [Google Scholar] [CrossRef]
- He, C.; Pan, Y.; Ouyang, Y.; Shen, Q.; Gao, Y.; Yan, K.; Fang, J.; Chen, Y.; Ma, C.-Q.; Min, J.; et al. Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy Environ. Sci. 2022, 15, 2537–2544. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Z.; Lu, G.; Yu, N.; Li, C.; Gao, J.; Gu, X.; Hao, X.; Lu, G.; Tang, Z.; et al. Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. Adv. Mater. 2022, 34, 2204718. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Z.; Zu, Y.; Wang, Y.; Liu, X.; Zhang, S.; Zhang, M.; Hou, J. A Tandem Organic Photovoltaic Cell with 19.6% Efficiency Enabled by Light Distribution Control. Adv. Mater. 2021, 33, 2102787. [Google Scholar] [CrossRef]
- Pouliot, J.-R.; Grenier, F.; Blaskovits, J.T.; Beaupré, S.; Leclerc, M. Direct (Hetero)arylation Polymerization: Simplicity for Conjugated Polymer Synthesis. Chem. Rev. 2016, 116, 14225–14274. [Google Scholar] [CrossRef]
- Alberico, D.; Scott, M.E.; Lautens, M. Aryl–Aryl Bond Formation by Transition-Metal-Catalyzed Direct Arylation. Chem. Rev. 2007, 107, 174–238. [Google Scholar] [CrossRef]
- Ackermann, L.; Vicente, R.; Kapdi, A.R. Transition-Metal-Catalyzed Direct Arylation of (Hetero)Arenes by C–H Bond Cleavage. Angew. Chem. Int. Ed. 2009, 48, 9792–9826. [Google Scholar] [CrossRef]
- Bellina, F.; Rossi, R. Recent advances in the synthesis of (hetero)aryl-substituted heteroarenes via transition metal-catalysed direct (hetero)arylation of heteroarene C–H bonds with aryl halides or pseudohalides, diaryliodonium salts, and potassium aryltrifluoroborates. Tetrahedron 2009, 65, 10269–10310. [Google Scholar] [CrossRef]
- McGlacken, G.P.; Bateman, L.M. Recent advances in aryl–aryl bond formation by direct arylation. Chem. Soc. Rev. 2009, 38, 2447–2464. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Bellina, F.; Lessi, M.; Manzini, C. Cross-Coupling of Heteroarenes by C–H Functionalization: Recent Progress towards Direct Arylation and Heteroarylation Reactions Involving Heteroarenes Containing One Heteroatom. Adv. Synth. Catal. 2014, 356, 17–117. [Google Scholar] [CrossRef]
- Mainville, M.; Leclerc, M. Direct (Hetero)arylation: A Tool for Low-Cost and Eco-Friendly Organic Photovoltaics. ACS Appl. Polym. Mater. 2021, 3, 2–13. [Google Scholar] [CrossRef]
- Bohra, H.; Wang, M. Direct C–H arylation: A “Greener” approach towards facile synthesis of organic semiconducting molecules and polymers. J. Mater. Chem. A 2017, 5, 11550–11571. [Google Scholar] [CrossRef]
- Gobalasingham, N.S.; Thompson, B.C. Direct arylation polymerization: A guide to optimal conditions for effective conjugated polymers. Prog. Polym. Sci. 2018, 83, 135–201. [Google Scholar] [CrossRef]
- Wang, X.; Wang, K.; Wang, M. Synthesis of conjugated polymers via an exclusive direct-arylation coupling reaction: A facile and straightforward way to synthesize thiophene-flanked benzothiadiazole derivatives and their copolymers. Polym. Chem. 2015, 6, 1846–1855. [Google Scholar] [CrossRef]
- Matsidik, R.; Martin, J.; Schmidt, S.; Obermayer, J.; Lombeck, F.; Nu, F.; Komber, H.; Fazzi, D.; Sommer, M. C–H Arylation of Unsubstituted Furan and Thiophene with Acceptor Bromides: Access to Donor–Acceptor–Donor-Type Building Blocks for Organic Electronics. J. Org. Chem. 2015, 80, 980–987. [Google Scholar] [CrossRef]
- Sharma, B.; Singh, A.; Afroz, M.A.; Iyer, P.K.; Jacob, J. Direct arylation polymerization approach for the synthesis of narrow band gap cyclopentadithiophene based conjugated polymer and its application in solar cell devices. Synth. Met. 2017, 226, 56–61. [Google Scholar] [CrossRef]
- Shen, T.; Li, W.; Zhao, Y.; Liu, Y.; Wang, Y. An all-C–H-activation strategy to rapidly synthesize high-mobility well-balanced ambipolar semiconducting polymers. Matter 2022, 5, 1953–1968. [Google Scholar] [CrossRef]
- Li, S.; Yan, J.; Li, C.-Z.; Liu, F.; Shi, M.; Chen, H.; Russell, T.P. A non-fullerene electron acceptor modified by thiophene-2-carbonitrile for solution-processed organic solar cells. J. Mater. Chem. A 2016, 4, 3777–3783. [Google Scholar] [CrossRef]
- Payne, A.-J.; Li, S.; Dayneko, S.V.; Risko, C.; Welch, G.C. An unsymmetrical non-fullerene acceptor: Synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells. Chem. Commun. 2017, 53, 10168–10171. [Google Scholar] [CrossRef]
- Hendsbee, A.D.; Dayneko, S.V.; Pells, J.A.; Cann, J.R.; Welch, G.C. N-annulated perylene diimide dimers: The effect of thiophene bridges on physical, electronic, optical, and photovoltaic properties. Sustain. Energy Fuels 2017, 1, 1137–1147. [Google Scholar] [CrossRef]
- Welsh, T.A.; Laventure, A.; Baumgartner, T.; Welch, G.C. Dithienophosphole-based molecular electron acceptors constructed using direct (hetero)arylation cross-coupling methods. J. Mater. Chem. C 2018, 6, 2148–2154. [Google Scholar] [CrossRef]
- McAfee, S.M.; Dayneko, S.V.; Hendsbee, A.D.; Josse, P.; Blanchard, P.; Cabanetos, C.; Welch, G.C. Applying direct heteroarylation synthesis to evaluate organic dyes as the core component in PDI-based molecular materials for fullerene-free organic solar cells. J. Mater. Chem. A 2017, 5, 11623–11633. [Google Scholar] [CrossRef]
- McAfee, S.M.; Dayneko, S.V.; Josse, P.; Blanchard, P.; Cabanetos, C.; Welch, G.C. Simply Complex: The Efficient Synthesis of an Intricate Molecular Acceptor for High-Performance Air-Processed and Air-Tested Fullerene-Free Organic Solar Cells. Chem. Mater. 2017, 29, 1309–1314. [Google Scholar] [CrossRef]
- McAfee, S.M.; Payne, A.-J.; Hendsbee, A.D.; Xu, S.; Zou, Y.; Welch, G.C. Toward a Universally Compatible Non-Fullerene Acceptor: Multi-Gram Synthesis, Solvent Vapor Annealing Optimization, and BDT-Based Polymer Screening. Sol. RRL 2018, 2, 1800143. [Google Scholar] [CrossRef]
- Payne, A.-J.; Song, J.; Sun, Y.; Welch, G.C. A tetrameric perylene diimide non-fullerene acceptor via unprecedented direct (hetero)arylation cross-coupling reactions. Chem. Commun. 2018, 54, 11443–11446. [Google Scholar] [CrossRef]
- Rudenko, A.E.; Latif, A.A.; Thompson, B.C. Influence of β-linkages on the morphology and performance of DArP P3HT–PC61BM solar cells. Nanotechnology 2014, 25, 014005. [Google Scholar] [CrossRef]
- Dudnik, A.S.; Aldrich, T.J.; Eastham, N.D.; Chang, R.P.H.; Facchetti, A.; Marks, T.J. Tin-Free Direct C–H Arylation Polymerization for High Photovoltaic Efficiency Conjugated Copolymers. J. Am. Chem. Soc. 2016, 138, 15699–15709. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M. Synthesis of donor–acceptor conjugated polymers based on benzo [1,2-b:4,5-bʹ] dithiophene and 2,1,3-benzothiadiazole via direct arylation polycondensation: Towards efficient C–H activation in nonpolar solvents. Polym. Chem. 2014, 5, 5784–5792. [Google Scholar] [CrossRef]
- Wang, X.; Tang, A.; Yang, J.; Du, M.; Li, J.; Li, G.; Guo, Q.; Zhou, E. Tuning the intermolecular interaction of A2-A1-D-A1-A2 type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh Voc of ~1.2 V. Sci. China Chem. 2020, 63, 1666–1674. [Google Scholar] [CrossRef]
- Xiao, B.; Du, M.; Wang, X.; Xiao, Z.; Li, G.; Tang, A.; Ding, L.; Geng, Y.; Sun, X.; Zhou, E. Effects of Oxygen Atoms Introduced at Different Positions of Non-Fullerene Acceptors in the Performance of Organic Solar Cells with Poly(3-hexylthiophene). ACS Appl. Mater. Interfaces 2020, 12, 1094–1102. [Google Scholar] [CrossRef]
- Yu, Z.-P.; Liu, Z.-X.; Chen, F.-X.; Qin, R.; Lau, T.-K.; Yin, J.-L.; Kong, X.; Lu, X.; Shi, M.; Li, C.-Z.; et al. Simple non-fused electron acceptors for efficient and stable organic solar cells. Nat. Commun. 2019, 10, 2152. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhan, L.; Lau, T.-K.; Yu, Z.-P.; Yang, W.; Andersen, T.R.; Fu, Z.; Li, C.-Z.; Lu, X.; Shi, M.; et al. Near-Infrared Nonfullerene Acceptors Based on Benzobis(thiazole) Unit for Efficient Organic Solar Cells with Low Energy Loss. Small Methods 2019, 3, 1900531. [Google Scholar] [CrossRef]
- Pang, S.; Zhou, X.; Zhang, S.; Tang, H.; Dhakal, S.; Gu, X.; Duan, C.; Huang, F.; Cao, Y. Nonfused Nonfullerene Acceptors with an A–D–A′–D–A Framework and a Benzothiadiazole Core for High-Performance Organic Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 16531–16540. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Pang, S.; Wu, B.; Zhou, J.; Tang, H.; Lin, K.; Xie, Z.; Duan, C.; Huang, F.; Cao, Y. Noncovalent Interactions Induced by Fluorination of the Central Core Improve the Photovoltaic Performance of A-D-A′-D-A-Type Nonfused Ring Acceptors. ACS Appl. Energy Mater. 2022, 5, 7710–7718. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Y.; Zhang, L.; Yuan, D.; Qiu, R.; Deng, S.; Liu, H.; Zhang, Z.; Chen, J. A ligand-free direct heteroarylation approach for benzodithiophenedione-based simple small molecular acceptors toward high efficiency polymer solar cells. J. Mater. Chem. A 2021, 9, 3314–3321. [Google Scholar] [CrossRef]
- Liu, H.; Tao, Y.-D.; Wang, L.-H.; Ye, D.-N.; Huang, X.-M.; Chen, N.; Li, C.-Z.; Liu, S.-Y. C–H Direct Arylation: A Robust Tool to Tailor the π-Conjugation Lengths of Non-Fullerene Acceptors. ChemSusChem 2022, 15, e202200034. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-H.; Chen, X.-J.; Ye, D.-N.; Liu, H.; Chen, Y.; Zhong, A.-G.; Li, C.-Z.; Liu, S.-Y. Pot- and atom-economic synthesis of oligomeric non-fullerene acceptors via C–H direct arylation. Polym. Chem. 2022, 13, 2351–2361. [Google Scholar] [CrossRef]
Acceptor | Donor | Voc (V) | Jsc (mA cm−2) | FF | PCE (%) | Ref. |
---|---|---|---|---|---|---|
SMA3 | PTB7-Th | 0.99 | 5.59 | 36.7 | 2.02 | [35] |
SMA4 | PTB7-Th | 1.05 | 7.17 | 36.3 | 2.74 | [35] |
SMA5 | PBDB-T | 1.10 | 3.77 | 29.8 | 1.24 | [36] |
SMA5 | PDTT-BOBT | 1.00 | 6.44 | 34.8 | 2.26 | [36] |
SMA5 | PTB7-Th | 0.99 | 5.70 | 36.1 | 2.05 | [36] |
SMA6 | PTB7-Th | 1.03 | 6.97 | 36.7 | 2.6 | [37] |
SMA7 | PTB7-Th | 0.93 | 1.09 | 34.2 | 0.4 | [37] |
SMA8 | PTB7-Th | 0.97 | 5.98 | 50.3 | 2.9 | [37] |
SMA9 | PTB7-Th | 0.97 | 8.10 | 52.4 | 4.1 | [37] |
SMA9 | PTB7-Th | 0.98 | 11.32 | 50.1 | 5.6 | [38] |
SMA9 | TTFQx-T1 | 1.03 | 9.78 | 50.2 | 5.1 | [39] |
SMA9 | PTB7-Th | 0.98 | 13.18 | 44.5 | 5.7 | [39] |
SMA9 | PBDB-T | 0.99 | 6.27 | 36.5 | 2.3 | [39] |
SMA9 | J61 | 0.99 | 6.66 | 47.5 | 3.1 | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, Y.; Li, J.; Zhang, Y.; Shao, J.; Li, Y. Direct Arylation Synthesis of Small Molecular Acceptors for Organic Solar Cells. Molecules 2023, 28, 3515. https://doi.org/10.3390/molecules28083515
Wang X, Li Y, Li J, Zhang Y, Shao J, Li Y. Direct Arylation Synthesis of Small Molecular Acceptors for Organic Solar Cells. Molecules. 2023; 28(8):3515. https://doi.org/10.3390/molecules28083515
Chicago/Turabian StyleWang, Xiaochen, Yuechen Li, Jianfeng Li, Yuan Zhang, Jinjun Shao, and Yongfang Li. 2023. "Direct Arylation Synthesis of Small Molecular Acceptors for Organic Solar Cells" Molecules 28, no. 8: 3515. https://doi.org/10.3390/molecules28083515
APA StyleWang, X., Li, Y., Li, J., Zhang, Y., Shao, J., & Li, Y. (2023). Direct Arylation Synthesis of Small Molecular Acceptors for Organic Solar Cells. Molecules, 28(8), 3515. https://doi.org/10.3390/molecules28083515