A Brief Review on the Electrohydrodynamic Techniques Used to Build Antioxidant Delivery Systems from Natural Sources
Abstract
:1. Introduction
2. Challenges of Microencapsulation by Electrohydrodynamic Techniques
2.1. Main Applications Fields
2.1.1. Food
2.1.2. Nutraceuticals
2.1.3. Drug Delivery
2.1.4. Wound Dressing
2.1.5. Tissue Engineering
2.1.6. Enzyme Immobilization
2.2. Natural Biocompounds
2.2.1. Importance of Natural Antioxidants
2.2.2. Extracts of Plants
Extract of Plant/Antioxidant | Encapsulation Agent | Processing Parameters | Encapsulation Efficiency, % | Structures Average Size, µm | Application | Reference |
---|---|---|---|---|---|---|
Antocyanin | CS/gelatin | 0.3 mL/h, 10 cm, 13 kV | 40–60 | micro/nanopheres | food products | [76] |
Carvacrol | zein | 1 mL/h, 20 cm, | 0.54–0.65 fibres | active packaging | [77] | |
PLA | 15 kV | 1.82–2.27 fibres | ||||
potato starch | 0.6 mL/h, 20 cm, −3 and 25 cm | 0.07–0.10 fibres | [78] | |||
D-limonene | PVA | 0.2 mL/h, 2 cm, 18 kV | 1.75–2.84 fibers | [79] | ||
Curcumin | PLA | 15 cm, 24 kV | 0.33–0.39 fibres | wound dressing | [80] | |
gliadin | 0.5 mL/h, 10 cm, 15 kV | 81–85 | 0.38–0.41 fibres | food | [81] | |
Ferulic acid | gliadin | 1 mL/h, 10 cm, 18 kV | 94–97 | 0.27 | active packaging | [82] |
Quercetin | zein | 1 mL/h, 10 cm, 15 kV | 0.75 nanofiber | food packaging, pharmaceutical healthcare | [83] | |
PCL | 0.6 mL/h, 8–10 cm, 16 kV | 94 | 0.10 fibres | wound healing | [84] | |
Gallic acid | lentil flour/PEO | 0.6 mL/h, 30 cm, 15 kV | 62.2 | 0.31 fibres | active packaging material | [85] |
cellulose acetate | 1 mL/h; 15 cm; 15, 18, 21 kV | 0.30–0.79 fibres | wound dressing | [86] | ||
Ginger | soy protein, PEO, zein | 1 mL/h, 15 cm, 24 kV | 0.21–0.63 | food packaging | [87] | |
Green tea | PVP | 0.5 mL/h, 10 cm, 12.5 kV | 0.34–0.39 fibres | oral products | [88] | |
Tea tree oil | PEO | 0.6 mL/h, 15 cm, 19–25 kV | 73.2 | (nanofibers) | antibacterial packaging | [89] |
Cinnamaldehyde essential oil | zein | 0.3 mL/h, 12 cm, 13–15 kV | 0.15–0.22 fibers | antibacterial package | [90] | |
Oregano essential oil rosemary extract green tea extract | PHBV | 4 mL/h, 20 cm, 38 kV | 0.80 fibres | biopackaging | [91] | |
Peppermint + chamomile essential oils | gelatin | 0.3 mL/h, 10 cm, 15 kV | 0.33–0.46 fibres | edible packaging | [92] | |
Thyme essential oil | gelatin | 0.4 mL/h, 15 cm, 20 kV | 0.21 fibers | active packaging | [93] | |
Propolis | Polycaprolactone (PCL) Nonwovens Containing Chitosan | 50 mm/s, 18 cm, 80 kV | fibres | active packaging | [75] | |
Chrysin | PCL/PEG | 2 mL/h, 20 cm, 18–22 kV | 0.25–0.75 fibres | wound healing | [94] | |
Chilto | zein | 0.15 mL/h, 10 cm, 11 kV | 90 | 0.06–0.27 fibers | food packaging | [95] |
Açai fruit | zein | 0.4 mL/h, 10 cm, 13 kV | 72.1 | 0.92 | processed foods | [22] |
Microalgal phenolic compounds | CS/PEO | 300 μL/h, 10 cm, 20 kV | 0.21 fibers | active packaging | [96] | |
Tea polyphenols | pullulan-carboxymethylcellulose sodium | 0.36–0.6 mL/h, 15 cm, 19–21 kV | - | 0.13 nanofibres | fruit preservation | [97] |
PLA | 20 mL/h, 15 cm, 20 kV | 0.49 fibres | food packaging | [23] |
2.2.3. Polyphenols
3. Relevant Physico-Chemical Analysis of Microstructures Containing Bioactive Compounds
- -
- Size, morphology/shape, and colour are the main physical properties that should be considered in the development of the polymeric microsystems. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) are methods that have been studied to observe the morphology and estimate the size of the structures. Differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA) are important methods to understand the morphology of the formulated structures. In a packaging study, the behaviour of the structures can be evaluated by these techniques.
- -
- Encapsulation efficiency is the main system characteristic to determine the compound loaded/incorporated into the microstructures. Several reports suggested the essential methods for quantifying the encapsulation efficiency: high-performance liquid chromatography (HPLC) and UV-vis spectroscopy.
- -
- -
- Storage Stability—The effect of environmental conditions such as temperature, oxygen, and air have an influence on the structures. For this reason, the systems must be studied in these conditions. The stability of the compounds incorporated into the electrospinning/electrosprayed structures could be evaluated and compared with the systems alone.
- -
- Bioavailability of Biocompounds—In vitro/In vivo bioavailability of the compounds is achieved in order to simulate the compound’s effect on the system against specific conditions, such as a simulated gastrointestinal tract.
- -
4. Concluding Remarks and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marisa Ribeiro, A.; Estevinho, B.N.; Rocha, F. Microencapsulation of Polyphenols—The Specific Case of the Microencapsulation of Sambucus Nigra L. Extracts—A Review. Trends Food Sci. Technol. 2019, 105, 454–467. [Google Scholar] [CrossRef]
- Fathi, F.; Ebrahimi, S.N.; Pereira, D.M.; Estevinho, B.N.; Rocha, F. Preliminary Studies of Microencapsulation and Anticancer Activity of Polyphenols Extract from Punica Granatum Peels. Can. J. Chem. Eng. 2022, 100, 3240–3252. [Google Scholar] [CrossRef]
- Castro Coelho, S.; Nogueiro Estevinho, B.; Rocha, F. Encapsulation in Food Industry with Emerging Electrohydrodynamic Techniques: Electrospinning and Electrospraying—A Review. Food Chem. 2021, 339, 127850. [Google Scholar] [CrossRef] [PubMed]
- Coelho, S.C.; Benaut, P.; Laget, S.; Estevinho, B.N.; Rocha, F. Optimization of Electrospinning Parameters for the Production of Zein Microstructures for Food and Biomedical Applications. Micron 2022, 152, 103164. [Google Scholar] [CrossRef]
- Wen, P.; Wen, Y.; Zong, M.-H.; Linhardt, R.J.; Wu, H. Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application. J. Agric. Food Chem. 2017, 65, 9161–9179. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Zong, M.H.; Linhardt, R.J.; Feng, K.; Wu, H. Electrospinning: A Novel Nano-Encapsulation Approach for Bioactive Compounds. Trends Food Sci. Technol. 2017, 70, 56–68. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Estevinho, B.N.; Rocha, F. Preparation and Incorporation of Functional Ingredients in Edible Films and Coatings. Food Bioprocess Technol. 2021, 14, 209–231. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Rocha, F.; Santos, L.; Alves, A. Microencapsulation with Chitosan by Spray Drying for Industry Applications—A Review. Trends Food Sci. Technol. 2013, 31, 138–155. [Google Scholar] [CrossRef]
- García Moreno, P.J.; Mendes, A.C.L.; Jacobsen, C.; Chronakis, I.S. Biopolymers for the Nano-Microencapsulation of Bioactive Ingredients by Electrohydrodynamic Processing. In Polymers for Food Applications; Gutiérrez, T.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 447–479. ISBN 978-3-319-94624-5. [Google Scholar]
- Drosou, C.G.; Krokida, M.K.; Biliaderis, C.G. Encapsulation of Bioactive Compounds through Electrospinning/Electrospraying and Spray Drying: A Comparative Assessment of Food-Related Applications. Dry. Technol. 2017, 35, 139–162. [Google Scholar] [CrossRef]
- Coelho, S.C.; Estevinho, B.N.; Rocha, F. Recent Advances in Water-Soluble Vitamins Delivery Systems Prepared by Mechanical Processes (Electrospinning and Spray-Drying Techniques) for Food and Nutraceuticals Applications—A Review. Foods 2022, 11, 1271. [Google Scholar] [CrossRef]
- Martins, V.F.R.; Pintado, M.E.; Morais, R.M.S.C.; Morais, A.M.M.B. Valorisation of Micro/Nanoencapsulated Bioactive Compounds from Plant Sources for Food Applications Towards Sustainability. Foods 2023, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Ataei, S.; Azari, P.; Hassan, A.; Pingguan-Murphy, B.; Yahya, R.; Muhamad, F. Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. Adv. Polym. Technol. 2020, 2020, 9040535. [Google Scholar] [CrossRef]
- Chawda, P.J.; Shi, J.; Xue, S.; Young Quek, S. Co-Encapsulation of Bioactives for Food Applications. Food Qual. Saf. 2017, 1, 302–309. [Google Scholar] [CrossRef]
- Neo, Y.P.; Ray, S.; Jin, J.; Gizdavic-Nikolaidis, M.; Nieuwoudt, M.K.; Liu, D.; Quek, S.Y. Encapsulation of Food Grade Antioxidant in Natural Biopolymer by Electrospinning Technique: A Physicochemical Study Based on Zein-Gallic Acid System. Food Chem. 2013, 136, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, B.S.; Vasile, C. Encapsulation of Natural Bioactive Compounds by Electrospinning—Applications in Food Storage and Safety. Polymers 2021, 13, 3771. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Wang, P.; Zhang, H. Electrospinning of Nanofibers: Potentials and Perspectives for Active Food Packaging. Compr. Rev. Food Sci. Food Saf. 2020, 19, 479–502. [Google Scholar] [CrossRef]
- Mendes, A.C.; Stephansen, K.; Chronakis, I.S. Electrospinning of Food Proteins and Polysaccharides. Food Hydrocoll. 2017, 68, 53–68. [Google Scholar] [CrossRef]
- Vilchez, A.; Acevedo, F.; Cea, M.; Seeger, M.; Navia, R. Applications of Electrospun Nanofibers with Antioxidant Properties: A Review. Nanomaterials 2020, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- Jaworek, A. Micro- and Nanoparticle Production by Electrospraying. Powder Technol. 2007, 176, 18–35. [Google Scholar] [CrossRef]
- Sameen, D.E.; Ahmed, S.; Lu, R.; Li, R.; Dai, J.; Qin, W.; Zhang, Q.; Li, S.; Liu, Y. Electrospun Nanofibers Food Packaging: Trends and Applications in Food Systems. Crit. Rev. Food Sci. Nutr. 2021, 62, 6238–6251. [Google Scholar] [CrossRef]
- López de Dicastillo, C.; Piña, C.; Garrido, L.; Arancibia, C.; Galotto, M.J. Enhancing Thermal Stability and Bioaccesibility of Açaí Fruit Polyphenols through Electrohydrodynamic Encapsulation into Zein Electrosprayed Particles. Antioxidants 2019, 8, 464. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, X.; Wang, S.; Qin, W.; Zhang, Q. Electrospun Antimicrobial Polylactic Acid/Tea Polyphenol Nanofibers for Food-Packaging Applications. Polymers 2018, 10, 561. [Google Scholar] [CrossRef]
- Jacobsen, C.; García-Moreno, P.J.; Mendes, A.C.; Mateiu, R.V.; Chronakis, I.S. Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food. Annu. Rev. Food Sci. Technol. 2018, 9, 525–549. [Google Scholar] [CrossRef] [PubMed]
- Kong, B.; Liu, R.; Guo, J.; Lu, L.; Zhou, Q.; Zhao, Y. Tailoring Micro/Nano-Fibers for Biomedical Applications. Bioact. Mater. 2023, 19, 328–347. [Google Scholar] [CrossRef] [PubMed]
- Topuz, F.; Uyar, T. Antioxidant, Antibacterial and Antifungal Electrospun Nanofibers for Food Packaging Applications. Food Res. Int. 2020, 130, 108927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Feng, F.; Zhang, H. Emulsion Electrospinning: Fundamentals, Food Applications and Prospects. Trends Food Sci. Technol. 2018, 80, 175–186. [Google Scholar] [CrossRef]
- Shangguan, W.; Li, S.; Cao, L.; Wei, M.; Wang, Z.; Xu, H. Electrospinning and Nanofibers: Building Drug Delivery Systems and Potential in Pesticide Delivery. Mater. Today Commun. 2022, 33, 104399. [Google Scholar] [CrossRef]
- Minode, M.; Kadota, K.; Kawabata, D.; Yoshida, M.; Shirakawa, Y. Enhancement in Dissolution Behavior and Antioxidant Capacity of Quercetin with Amino Acids Following Radical Formation via Mechanochemical Technique. Adv. Powder Technol. 2022, 33, 103582. [Google Scholar] [CrossRef]
- Duan, M.; Sun, J.; Yu, S.; Zhi, Z.; Pang, J.; Wu, C. Insights into Electrospun Pullulan-Carboxymethyl Chitosan/PEO Core-Shell Nanofibers Loaded with Nanogels for Food Antibacterial Packaging. Int. J. Biol. Macromol. 2023, 233, 123433. [Google Scholar] [CrossRef]
- Min, T.; Zhou, L.; Sun, X.; Du, H.; Zhu, Z.; Wen, Y. Electrospun Functional Polymeric Nanofibers for Active Food Packaging: A Review. Food Chem. 2022, 391, 133239. [Google Scholar] [CrossRef]
- Han, S.; Wang, Y.; Fang, Z.; Zhang, Y.; Zeng, W.; Karrar, E.; Zhang, H.; Jin, Q.; Wu, G.; Wang, X. Effect of Olive Polyphenols on Lipid Oxidation of High-Fat Beef during Digestion. Food Res. Int. 2022, 161, 111843. [Google Scholar] [CrossRef]
- Vargas-Campos, L.; de Dios Figueroa-Cárdenas, D.; Tochihuitl-Vázquez, D.; Ramírez-Bon, R.; Yáñez-Limón, J.M.; Pérez-Robles, J.F. Study of the Dextrose Equivalent of Maltodextrins in Electrospinning Using an Ethanol/Water Mixture as the Electrospinning Solvent. Food Hydrocoll. 2023, 139, 108498. [Google Scholar] [CrossRef]
- Singh, A.R.; Desu, P.K.; Nakkala, R.K.; Kondi, V.; Devi, S.; Alam, M.S.; Hamid, H.; Athawale, R.B.; Kesharwani, P. Nanotechnology-Based Approaches Applied to Nutraceuticals. Drug Deliv. Transl. Res. 2022, 12, 485–499. [Google Scholar] [CrossRef]
- Coelho, S.C.; Laget, S.; Benaut, P.; Rocha, F.; Estevinho, B.N. A New Approach to the Production of Zein Microstructures with Vitamin B12, by Electrospinning and Spray Drying Techniques. Powder Technol. 2021, 392, 47–57. [Google Scholar] [CrossRef]
- Ma, J.; Li, T.; Wang, Q.; Xu, C.; Yu, W.; Yu, H.; Wang, W.; Feng, Z.; Chen, L.; Hou, J.; et al. Enhanced Viability of Probiotics Encapsulated within Synthetic/Natural Biopolymers by the Addition of Gum Arabic via Electrohydrodynamic Processing. Food Chem. 2023, 413, 135680. [Google Scholar] [CrossRef] [PubMed]
- Barud, H.S.; De Sousa, F.B. Electrospun Materials for Biomedical Applications. Pharmaceutics 2022, 14, 1556. [Google Scholar] [CrossRef]
- Haider, A.; Haider, S.; Kang, I.K. A Comprehensive Review Summarizing the Effect of Electrospinning Parameters and Potential Applications of Nanofibers in Biomedical and Biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Wu, J.; Liu, S.; Zhang, M.; Wu, G.; Yu, H.; Li, H.; Li, F.; Jia, L. Coaxial Electrospinning Preparation and Antibacterial Property of Polylactic Acid/Tea Polyphenol Nanofiber Membrane. J. Ind. Text. 2022, 51, 1778S–1792S. [Google Scholar] [CrossRef]
- Norouzi, Z.; Abdouss, M. Electrospun Nanofibers Using β-Cyclodextrin Grafted Chitosan Macromolecules Loaded with Indomethacin as an Innovative Drug Delivery System. Int. J. Biol. Macromol. 2023, 233, 123518. [Google Scholar] [CrossRef]
- Ajmal, G.; Bonde, G.V.; Mittal, P.; Pandey, V.K.; Yadav, N.; Mishra, B. PLGA/Gelatin-Based Electrospun Nanofiber Scaffold Encapsulating Antibacterial and Antioxidant Molecules for Accelerated Tissue Regeneration. Mater. Today Commun. 2023, 35, 105633. [Google Scholar] [CrossRef]
- Wang, M.; Yu, D.G.; Williams, G.R.; Bligh, S.W.A. Co-Loading of Inorganic Nanoparticles and Natural Oil in the Electrospun Janus Nanofibers for a Synergetic Antibacterial Effect. Pharmaceutics 2022, 14, 1208. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Seksama, L.H.; Park, C.H.; Kim, C.S. Enhancing the Anti-Bacterial Activity of Nanofibrous Polyurethane Membranes by Incorporating Glycyrrhizic Acid-Conjugated β-Cyclodextrin. Mater. Lett. 2023, 338, 134030. [Google Scholar] [CrossRef]
- Kumar, M.; Hilles, A.R.; Ge, Y.; Bhatia, A.; Mahmood, S. A Review on Polysaccharides Mediated Electrospun Nanofibers for Diabetic Wound Healing: Their Current Status with Regulatory Perspective. Int. J. Biol. Macromol. 2023, 234, R713–R715. [Google Scholar] [CrossRef] [PubMed]
- Yupanqui Mieles, J.; Vyas, C.; Aslan, E.; Humphreys, G.; Diver, C.; Bartolo, P. Honey: An Advanced Antimicrobial and Wound Healing Biomaterial for Tissue Engineering Applications. Pharmaceutics 2022, 14, 1663. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhao, Q.; Wang, M. Colloids and Surfaces B: Biointerfaces Biomanufacturing of Biomimetic Three-Dimensional Nanofibrous Multicellular Constructs for Tissue Regeneration. Colloids Surfaces B Biointerfaces 2023, 223, 113189. [Google Scholar] [CrossRef]
- Cai, J.; Liu, J.; Xu, J.; Li, Y.; Zheng, T.; Zhang, T.; Han, K.; Chen, S.; Jiang, J.; Wu, S.; et al. Constructing High-Strength Nano-Micro Fibrous Woven Scaffolds with Native-like Anisotropic Structure and Immunoregulatory Function for Tendon Repair and Regeneration. Biofabrication 2023, 15, 025002. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Y.; Wu, Y.; Cao, S.; Deng, H.; Cao, Z. Chitosan/Silk Fibroin Composite Bilayer PCL Nanofibrous Mats for Bone Regeneration with Enhanced Antibacterial Properties and Improved Osteogenic Potential. Int. J. Biol. Macromol. 2023, 230, 123265. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Damas, A.M.; Martins, P.; Rocha, F. Microencapsulation of β -Galactosidase with Different Biopolymers by a Spray-Drying Process. FRIN 2014, 64, 134–140. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Damas, A.M.; Martins, P.; Rocha, F. The Influence of Microencapsulation with a Modified Chitosan (Water Soluble) on β-Galactosidase Activity. Dry. Technol. 2014, 32, 1575–1586. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Ramos, I.; Rocha, F. Effect of the PH in the Formation of β-Galactosidase Microparticles Produced by a Spray-Drying Process. Int. J. Biol. Macromol. 2015, 78, 238–242. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Damas, A.M.; Martins, P.; Rocha, F. Study of the Inhibition Effect on the Microencapsulated Enzyme β-Galactosidase. Environ. Eng. Manag. J. 2012, 11, 1923–1930. [Google Scholar] [CrossRef]
- Sanz, C.G.; Aldea, A.; Oprea, D.; Onea, M.; Enache, A.T.; Barsan, M.M. Novel Cells Integrated Biosensor Based on Superoxide Dismutase on Electrospun Fiber Scaffolds for the Electrochemical Screening of Cellular Stress. Biosens. Bioelectron. 2023, 220, 114858. [Google Scholar] [CrossRef] [PubMed]
- Çetin, M.Z.; Guven, N.; Apetrei, R.M.; Camurlu, P. Highly Sensitive Detection of Glucose via Glucose Oxidase Immobilization onto Conducting Polymer-Coated Composite Polyacrylonitrile Nanofibers. Enzyme Microb. Technol. 2023, 164, 110178. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, J.; Estevinho, B.N.; Santos, L. Trends in Food Science & Technology Microencapsulation of Natural Antioxidants for Food Application e The Speci Fi c Case of Coffee Antioxidants e A Review. Trends Food Sci. Technol. 2016, 58, 21–39. [Google Scholar] [CrossRef]
- Silva, M.E.d.S.; Grisi, C.V.B.; da Silva, S.P.; Madruga, M.S.; da Silva, F.A.P. The Technological Potential of Agro-Industrial Residue from Grape Pulping (Vitis Spp.) for Application in Meat Products: A Review. Food Biosci. 2022, 49, 101877. [Google Scholar] [CrossRef]
- González-Peña, M.A.; Ortega-Regules, A.E.; Anaya de Parrodi, C.; Lozada-Ramírez, J.D. Chemistry, Occurrence, Properties, Applications, and Encapsulation of Carotenoids—A Review. Plants 2023, 12, 313. [Google Scholar] [CrossRef]
- Dumitriu, R.P.; Stoleru, E.; Mitchell, G.R.; Vasile, C.; Brebu, M. Bioactive Electrospun Fibers of Poly(ε-Caprolactone) Incorporating α-Tocopherol for Food Packaging Applications. Molecules 2021, 26, 5498. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Carlan, I.; Blaga, A.; Rocha, F. Soluble Vitamins (Vitamin B12 and Vitamin C) Microencapsulated with Different Biopolymers by a Spray Drying Process. Powder Technol. 2016, 289, 71–78. [Google Scholar] [CrossRef]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Microencapsulation of Vitamin A: A Review. Trends Food Sci. Technol. 2016, 51, 76–87. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; Tordera, F.; Fabra, M.J.; Martínez-Sanz, M.; Lopez-Rubio, A. Coaxial Electrospraying of Biopolymers as a Strategy to Improve Protection of Bioactive Food Ingredients. Innov. Food Sci. Emerg. Technol. 2019, 51, 2–11. [Google Scholar] [CrossRef]
- Locilento, D.A.; Mercante, L.A.; Andre, R.S.; Mattoso, L.H.C.; Luna, G.L.F.; Brassolatti, P.; Anibal, F.d.F.; Correa, D.S. Biocompatible and Biodegradable Electrospun Nanofibrous Membranes Loaded with Grape Seed Extract for Wound Dressing Application. J. Nanomater. 2019, 2019, 2472964. [Google Scholar] [CrossRef]
- Rodrigues, R.M.; Ramos, P.E.; Cerqueira, M.F.; Teixeira, J.A.; Vicente, A.A.; Pastrana, L.M.; Pereira, R.N.; Cerqueira, M.A. Electrosprayed Whey Protein-Based Nanocapsules for β-Carotene Encapsulation. Food Chem. 2020, 314, 126157. [Google Scholar] [CrossRef]
- Estevez-Areco, S.; Guz, L.; Candal, R.; Goyanes, S. Release Kinetics of Rosemary (Rosmarinus officinalis) Polyphenols from Polyvinyl Alcohol (PVA) Electrospun Nanofibers in Several Food Simulants. Food Packag. Shelf Life 2018, 18, 42–50. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Horciu, I.-L.; Blaga, A.-C.; Rocha, F. Development of Controlled Delivery Functional Systems by Microencapsulation of Different Extracts of Plants: Hypericum Perforatum L., Salvia Officinalis L. and Syzygium aromaticum. Food Bioprocess Technol. 2021, 14, 1503–1517. [Google Scholar] [CrossRef]
- Liu, H.; Bai, Y.; Huang, C.; Wang, Y.; Ji, Y.; Du, Y.; Xu, L.; Yu, D.G.; Bligh, S.W.A. Recent Progress of Electrospun Herbal Medicine Nanofibers. Biomolecules 2023, 13, 184. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Stojanović, R.; Manojlović, V.; Komes, D.; Cindrić, I.J.; Nedović, V.; Bugarski, B. Encapsulation of Polyphenolic Antioxidants from Medicinal Plant Extracts in Alginate–Chitosan System Enhanced with Ascorbic Acid by Electrostatic Extrusion. Food Res. Int. 2011, 44, 1094–1101. [Google Scholar] [CrossRef]
- Procopio, F.R.; Ferraz, M.C.; Paulino, B.N.; do Amaral Sobral, P.J.; Hubinger, M.D. Spice Oleoresins as Value-Added Ingredient for Food Industry: Recent Advances and Perspectives. Trends Food Sci. Technol. 2022, 122, 123–139. [Google Scholar] [CrossRef]
- Uddin, M.N.; Mohebbullah, M.; Islam, S.M.; Uddin, M.A.; Jobaer, M. Nigella/Honey/Garlic/Olive Oil Co-Loaded PVA Electrospun Nanofibers for Potential Biomedical Applications. Prog. Biomater. 2022, 11, 431–446. [Google Scholar] [CrossRef] [PubMed]
- Ayaz Seyhan, S.; Demirel, A.B.; Cesur, S.; Bilgic Alkaya, D. Production, Characterization, and Antioxidant Activity Evaluation of Rheum Ribes L. Extract-Loaded PLA/PEG Nanofibers. J. Res. Pharm. 2023, 27, 146–156. [Google Scholar] [CrossRef]
- Da Cruz, E.P.; Jansen, E.T.; Fonseca, L.M.; Hackbart, H.C.d.S.; Siebeneichler, T.J.; Pires, J.B.; Gandra, E.A.; Rombaldi, C.V.; Zavareze, E.d.R.; Dias, A.R.G. Red Onion Skin Extract Rich in Flavonoids Encapsulated in Ultrafine Fibers of Sweet Potato Starch by Electrospinning. Food Chem. 2023, 406, 134954. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Estevinho, B.N.; Rocha, F. Spray Drying Encapsulation of Elderberry Extract and Evaluating the Release and Stability of Phenolic Compounds in Encapsulated Powders. Food Bioprocess Technol. 2019, 12, 1381–1394. [Google Scholar] [CrossRef]
- Goëlo, V.; Chaumun, M.; Gonçalves, A.; Estevinho, B.N.; Rocha, F. Polysaccharide-Based Delivery Systems for Curcumin and Turmeric Powder Encapsulation Using a Spray-Drying Process. Powder Technol. 2020, 370, 137–146. [Google Scholar] [CrossRef]
- Ralaivao, M.; Lucas, J.; Rocha, F.; Estevinho, B.N. Food-Grade Microencapsulation Systems to Improve Protection of the Epigallocatechin Gallate. Foods 2022, 11, 1990. [Google Scholar] [CrossRef]
- Vargas Romero, E.; Lim, L.-T.; Suárez Mahecha, H.; Bohrer, B.M. The Effect of Electrospun Polycaprolactone Nonwovens Containing Chitosan and Propolis Extracts on Fresh Pork Packaged in Linear Low-Density Polyethylene Films. Foods 2021, 10, 1110. [Google Scholar] [CrossRef] [PubMed]
- Atay, E.; Fabra, M.J.; Martínez-Sanz, M.; Gomez-Mascaraque, L.G.; Altan, A.; Lopez-Rubio, A. Development and Characterization of Chitosan/Gelatin Electrosprayed Microparticles as Food Grade Delivery Vehicles for Anthocyanin Extracts. Food Hydrocoll. 2018, 77, 699–710. [Google Scholar] [CrossRef]
- Altan, A.; Aytac, Z.; Uyar, T. Carvacrol Loaded Electrospun Fibrous Films from Zein and Poly(Lactic Acid) for Active Food Packaging. Food Hydrocoll. 2018, 81, 48–59. [Google Scholar] [CrossRef]
- Fonseca, L.M.; Cruxen, C.E.D.S.; Bruni, G.P.; Fiorentini, Â.M.; da Rosa Zavareze, E.; Lim, L.-T.; Dias, A.R.G. Development of Antimicrobial and Antioxidant Electrospun Soluble Potato Starch Nanofibers Loaded with Carvacrol. Int. J. Biol. Macromol. 2019, 139, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Lan, W.; Liang, X.; Lan, W.; Ahmed, S.; Liu, Y.; Qin, W. Electrospun Polyvinyl Alcohol/d-Limonene Fibers Prepared by Ultrasonic Processing for Antibacterial Active Packaging Material. Molecules 2019, 24, 767. [Google Scholar] [CrossRef]
- Pankongadisak, P.; Sangklin, S.; Chuysinuan, P.; Suwantong, O.; Supaphol, P. The Use of Electrospun Curcumin-Loaded Poly(L-Lactic Acid) Fiber Mats as Wound Dressing Materials. J. Drug Deliv. Sci. Technol. 2019, 53, 101121. [Google Scholar] [CrossRef]
- Akman, P.K.; Bozkurt, F.; Balubaid, M.; Yilmaz, M.T. Fabrication of Curcumin-Loaded Gliadin Electrospun Nanofibrous Structures and Bioactive Properties. Fibers Polym. 2019, 20, 1187–1199. [Google Scholar] [CrossRef]
- Sharif, N.; Golmakani, M.-T.; Niakousari, M.; Hosseini, M.S.; Ghorani, B.; Lopez-Rubio, A. Active Food Packaging Coatings Based on Hybrid Electrospun Gliadin Nanofibers Containing Ferulic Acid/Hydroxypropyl-Beta-Cyclodextrin Inclusion Complexes. Nanomaterials 2018, 8, 919. [Google Scholar] [CrossRef] [PubMed]
- Aytac, Z.; Ipek, S.; Durgun, E.; Uyar, T. Antioxidant Electrospun Zein Nanofibrous Web Encapsulating Quercetin/Cyclodextrin Inclusion Complex. J. Mater. Sci. 2018, 53, 1527–1539. [Google Scholar] [CrossRef]
- Ajmal, G.; Bonde, G.V.; Thokala, S.; Mittal, P.; Khan, G.; Singh, J.; Pandey, V.K.; Mishra, B. Ciprofloxacin HCl and Quercetin Functionalized Electrospun Nanofiber Membrane: Fabrication and Its Evaluation in Full Thickness Wound Healing. Artif. Cells, Nanomedicine, Biotechnol. 2019, 47, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Aydogdu, A.; Yildiz, E.; Aydogdu, Y.; Sumnu, G.; Sahin, S.; Ayhan, Z. Enhancing Oxidative Stability of Walnuts by Using Gallic Acid Loaded Lentil Flour Based Electrospun Nanofibers as Active Packaging Material. Food Hydrocoll. 2019, 95, 245–255. [Google Scholar] [CrossRef]
- Wutticharoenmongkol, P.; Hannirojram, P.; Nuthong, P. Gallic Acid-loaded Electrospun Cellulose Acetate Nanofibers as Potential Wound Dressing Materials. Polym. Adv. Technol. 2019, 30, 1135–1147. [Google Scholar] [CrossRef]
- Da Silva, F.T.; da Cunha, K.F.; Fonseca, L.M.; Antunes, M.D.; El Halal, S.L.M.; Fiorentini, Â.M.; Zavareze, E.d.R.; Dias, A.R.G. Action of Ginger Essential Oil (Zingiber officinale) Encapsulated in Proteins Ultrafine Fibers on the Antimicrobial Control in situ. Int. J. Biol. Macromol. 2018, 118, 107–115. [Google Scholar] [CrossRef]
- Pusporini, P.; Edikresnha, D.; Sriyanti, I.; Suciati, T.; Munir, M.M.; Khairurrijal, K. Electrospun Polyvinylpyrrolidone (PVP)/Green Tea Extract Composite Nanofiber Mats and Their Antioxidant Activities. Mater. Res. Express 2018, 5, 54001. [Google Scholar] [CrossRef]
- Cui, H.; Bai, M.; Lin, L. Plasma-Treated Poly(Ethylene Oxide) Nanofibers Containing Tea Tree Oil/Beta-Cyclodextrin Inclusion Complex for Antibacterial Packaging. Carbohydr. Polym. 2018, 179, 360–369. [Google Scholar] [CrossRef]
- Shao, P.; Liu, Y.; Ritzoulis, C.; Niu, B. Preparation of Zein Nanofibers with Cinnamaldehyde Encapsulated in Surfactants at Critical Micelle Concentration for Active Food Packaging. Food Packag. Shelf Life 2019, 22, 100385. [Google Scholar] [CrossRef]
- Figueroa-Lopez, K.J.; Vicente, A.A.; Reis, M.A.M.; Torres-Giner, S.; Lagaron, J.M. Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials 2019, 9, 144. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, Y.; Lan, X.; Huang, D.; Luo, T.; Ji, J.; Mafang, Z.; Miao, X.; Wang, H.; Wang, W. Electrospun Gelatin Nanofibers Encapsulated with Peppermint and Chamomile Essential Oils as Potential Edible Packaging. J. Agric. Food Chem. 2019, 67, 2227–2234. [Google Scholar] [CrossRef]
- Lin, L.; Zhu, Y.; Cui, H. Electrospun Thyme Essential Oil/Gelatin Nanofibers for Active Packaging against Campylobacter Jejuni in Chicken. LWT 2018, 97, 711–718. [Google Scholar] [CrossRef]
- Deldar, Y.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Montazer Saheb, S.; Rahmati-Yamchi, M.; Zarghami, N. An in Vitro Examination of the Antioxidant, Cytoprotective and Anti-Inflammatory Properties of Chrysin-Loaded Nanofibrous Mats for Potential Wound Healing Applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.A.; Orqueda, M.E.; Gómez-Mascaraque, L.G.; Isla, M.I.; López-Rubio, A. Crosslinked Electrospun Zein-Based Food Packaging Coatings Containing Bioactive Chilto Fruit Extracts. Food Hydrocoll. 2019, 95, 496–505. [Google Scholar] [CrossRef]
- Kuntzler, S.G.; Costa, J.A.V.; Morais, M.G.d. Development of Electrospun Nanofibers Containing Chitosan/PEO Blend and Phenolic Compounds with Antibacterial Activity. Int. J. Biol. Macromol. 2018, 117, 800–806. [Google Scholar] [CrossRef]
- Shao, P.; Niu, B.; Chen, H.; Sun, P. Fabrication and Characterization of Tea Polyphenols Loaded Pullulan-CMC Electrospun Nanofiber for Fruit Preservation. Int. J. Biol. Macromol. 2018, 107, 1908–1914. [Google Scholar] [CrossRef] [PubMed]
- Al-Maqtari, Q.A.; Rehman, A.; Mahdi, A.A.; Al-Ansi, W.; Wei, M.; Yanyu, Z.; Phyo, H.M.; Galeboe, O.; Yao, W. Application of essential oils as preservatives in food systems: Challenges and future prospectives—A review. Phytochem. Rev. 2022, 21, 1209–1246. [Google Scholar] [CrossRef]
- Partheniadis, I.; Stathakis, G.; Tsalavouti, D.; Heinämäki, J.; Nikolakakis, I. Essential Oil—Loaded Nanofibers for Pharmaceutical and Biomedical Applications: A Systematic Mini-Review. Pharmaceutics 2022, 14, 1799. [Google Scholar] [CrossRef]
- Dede, S.; Sadak, O.; Didin, M.; Gunasekaran, S. Antimicrobial Food Packaging Application of Angelica Root (Angelica Sylvestris) Oil-Loaded Electrospun Biofibers. Food Packag. Shelf Life 2023, 35, 101035. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Teixeira, M.C.; Fernandes, A.R.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A.; Souto, E.B. Lipid Nanocarriers for the Loading of Polyphenols–A Comprehensive Review. Adv. Colloid Interface Sci. 2018, 260, 85–94. [Google Scholar] [CrossRef]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and Their Applications: An Approach in Food Chemistry and Innovation Potential. Food Chem. 2021, 338, 127535. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.; Ralaivao, M.; Estevinho, B.N.; Rocha, F. A New Approach for the Microencapsulation of Curcumin by a Spray Drying Method, in Order to Value Food Products. Powder Technol. 2020, 362, 428–435. [Google Scholar] [CrossRef]
- Aydın, S.T.; Demirhan, I.; Şengör, M. Quercus Infectoria Gall Loaded Patches for Wound Dressing: A Comparison of Fabrication Methods. J. Herb. Med. 2022, 36, 100605. [Google Scholar] [CrossRef]
- Krongrawa, W.; Limmatvapirat, S.; Vollrath, M.K.; Kittakoop, P.; Saibua, S.; Limmatvapirat, C. Fabrication, Optimization, and Characterization of Antibacterial Electrospun Shellac Fibers Loaded with Kaempferia Parviflora Extract. Pharmaceutics 2022, 15, 123. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.; Rocha, F.; Estevinho, B.N. Co-Encapsulation of Retinoic Acid, Curcumin and Resveratrol by Spray-Drying of Alginic Acid Sodium-Based Emulsions and Ethyl Cellulose-Based Solutions: Impact on the Co-Delivery Profiles. Int. J. Biol. Macromol. 2023, 224, 1217–1227. [Google Scholar] [CrossRef]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Formulation Approaches for Improved Retinoids Delivery in the Treatment of Several Pathologies. Eur. J. Pharm. Biopharm. 2019, 143, 80–90. [Google Scholar] [CrossRef]
- Estevinho, B.M.A.N.; Rocha, F.A.N.; Santos, L.M.D.S.; Alves, M.A.C. Using Water-Soluble Chitosan for Flavour Microencapsulation in Food Industry. J. Microencapsul. 2013, 30, 571–579. [Google Scholar] [CrossRef]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Methodologies for Simulation of Gastrointestinal Digestion of Different Controlled Delivery Systems and Further Uptake of Encapsulated Bioactive Compounds. Trends Food Sci. Technol. 2021, 114, 510–520. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Lopes, A.R.; Sousa, V.; Rocha, F.; Nunes, O.C. Microencapsulation of Gulosibacter Molinativorax ON4Tcells by a Spray-Drying Process Using Different Biopolymers. J. Hazard. Mater. 2017, 338, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Chaumun, M.; Goëlo, V.; Ribeiro, M.; Rocha, F.; Estevinho, B.N. In Vitro Evaluation of Microparticles with Laurus Nobilis L. Extract Prepared by Spray-Drying for Application in Food and Pharmaceutical Products. Food Bioprod. Process. 2020, 122, 124–135. [Google Scholar] [CrossRef]
Advantages | Disadvantages |
---|---|
Non-use of heat | Low production rate |
Versatile and simple process | Expensive industrial installation |
High surface-area-to-volume ratio (production of very thin fibers to the order of few nanometers with large surface areas) | Limitations in the selection of the encapsulating agents (polymers) used considering the viscosity and conductivity |
High porosity | Toxicity of the residual solvent used |
High encapsulation efficiency | High operating voltage |
Stability of the microstructures | |
Low-cost process | |
Easy scale-up | |
Microstructures with a wide range of applications |
Antioxidant | Encapsulation Agent | Processing Parameters | Encapsulation Efficiency, % | Structures Average Size, µm | Application | Reference |
---|---|---|---|---|---|---|
Epigallocatechin gallate (EGCG) | Zein | 0.15 mL/h, 10 cm, 13 kV | 80 | 0.30 microparticles | food-grade materials | [61] |
α-linolenic acid (ALA) | gelatin | 0.15 mL/h, 10 cm, 18 kV | 100 | 0.80 microparticles | ||
ß-carotene | whey protein | 0.5 mL/h, 12 cm, 20 kV | - | 0.27 nanocapsules | food packaging | [63] |
α-tocopherol | PCL | 0.18 mL/min, 15 cm, 15 kV | 6.0 fibres | [58] | ||
Grape seed extract | PLA/PEO | 1 mL/h, 9 cm, 17 kV | 90 | 0.30 fibres | wound dressing | [62] |
Rosemary (Rosmarinus officinalis) polyphenols | PVA | 2.2 mL/h, 20 cm, 30 kV | 0.22 fibres | active packaging | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, S.C.; Estevinho, B.N. A Brief Review on the Electrohydrodynamic Techniques Used to Build Antioxidant Delivery Systems from Natural Sources. Molecules 2023, 28, 3592. https://doi.org/10.3390/molecules28083592
Coelho SC, Estevinho BN. A Brief Review on the Electrohydrodynamic Techniques Used to Build Antioxidant Delivery Systems from Natural Sources. Molecules. 2023; 28(8):3592. https://doi.org/10.3390/molecules28083592
Chicago/Turabian StyleCoelho, Sílvia Castro, and Berta Nogueiro Estevinho. 2023. "A Brief Review on the Electrohydrodynamic Techniques Used to Build Antioxidant Delivery Systems from Natural Sources" Molecules 28, no. 8: 3592. https://doi.org/10.3390/molecules28083592
APA StyleCoelho, S. C., & Estevinho, B. N. (2023). A Brief Review on the Electrohydrodynamic Techniques Used to Build Antioxidant Delivery Systems from Natural Sources. Molecules, 28(8), 3592. https://doi.org/10.3390/molecules28083592