Efficient Near-Infrared Luminescence Based on Double Perovskite Cs2SnCl6
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure and Characterization
2.2. Optical Properties
2.3. Moisture Stability
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Castriotta, L.A.; Calabrò, E.; Di Giacomo, F.; Reddy, S.H.; Takhellambam, D.; Paci, B.; Generosi, A.; Serenelli, L.; Menchini, F.; Martini, L.; et al. A universal multi-additive strategy to enhance efficiency and stability in inverted perovskite solar cells. Nano Energy 2023, 109, 108268. [Google Scholar] [CrossRef]
- Wu, X.; Yin, C.; Zhang, M.; Xie, Y.; Hu, J.; Long, R.; Wu, X.; Wu, X. The intercalation cathode of MOFs-driven vanadium-based composite embedded in n-doped carbon for aqueous zinc ion batteries. Chem. Eng. J. 2023, 452, 139573. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, S.G.; Lee, D.; Shin, H.; Park, N.G. Bifacial stamping for high efficiency perovskite solar cells. Energ. Environ. Sci. 2019, 12, 308–321. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Z.; Gao, H.; Shao, J.; Zou, H.; Yao, D.; Liu, Y.; Zhang, H.; Yang, B. One-step preparation of cesium lead halide CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals by microwave irradiation. ACS Appl. Mater. Interfaces 2017, 9, 42919–42927. [Google Scholar] [CrossRef]
- Yu, Y.L.; Yang, W.Y.; Hara, A.; Asayama, K.; Roles, H.; Nawrot, T.; Staessen, J. Public and occupational health risks related to lead exposure updated according to present-day blood lead levels. Hypertens. Res. 2022, 46, 395–407. [Google Scholar] [CrossRef]
- Olufemi, A.C.; Mji, A.; Mukhola, M.S. Potential health risks of lead exposure from early life through later life: Implications for public health education. Int. J. Environ. Res. Public Health 2022, 19, 16006. [Google Scholar] [CrossRef] [PubMed]
- Jellicoe, T.C.; Richter, J.M.; Glass, H.F.J.; Tabachnyk, M.; Brady, R.; Dutt, S.E.; Rao, A.; Friend, R.H.; Credgington, D.; Greenham, N.C.; et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944. [Google Scholar] [CrossRef]
- Men, L.; Rosales, B.A.; Gentry, N.E.; Cady, S.D.; Vela, J. Lead-free semiconductors: Soft chemistry, dimensionality control, and manganese-doping of germanium halide perovskites. ChemNanoMat 2019, 5, 334–339. [Google Scholar] [CrossRef]
- Ghosh, B.; Wu, B.; Mulmudi, H.K.; Guet, C.; Weber, K.; Sum, T.C.; Mhaisalkar, S.; Mathews, N. Limitations of Cs3Bi2I9 as lead-free photovoltaic absorber materials. ACS Appl. Mater. Interfaces 2018, 10, 35000–35007. [Google Scholar] [CrossRef]
- Han, P.; Zhou, W.; Zheng, D.; Zhang, X.; Li, C.; Kong, Q.; Yang, S.; Lu, R.; Han, K. Lead-free all-inorganic indium chloride perovskite variant nanocrystals for efficient luminescence. Adv. Opt. Mater. 2022, 10, 2101344. [Google Scholar] [CrossRef]
- Li, D.; Xu, W.; Zhou, D.; Ma, X.; Chen, X.; Pan, G.; Zhu, J.; Ji, Y.; Ding, N.; Song, H.; et al. Cesium tin halide perovskite quantum dots as an organic photoluminescence probe for lead ion. J. Lumin. 2019, 216, 116711. [Google Scholar] [CrossRef]
- Liu, Q.; Yin, J.; Zhang, B.B.; Chen, J.K.; Zhou, Y.; Zhang, L.M.; Wang, L.M.; Zhao, Q.; Hou, J.; Shu, J.; et al. Theory-guided synthesis of highly luminescent colloidal cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2021, 143, 5470–5480. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Rao, H.; Fang, Y.; Zeng, J.; Pan, Z.; Zhong, X. Antioxidative stannous oxalate derived lead-free stable CsSnX3 (X = Cl, Br, and I) perovskite nanocrystals. Angew. Chem. Int. Ed. 2021, 133, 670–675. [Google Scholar] [CrossRef]
- Chu, Y.; Hu, Y.; Xiao, Z. First-principles insights into the stability difference between ABX3 halide perovskites and their A2BX6 variants. J. Phys. Chem. C 2021, 125, 9688–9694. [Google Scholar] [CrossRef]
- Liu, F.; Jiang, J.; Toyoda, T.; Kamarudin, M.A.; Hayase, S.; Wang, R.; Tao, S.; Shen, Q. Ultra-halide-rich synthesis of stable pure tin-based halide perovskite quantum dots: Implications for photovoltaics. ACS Appl. Nano Mater. 2021, 4, 3958–3968. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Liu, X.; Chen, G.; Wang, Y.; Bao, J.; Xu, X.; Liu, X.; Zhang, Q.; Yu, K.; et al. Heterostructural CsPbX3-PbS (X= Cl, Br, I) quantum dots with tunable Vis-NIR dual emission. J. Am. Chem. Soc. 2020, 142, 4464–4471. [Google Scholar] [CrossRef]
- Zeng, M.; Locardi, F.; Mara, D.; Hens, Z.; Deun, R.; Artizzu, F. Switching on near-infrared light in lanthanide-doped CsPbCl3 perovskite nanocrystals. Nanoscale 2021, 13, 8118–8125. [Google Scholar] [CrossRef]
- Yin, Y.; Huang, Y.; Wu, Y.; Chen, G.; Yin, W.J.; Wei, S.H.; Gong, X. Exploring emerging photovoltaic materials beyond perovskite: The case of skutterudite. Chem. Mater. 2017, 29, 9429–9435. [Google Scholar] [CrossRef]
- Kovalenko, M.V.; Protesescu, L.; Bodnarchuk, M.I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750. [Google Scholar] [CrossRef]
- Arfin, H.; Kshirsagar, A.S.; Kaur, J.; Mondal, B.; Xia, Z.; Chakraborty, S.; Nag, A. ns2 electron (Bi3+ and Sb3+) doping in lead-free metal halide perovskite derivatives. Chem. Mater. 2020, 32, 10255–10267. [Google Scholar] [CrossRef]
- Tan, Z.; Li, J.; Zhang, C.; Li, Z.; Hu, Q.; Xiao, Z.; Kamiya, T.; Hosono, H.; Niu, G.; Lifshitz, E.; et al. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: Photoluminescence induced by impurity doping. Adv. Funct. Mater. 2018, 28, 1801131. [Google Scholar] [CrossRef]
- Jing, Y.; Liu, Y.; Zhao, J.; Xia, Z. Sb3+ doping-induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals. J. Phys. Chem. Lett. 2019, 10, 7439–7444. [Google Scholar] [CrossRef]
- Tan, Z.; Chu, Y.; Chen, J.; Li, J.; Ji, G.; Niu, G.; Gao, L.; Xiao, Z.; Tang, J. Lead-free perovskite variant solid solutions Cs2Sn1–xTexCl6: Bright luminescence and high anti-water stability. Adv. Mater. 2020, 32, 2002443. [Google Scholar] [CrossRef]
- Adhikari, S.D.; Echeverría-Arrondo, C.; Sánchez, R.S.; Chirvony, V.S.; Martínez-Pastor, J.P.; Agouram, S.; Muñoz-Sanjosé, V.; Mora-Seró, L. White light emission from lead-free mixed-cation doped Cs2SnCl6 nanocrystals. Nanoscale 2022, 14, 1468–1479. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Huang, Y.E.; Deng, T.; Lin, Y.T.; Huang, X.Y.; Deng, Z.H.; Du, K.Z. Multi-dopant engineering in perovskite Cs2SnCl6: White light emitter and spatially luminescent heterostructure. Inorg. Chem. 2021, 60, 17357–17363. [Google Scholar] [CrossRef] [PubMed]
- Hwang, A.; Park, M.; Park, Y.; Shim, Y.; Youn, S.; Lee, C.-H.; Jeong, H.B.; Jeong, H.Y.; Chang, J.; Lee, K.; et al. Visible and infrared dual-band imaging via Ge/MoS2 van der Waals heterostructure. Sci. Adv. 2021, 7, eabj2521. [Google Scholar] [CrossRef]
- Pan, Q.; Cai, Z.; Yang, Y.; Yang, D.; Kang, S.; Chen, Z.; Qiu, J.; Zhan, Q.; Dong, G. Engineering tunable broadband near-infrared emission in transparent rare-earth doped nanocrystals-in-glass composites via a bottom-up strategy. Adv. Opt. Mater. 2019, 7, 1801482. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, X.; Kornienko, A.Y.; Kumar, G.A.; Yu, D.; Emge, T.J.; Riman, R.E.; Brennan, J.G. Efficient NIR emission from Nd, Er, and Tm complexes with fluorinated selenolate ligands. Inorg. Chem. 2018, 57, 1912–1918. [Google Scholar] [CrossRef]
- Mukthar, N.F.M.; Schley, N.D.; Ung, G. Strong circularly polarized luminescence at 1550 nm from enantiopure molecular erbium complexes. J. Am. Chem. Soc. 2022, 144, 6148–6153. [Google Scholar] [CrossRef]
- Cai, T.; Wang, J.; Li, W.; Hills-Kimball, K.; Yang, H.; Nagaoka, Y.; Yuan, Y.; Zia, R.; Chen, O. Mn2+/Yb3+ codoped CsPbCl3 perovskite nanocrystals with triple-wavelength emission for luminescent solar concentrators. Adv. Sci. 2020, 7, 2001317. [Google Scholar] [CrossRef]
- Mahor, Y.; Mir, W.J.; Nag, A. Synthesis and near-infrared emission of Yb-doped Cs2AgInCl6 double perovskite microcrystals and nanocrystals. J. Phys. Chem. C 2019, 123, 15787–15793. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, W.; Huang, P.; Zhang, M.; Zhang, W.; Deng, Z.; Yu, S.; Jin, M.; Chen, X. Efficient near-infrared luminescence in lanthanide-doped vacancy-ordered double perovskite Cs2ZrCl6 phosphors via Te4+ sensitization. Angew. Chem. Int. Ed. 2022, 61, e202201993. [Google Scholar]
- Fedorovskiy, A.E.; Drigo, N.A.; Nazeeruddin, M.K. The role of Goldschmidt’s tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range. Small Methods 2020, 4, 1900426. [Google Scholar] [CrossRef]
- Diao, X.; Diao, Y.; Tang, Y.; Zhao, G.; Gu, Q.; Xie, Y.; Shi, Y.; Zhu, P.; Zhang, L. High-throughput screening of stable and efficient double inorganic halide perovskite materials by DFT. Sci. Rep. 2022, 12, 12633. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, W.; Li, L.; Huang, P.; Gong, Z.; Zhou, Z.; Sun, J.; Yu, Y.; Chen, X. Dual-band-tunable white-light emission from Bi3+/Te4+ emitters in perovskite-derivative Cs2SnCl6 microcrystals. Angew. Chem. Int. Ed. 2022, 61, e202116085. [Google Scholar]
- Zeng, R.; Bai, K.; Wei, Q.; Chang, T.; Yan, J.; Ke, B.; Huang, J.; Wang, L.; Zhou, W.; Cao, S.; et al. Boosting triplet self-trapped exciton emission in Te (IV)-doped Cs2SnCl6 perovskite variants. Nano Res. 2021, 14, 1551–1558. [Google Scholar] [CrossRef]
- Drummen, P.J.H.; Donker, H.; Smit, W.M.A.; Blasse, G. Jahn-Teller distortion in the excited state of tellurium (IV) in Cs2MCl6 (M = Zr, Sn). Chem. Phys. Lett. 1988, 144, 460–462. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, P.; Niu, X.; Hong, H.; Yin, H.; Li, Z.; Yin, H.; Chen, Z. Co-doping of stibium and rare earth (Nd, Yb) in lead-free double perovskite for efficient near-infrared emission. J. Alloys Compd. 2022, 911, 164946. [Google Scholar] [CrossRef]
- Zhao, J.; Pan, G.; Liu, K.; You, W.; Jin, S.; Zhu, Y.; Gao, H.; Zhang, H.; Mao, Y. Efficient dual-mode emissions of high-concentration erbium ions doped lead-free halide double perovskite single crystals. J. Alloys Compd. 2022, 895, 162601. [Google Scholar] [CrossRef]
- Cao, L.; Jia, X.; Gan, W.; Ma, C.G.; Zhang, J.; Lou, B.; Wang, J. Strong self-trapped exciton emission and highly efficient near-infrared luminescence in Sb3+-Yb3+ co-doped Cs2AgInCl6 double perovskite. Adv. Funct. Mater. 2023, 33, 2212135. [Google Scholar] [CrossRef]
- Arfin, H.; Kaur, J.; Sheikh, T.; Chakraborty, S.; Nag, A. Bi3+-Er3+ and Bi3+-Yb3+ codoped Cs2AgInCl6 double perovskite near-infrared emitters. Angew. Chem. Int. Ed. 2020, 59, 11307–11311. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Han, P.; Zheng, D.; Zhang, J.; Yang, S.; Zhao, Y.; Miao, X.; Han, K. All-inorganic rare-earth-based double perovskite nanocrystals with near-infrared emission. Laser Photonics Rev. 2021, 15, 2100218. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qing, X.; Wu, C.; Han, X. Efficient Near-Infrared Luminescence Based on Double Perovskite Cs2SnCl6. Molecules 2023, 28, 3593. https://doi.org/10.3390/molecules28083593
Qing X, Wu C, Han X. Efficient Near-Infrared Luminescence Based on Double Perovskite Cs2SnCl6. Molecules. 2023; 28(8):3593. https://doi.org/10.3390/molecules28083593
Chicago/Turabian StyleQing, Xiaofei, Chuanli Wu, and Xiuxun Han. 2023. "Efficient Near-Infrared Luminescence Based on Double Perovskite Cs2SnCl6" Molecules 28, no. 8: 3593. https://doi.org/10.3390/molecules28083593
APA StyleQing, X., Wu, C., & Han, X. (2023). Efficient Near-Infrared Luminescence Based on Double Perovskite Cs2SnCl6. Molecules, 28(8), 3593. https://doi.org/10.3390/molecules28083593